Personale

 

Dott. Ing. Matteo Marano


Collaboratore nell'ambito del consorzio SPINNER
V.le Risorgimento, 2, 40136 - Bologna (I)
Tel. +39 051 209 3585
Fax. +39 051 209 3588
e-mail
matteo_mrn@libero.it


 

Curriculum Vitae

 

ISTRUZIONE

 

·       Laurea in Ingegneria Elettrica conseguita nell’anno 2002 con voto finale 100/100, presso la Facoltà di Ingegneria dell’Università degli Studi di Bologna con una tesi sperimentale realizzata nell’ambito della ricerca sulla trazione elettrica dal titolo “Realizzazione di un azionamento a controllo digitale per macchine asincrone basato su scheda con componenti a logica programmabile e trasmissione dei segnali in fibra ottica”.

·       Diploma di Maturità Tecnica Industriale Elettrotecnica conseguito presso l’Istituto Tecnico Industriale “Aldini - Valeriani” di Bologna nell’anno 1995 con votazione finale di 54/60.

 

PRECENDENTI ESPERIENZE LAVORATIVE

 

 ·      In seguito ho vinto una borsa di ricerca dal titolo “Sviluppo di una classe di convertitori elettronici basati su tecnologia IMS per l’interfacciamento di fonti rinnovabili con la rete elettrica”, utilizzando fondi europei destinati alla Regione Emilia-Romagna che ha individuato nel Consorzio Spinner, un organismo intermediario della sovvenzione Globale FSE.

 

CONOSCENZE

 

·           Informatiche:

Sistemi Operativi Windows 95-98-NT-2000
 
Software Office 2000 (Word, Excel, PowerPoint)
Autocad
Orcad
PSpice
Project Manager Xilinx per programmazione CPLD
 
Programmazione: Fortran 77
Matlab con applicativo Simulink
Assembly DSP TMS 320F240x
 

 

 

·          Hardware:
 

Elettronica di potenza applicata alla conversione statica dell'energia elettrica
 

·          Linguistiche:
 

Conoscenza dell’ inglese (scolastico).

 

 OBBLIGHI DI LEVA

 

Assolto

 

 ATTIVITA' DI STUDIO E RICERCA

 

A new kind of DC/AC power electronic converter with a high output current (600 A) and low voltage of the DC bus link is designated and manufactured.

An IMS (Insulated Metal Surface) hybrid technology for the power module is used to improve electric and thermal performances. The IMS board is based on a substrate of high thermal conductivity that can allow heat spreading through the circuit board material.

The boards are typically based on materials such as copper and aluminum. The metal baseplate allows the heat to spread over a larger area for ultimate transfer to the ambient.

The copper circuit layer is bonded to the substrate with a thin, thermally conductive, and electrically insulating layer.

A high output current is achieved thanks to the connection of a large number of MOSFETs in parallel.

It’s very important to control all MOSFETs in the same way to avoid the rise of a different current density in each MOSFET. Thus, it was very important to focus on MOSFETs control strategy in order to avoid failure during the operation.  In particular, we tried to maximize the ratio between the number of components and the board surface.

 

The layout of the power module was designed accounting symmetry that can help to optimize current distribution between the components.

A drive circuitry was especially designed in order to drive the large number of MOSFETs. This circuit must be able to drive the current flowing through the switching MOSFETs.  Current peak values up to 15 A were measured in the circuit, even though just for a short time.

The results obtained were very satisfactory, since we were able to provide a grand total of current up to 600 A to the load.

The advantages of the converter are a small size and a relatively low cost.

The prototype will now undertake a new phase that will lead to the industrialization process. The proposed  DC/AC converter will be an interesting candidate for many applications, e.g. for electrical vehicles or for low or zero emission energy plants, such as photovoltaic plants  linked to electric power lines.