Universita degli Studi di Bologna

FACOLTA DI INGEGNERIA

Dipartimento di Ingegneria Elettrica

Current distribution in multistrand
superconducting cables

Doctoral thesis

MARCO BRESCHI

University of Bologna, Bologna, Italy, 2001



Acknowledgements

This work couldn’t have been realized without the valuable help of several teachers met
during these years of study. I am very grateful for the continuous scientific support and stimulus
given me by all the members of my research team at the Department of Electrical Engineering of
the University of Bologna. I would like to acknowledge every member of the group: Prof.
Francesco Negrini for having initiated me to this interesting research field, Dr. Andrea
Cristofolini and Dr. Massimo Fabbri for their precious technical assistance.

A very special acknowledgment goes to Prof. Pierluigi Ribani for having patiently
followed and sustained me in every step of this work.

Part of this work was developed during my stay at the MTA Group of the LHC Division
of CERN, Geneva, Switzerland. I want to recall here all the members of the Group and its

Leader, Dr. Peter Sievers, for the very nice and stimulating working environment found at
CERN.

I express all my personal gratitude towards Dr. Luca Bottura, Section Leader MTA, for
having inspired most of this work, and helped me to enter the complex world of superconducting
cables and magnets.

I am grateful to Dr. Aleksander Akhmetov from LHC and the Russian Academy of
Sciences for many useful suggestions on the modelling of flat Rutherford cables. I also want to
acknowledge Dr. Stephan Russenschuck from LHC for having provided the field maps for the
calculations and Dr. Arnaud Devred from CEA Saclay, Dr. Pierre Pugnat, Markus Haverkamp,
Thomas Schreiner from LHC for many valuable discussions. The experimental data on current
distribution in a two strand cable were kindly provided by Dr. Curt Schmidt from FZK,
Karlsruhe.

Last but not least, I would like to thank my family for the moral and logistic support
accorded me during all these years of study and all my friends for their continuous
encouragement.



SUMMARY

The scope of this work is the analysis of current distribution among the strands in
multistrand superconducting cables through the development of an appropriate electromagnetic
model. The model must be suitable to be applied to all the main configurations of multistrand
cables, and be able to describe current diffusion processes in real long cables used in magnets.

In Chapter 1 some basic information on superconducting cables and magnets is given,
motivating the use of the particular configuration of multistrand cables. The operating principle
of particle accelerators is briefly discussed, stressing the need for magnetic fields of a very high
quality.

In Chapter 2 the problem of current distribution is described, illustrating the possible
sources, and the final effects of a non-uniform current distribution among the strands of the
multistrand cables. Particular attention is focused on its influence on the cable thermal stability
in the case of CIC conductors and on the quality of the field generated by the cable in the case
of flat Rutherford cables. An overview of the theoretical models and of the experiments
concerning current distribution in multistrand superconducting cables is also presented.

In Chapter 3 an electromagnetic model based on the representation of the cable strands
by means of a distributed parameters circuit model is described in detail. The results of the
model are compared with those obtained with different models for the study of current
distribution, in particular with the network model based on a lumped parameters circuit.

In Chapter 4 the analytical solution of the model equations is given and compared to the
numerical simulations and to the simplified analytical solution found in the literature and
relative to current diffusion in a 2-strand cable.

In Chapter 5 the model is applied to the analysis of experimental results on the
generation and development of long current loops induced in a two-strand cable. Moreover,
extensive measurements of the magnetic field in the bore of a short LHC dipole model in
different powering conditions are described and analysed in detail, studying the effects of the
current distribution in the cable on the field quality of the magnet.

Appendix A gives the detail on the derivation of the distributed parameters model from
the Maxwell equations of electromagnetism. Appendix B deals with numerical calculation of
mutual and self inductances: a general method for the calculation of the mutual inductance
between conductors with circular cross sections displaced in space with any geometric
configuration is developed. Appendix C derives the eigenvalues and eigenvectors of the model

matrices.
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INTRODUCTION

The design of large magnets for nuclear fusion reactors and for research in the field of
particle physics requires the generation of very high magnetic fields in large volumes. The use of
conventional resistive cables employing copper for the windings would require a big cooling

system and would result in a very large consumption of electric power.

The discovery and development of type Il or “hard” superconductors [1] has given a new
possibility for the construction of these magnets. These materials carry electrical current without
resistance at low temperatures also in the presence of high magnetic fields. This results in values
of the power dissipated in the magnets which are several orders of magnitude smaller than in the
resistive case. The most important materials of this class are superconducting alloys such as
NDbTi or compounds as Nb3;Sn, with critical fieldsat 4.2 K of 11 and 21-28 T respectively.

The superconducting materials are arranged in thin filaments which are then twisted and
embedded in a matrix of norma metal, forming strands. The strands are then twisted or
transposed together to build the final cable. The technical reasons for the choice of this structure

of multistrand superconducting cables are outlined in section 1.3.

Severa kinds of configurations have been developed starting from this basic structure. The

two configurations most commonly used in technical applications are the following:

o Rutherford type cables consist of afew tens of strands, twisted together with a pitch of some
centimeters and then shaped into aflat, two layer, dightly keystoned cable. The filaments are
usually made of NbTi and the matrix is made of high purity copper. These cables are usually
employed in accelerator magnets, where they are electrically insulated and cooled in a
helium bath.

o Cable in conduit conductors (indicated as CICC's) are made of a very large number of
strands which are twisted to form sub-cables in different cabling stages. The strands are then
wrapped inside a stainless stedl jacket and cooled by means of aforced flow of helium filling



the voids between strands. This direct contact of coolant and strands strongly enhances the
cable performances in terms of thermal stability to external disturbances. For this reason
these cables are the preferred choice for magnets that must operate in a noisy
electromagnetic and mechanical environment, where the operating conditions require a

reliable and stiff design.

Magnetic fields in particle accelerator magnets are generated over a large dynamic range. At
the extreme of very long time scales, superconducting dipole magnets operate with large charge
up times, in the range of tens of seconds to the steady state.

In magnets for fusion applications long current ramps in the order of hundreds of seconds are

needed to produce the electric field necessary for the plasma confinement.

The application of current ramps or time dependent external fields generates in the cables a
variety of screening currents. Interfilament coupling currents flow inside each strand between the
superconducting filaments and in the normal metal matrix. Several methods have been proposed
to analyse these currents and the corresponding AC losses. The study of these currents is beyond

the scope of thiswork.

We focus our attention on the study of the eddy currents distribution which isinduced by
time dependent magnetic fields in the paths formed by the contacts between the different strands
of the multistrand cable. These interstrand eddy currents are superimposed to the currents
flowing between the filaments inside the strands, but the approximation to study the two
phenomena independently is widely accepted, because of the different time constants of the two

current distributions.

A further contribution to the current imbalance between strands can result from different

contact resistances of the strands to the joints at the cable ends.

The superposition of these unbalanced currents to the transport current in the strands and
the heat due to the ac losses associated with these currents or to external disturbances can push
the current of some strands beyond the critical value of the strand current itself, such generating

anormal conducting region.



The resistive heat generated by the normal conducting material can be removed both by
conduction to the neighboring parts of the conductor or by convection to the coolant. In some
cases, this removal is sufficient for the conductor to recover the initial superconducting state. In
other cases the conduction and convection heat fluxes propagate the normal zone over a very
long part of conductor, requiring the magnet to be switched off. This is the quench of the
magnet.

This phenomenon is particularly important during fast field ramps and limits the
maximum current achievable with a multistrand cable in dynamic powering conditions. For this
reason it is generally indicated as ramp rate limitation. A correct modeling of these phenomena
can help in the choice of optimal cable parameters to avoid strong ramp rate limitations and

enhance the cable stability.

Moreover, a “secondary” magnetic field varying in time and space is generated by the
eddy currents induced by time dependent magnetic fields. This field component affects directly
the magnetic field in the magnet bore of particle accelerator magnets determining a modulation
of the field along the length of the magnet axis known as magnetic field pattern. Moreover, this
field component changes in time, contributing to change the magnetization of the
superconducting filaments in the strands. This indirect influence on strand magnetization
contributes to a drift of the average field in the magnet bore during phases of constant operation

current.

The field quality is a mgor concern for magnets used in particle accelerators, due to its
influence on the beam optics. Up to now, these dynamic effects on field quality, which show a
clear dependence on ramp rate and powering history of the cable, cannot be avoided. Therefore,

acorrect modeling of these phenomena can be useful for their compensation.

Existing network models for current distribution in Rutherford cables are characterized
by a very large number of unknowns, which makes it difficult to study current distribution in

real long cables used in magnets.



All these considerations result in the necessity of an electromagnetic model of current
distribution, flexible enough to be applied any kind of multistrand superconducting cable, and
characterized by the possibility to strongly reduce the number of unknowns, for the study of long
range phenomena in real multistrand cables used in magnets. The model should also be suitable
to be coupled with a thermo-hydraulic description of the refrigerating system, because of the
strict coupling between electrical, thermal and hydraulic phenomena occurring in cooled

superconducting cables.

The objective of this work is therefore to review the main phenomena related to current
distribution in multistrand superconducting cables and to develop an electromagnetic model
suited for the analysis and improved understanding of these phenomena. The results of the
model will be compared with pre-existing models of current distribution, showing advantages

and drawbacks of the novel approach.

The analytical solution of the equations of current diffusion in multistrand cables made
of a generic number of strands will be given, and compared with the numerical results and

simplified solutions found in the literature.

The model will be applied to study existing experimental results on current distribution
in multistrand superconducting cables. An extensive measurement of magnetic field pattern in a
superconducting dipole will aso be presented in order to study the influence of the current
distribution on the field quality of accelerator magnets. The possibility to apply the
electromagnetic model to long cables made of some tens of strands will be demonstrated

applying it to the analysis of the experimental resullts.



CHAPTER 1

SUPERCONDUCTIVITY: FROM MATERIALS TO PARTICLE ACCELERATORS



11 SUPERCONDUCTING MATERIALS

Superconductivity is a very peculiar state of matter discovered in 1911 by Kamerlingh Onnes in the
University of Leiden, Denmark [2-3]. Onnes found that below a certain very low temperature, called critical
temperature 7,, the electrical resistance of a sample of mercury dropped abruptly to zero. He called this state
“superconducting state”. In the following years the researches of many chemists and physicists discovered the same

phenomenon in 26 metallic elements of the periodic table.

Onnes immediately understood the potential applications of his discovery, but his first attempts to build
magnets with these materials were frustrated by the discovery of other limiting physical conditions to be respected
in order to keep the superconducting state [4]. In particular it was found that superconductivity is possible only
below a certain value of the applied magnetic field, called critical field B.. A very peculiar magnetic phenomenon,
called the Meissner effect, was observed below the critical field. In these conditions the superconducting elements
showed a perfect diamagnetic behaviour, with a complete expulsion of the magnetic flux from the material. These
materials are caled #ype I superconductors. In these materials the critical field is too low for the application of

superconducting materials to the generation of high magnetic fields.

However, in the early 1960s new superconducting alloys and compounds, like NbTi and Nbs;Sn, were
discovered and studied. These materials showed a different magnetic behaviour, and were caled #pe II
superconductors. In these materials the complete expulsion of the magnetic flux is observed only below a small
value of the applied magnetic field, generaly indicated with B,.,. For higher values of the magnetic field the flux
lines start penetrating the material, which still shows a zero DC resistance until a second critical field, called B.,, is
reached. When the second critical field is reached the flux is totaly penetrated in the conductor and

superconductivity islost.

A third critical parameter needs to be carefully controlled when dealing with superconducting materials.

Thisisthe current density, which must be lower than a critical value J..

A fourth critical parameter which should not be overcome in order to keep the superconducting state is the
frequency of the electromagnetic field applied to the material. The critical frequency is extremely high, around 10™

Hz, and it isusually not reached in practical large scale applications of superconductivity.

The three main critical parameters, temperature, field and current density, are related by an experimental
correlation which can be written in the form J. = J. (B,T). This relation is shown in Fig. 1.1 for three different
superconducting materials. The critical surface J, (B,T) defines two regions in the space: in the region included
between the surface and the coordinate planes the material is superconducting, in the outer region the material is
normally conducting. The most widely used materials for technical applications are NbTi and NbsSn, which

combine high values of all three critical parameters, as shown in Table 1.1.



In late 1986 Bednorz and Muller of the IBM research laboratory in Zurich, Switzerland, reported the
observation of superconductivity in lanthanum copper oxides doped with barium or strontium at temperatures up to
38 K, above the ceiling of 30 K for the critical temperature that had been theoretically predicted almost 20 years
earlier. Since then, hundreds of scientists rushed to try different compounds to see which one would give the highest
T,. These new, ceramic materials show physical and chemical properties which are very different from those of
metallic superconductors. The most important ceramic superconductors for applications are YBCO (yttrium barium
copper oxide), BSCCO (bismuth strontium calcium copper oxide) and HBCCO (mercury barium calcium copper

oxide). Their chemical formulas and transition temperatures are shown in Table 1.2.

J(A/m?)

Fig. 1.1 Critical surface of some technical superconducting materials

The ceramic superconductors show the great advantage of high critical temperatures, which makes it
possible to obtain proper refrigeration with liquid nitrogen, while low temperature superconductors need to be
refrigerated with liquid helium, which needs a much more complex and expensive cryogenic system. Conventional
low temperature superconductors are often used in magnets running at 4 K, but they lose superconductivity in high
magnetic fields, typically above 6 T, athough NbTi remains superconducting up 10 or 15 T. The ceramics
superconductors have better performances. Bismuth strontium copper oxide (BSCCO) carries adequate currents and
remains superconducting above 20 T, at 20 K. Therefore, the best way to obtain very high magnetic fieldsis to use

ceramic superconductors at low temperatures.

On the other hand, some remarkable problems have been encountered in the application of ceramic

materials to superconducting magnets. In order to wind a coil to produce a magnetic field, the first prerequisite isto



make long lengths of wire from the superconducting material. Ceramic superconductors are not ductile, and are very
brittle, so that the development of a reliable wire-manufacturing technique is an extremely delicate problem.
Another problem is related to the granular nature of these materials. Very large currents can flow within grains, but
grain boundaries impede the current flow between grains. Methods have been developed both to align grains and to

provide “clean” grain boundaries, but these processing methods still need improvement.

All these technical difficulties, combined with time consuming thermal and mechanical treatments, result in
very high fabrication costs. For al these considerations, at the present state low temperature superconductors are
till the most used materials for large scale applications in high energy physics magnets and thermonuclear fusion

magnets.

T.[K] B, [T] Je [KA/mM?’]
NbTi 9.3 15.0 2.0
Nbs;Sn 18.0 28.0 3.0

Table 1. Critical parameters of NbTi and Nb;Sn

ame Formula
Y ttrium barium copper oxide Y 1Ba,Cus0; 92
Bismuth strontium calcium copper (Bi,Ph),Sr,Ca,CuzOy 105
oxide (2223 phase)
Thallium barium calcium copper Tl,Ba,Ca,Cus0y 115

oxide (1223) phase

Mercury barium calcium copper Hg:Ba, Ca,Cuz0, 135
oxide (1223 phase)




temperatures of some HTSC materials

Superconducting materidls  are  usualy

reinforced for the application in cables with additional
components for structural, glectric and  thermal
stability reasons. In general the superconducting

materia is shaped to form very thin filaments, which are then embedded in a matrix of low resistivity material,

forming strands. A typical cross section of a superconducting strand is shown in Fig. 1.2.

This low resistance material provides a “shunt” when a part of a superconducting filament undergoes a
transition to the normal state. In this case the resistance in the superconducting material becomes orders of
magnitude higher than that of the matrix material, and the matrix can rapidly conduct the heat and transfer the
current of the filament to other adjacent filaments. The resistivity of the matrix should therefore be small, especially

in the longitudinal direction. A typical low resistivity material used for the matrix is copper.

Technical values of the matrix resistivity for copper are about 1-2 10"° Qm. The resistivity of copper matrices
is often indicated with the so called RRR-value (Residual Resistivity Ratio), which gives the ratio between the
resistivity at 300 K and at 4 K in the absence of applied field. This value is generally about 50-200 for practical
NDbTi strands.

The use of the copper matrix with fine filaments was started after the first coils wound from bulk
superconducting wires tripped off unpredictably at current levels much lower than the expected critical current. The
reason for this behaviour was identified with the so called flux jumps.

The origin of flux jumps is due to the fact that the flux penetration in superconductors is associated to a small
power generation, due to the resistive decay of the screening currents exceeding J,. The power generated by the flux
penetration increases the local temperature, reducing J,, and hence inducing further flux penetration and heating. As
the thermal diffusivity in the superconductor is orders of magnitude smaller than the magnetic diffusivity, the flux

penetration may turn into a very fast avalanche effect, even at very sow externa field variation.

A restriction to the flux motion is provided by a reduction of the filament size, which
also limits the energy associated to a flux jump. The presence of a high conductivity stabiliser as
the copper matrix works as a heat sink and electrical bridge around the flux jump affected zone
allowing recovery in case the local temperature exceeds the critical temperature of the

superconductor.
The threshold for flux jumps is about 60-80 pm filament size. Most technical superconductors are

manufactured today with much smaller filaments (5-30 pm for NbTi and 2-8 pum for Nbs;Sn). However, collective



interaction among filaments may give rise to flux jumps at low fields. These interactions are called “bridging” when
the superconducting filaments have physical contacts through which current exchange takes place, and “proximity
effects’” when tunnelling of Cooper pairs occurs through the copper matrix. Both phenomena enhance the effective

diameter of the filament at low magnetic fields.

Fig. 1.2 Cross section of a superconducting strand containing 8000 filaments of NbTi, gathered in hexagonal
bundles, and embedded in a copper matrix.

Another reason for the limitation of the filament size, at least in particle accelerator applications, is the
necessity to limit field distorsions resulting from superconductor magnetisation at low field.

In the presence of an external field, in fact, persistent currents flow in the superconducting filaments shielding
the interior of the filaments from the applied field. The persistent currents generate a residual field which increases
increasing the filament diameter and the critical current density. At low external fields the critical current density is
increased and so does the residual field due to persistent currents, resulting in a high relative field error in the bore
of the magnets.

The filament uniformity, the absence of ruptures along the filament length, and the current density of the

superconducting material are crucial parameters for a high overall strand critical current.

When time varying magnetic fields are applied to strands, eddy currents are induced both in the filamentsand in
the copper matrix. An interfilament coupling loss is associated with these currents. For this reason the filaments are
in general twisted in order to reduce the area enclosed by any two filaments and therefore the interfilament coupling
loss. The interfilament coupling currents exhibit time constants of 0.01 to 0.1 s and a characteristic loop length

equal to the twist pitch of the filaments.



Another important parameter that must be optimized while manufacturing strands is the copper-to-
superconductor ratio, which should be not too small to limit conductor heating in the case of a quench but neither

too large because of the need of high overall strand current densities.

The strand coating can in some cases be essential to prevent too high interstrand currents and losses. Bare
strands can be used for pure DC applications, where the coupling currents loss is not an issue. For materials like
NbsSn and NbsAl, the typical material used for the coating is Cromium.

For NDbTi strands, several coatings are available, including Cr, Ni, Zn, SnAg, and PbSn.

Insulating coatings are also possible, but should be avoided as they don't allow current redistribution between
neighbouring strand in the case of superconducting to normal transition of one or more strands. This can lead to a

severe limitation of the cable stability to thermal disturbances.

1.3 SUPERCONDUCTING CABLES

1.3.1 Why multistrand cables?

Superconducting magnets for particle accelerators or fusion applications are often wound from multistrand

superconducting cables. These cables show the following advantages as compared to single wires [5]:

e the strand to strand current redistribution in the case of localized defects or in case of quench initiation in
some strands is very useful to improve the cable thermal stability

e the piece length requirement for wire manufacturing is reduced of a factor N, where N is the number of
strands in the superconducting cable

e the number of turnsislimited and the coil winding facilitated

+ the coil inductance is limited to a value 1/N° smaller than that of a similar coil wound from a single strand
cable. A smaller inductance reduces the voltage requirements on the power supply to ramp up the magnets

to their operating current in a given time and limits the maximum voltage to ground in case of a quench
The main drawback of using a cable is the high operating current which requires large current supplies and

large current leads. The development of reliable current leads made with high temperature superconductors gives a

new possibility for the construction of this technically delicate part of the system.

1.3.2 Cable cooling and insulation



In order to properly operate a superconducting cable, the conductor must be cooled below the critical
temperature of the superconducting material. One way to distinguish superconducting cablesis a classification based

according to the cooling mode, either by forced-flow of helium, or by pool boiling.

e In forced flow conductors the helium flows in a channel which is in therma contact with the
superconductor. These cables are particularly suited for applications in which the thermal stability of the
cable is a major concern, because of the direct contact between the coolant and the cable strands and the
well defined flow regime which helps to know the operating conditions in detail. Among the forced-flow
conductors the most interesting configuration is that of the so caled “Cable in Conduit Conductors’
(CICC's). In the CICC configuration the strands are twisted in subsequent stages to form afinal stage cable
with interstitial voids whose area covers the 40% of the cable cross sectional area. Examples of this
configuration are shown in Fig. 1.3. The cable is enclosed in a very tight stainless steel jacket, and the
helium flows in the voids of the cable, so that the contact between coolant and strands is direct and
characterised by a high heat transfer coefficient.

« Inthe cables refrigerated by pool boiling the cooling is achieved by heat exchange and natural convection
from the coil winding pack to a bath of liquid helium. The thermal contact of coolant and conductor is
worse than in the CIC configuration. This kind of cooling is ideally suited for magnets which operate in

“persistent” mode, i.e. with a constant operating current, such as magnets for magnetic resonance imaging.

The cable insulation must satisfy some important requirements, which are listed in the following.
e agood dielectric strength at very low temperatures, around 4.2 K, and under high transverse pressure. This
is also due to the fact that the dielectric strength of helium gas at 4.2 K is very low and far worse than that
of liquid helium.

« thepossibility to keep good mechanical propertiesin awide range of temperature.




Fig. 1.3. @) Cross section of a cable in conduit conductor, showing strands enclosed in a stainless steel jacket.

Helium flows in the voids between strands. b) Example of cable in conduit conductor with internal helium channel.

» asmal thicknessto maximize the overall current density of the coil

»  ahility to withstand radiations for applications in an accelerator environment

» possibility to provide a means of bonding the coil turns together to give the coil arigid shape and facilitate
its manipulation during the subsequent steps of the magnet assembly

» asufficient porousity to allow permeation of the helium, giving a better thermal contact with the conductor

The insulation of most NbTi cables is congtituted of one or two inner layers of polyamide film, wrapped
helically around the conductor, completed by an outer layer of resin-impregnated glass fiber tape (see Fig. 1.4.b).
The outer layer iswrapped with a gap to set up helium cooling channels
between coail turns. The resin is of thermosetting-type and requires heat to increase cross-link density and cureinto a

rigid bonding agent.

As anticipated in the introduction, the coils for high field accelerator magnets are often wound from high-
current Rutherford type cables. The cable is generally obtained by flattening a hollow tubular cable comprising
between 20 and 40 strands. The final geometry is shown in Fig. 1.4.a. The strands are fully transposed with a twist
pitch L,. The cable cross section presents a small keystone angle which ensures a more uniform structure of the coils

and facilitates the winding of the magnets.

TN
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Fig. 1.4. @) Final geometry of flat Rutherford cable for LHC magnets. b) Insulation of a flat cable, realised with a
glass-fibre tape and a kapton foil.

A resistive barrier between the top and bottom layer of flat cables is sometimes added in order to enhance the
contact resistance between strands and limit the interstrand coupling currents induced by time dependent magnetic
fields.



The main parameters of the Rutherford cables used to wind dipolesin two layers (inner and outer) for the LHC

(Large Hadron Collider) project at CERN (see section 1.5.3) are listed in Table 3.

Outer layer Inner layer
Diameter of strands (mm) 0.825 1.065
Copper/Superconductor ratio 19 16
Filament size (um) 7 6
Bref (T) 9 10
Tt (K) 1.9 1.9
Je (Bres, Tret ) (A/mm?) 1953.0 1433.3

Table 3 Main parameters of flat Rutherford cables used for the
LHC dipoles

1.4 SUPERCONDUCTING MAGNETS

The possibility offered by superconducting cables to conduct high currents with low power lossesisideally
suited for the construction of electromagnets. Extremely high fields (up to 20T and more) can be produced in
volumes in the range from 0.01 to 1 dm®, while fields in the range from 5 to 6 T can be produced in volumes of the

order of 1 m®.

The most typical application of superconducting magnets are listed in the following:

e Magnetic separators are devices used to capture ferromagnetic, diamagnetic, or paramagnetic particles
from a streaming fluid, in order to filter impurities or to separate particles with different magnetic
susceptivities. The capture capability strongly depends on the field module and on the field gradient. The
choice of superconducting magnets is very competitive for the separation of very small particles, downto 1

um of diameter, which are very difficult to capture with conventional electromagnets.

¢ MHD generators are devices for the magneto-fluid dynamic generation of energy. In these devices the

power produced depends on the second power of the module of the magnetic induction. Superconducting



cables are necessary, because with conventional magnets the power required by the conversion cycle would
be higher than the power produced.

< MRI (magnetic resonance imaging) magnets allow to obtain images with a very high resolution, used for
medical diagnostics. The possibility to use the magnetsin “persistent mode”, with a fixed and stable value
of the operating current, leads to the required field uniformity in space and time. MRI magnets have
revealed to be the most profitable investment for the superconductive technology since the 1980s.

¢ Nuclear fusion magnets are used to generate the magnetic field for the plasma confinement in the
controlled thermonuclear fusion devices. Two main kinds of magnets are used in the tokamak
configuration: the toroidal field coils which enclose the plasma ring, and pulsed transformer coils, for the
poloidal field. Both kinds of coils are subject to the time dependent magnetic field generated by the
transformer coils and are introduced in a very noisy electromagnetic environment, so that the preferred

choice for a stable operation is to wind them with cable in conduit conductors.

1.5 PARTICLE ACCELERATORS

1.5.1 Why particle accelerators?

Particle accelerators are needed for the investigation of two very fundamental research topics, which are
nowadays strictly correlated. The first is related to particle physics, and is aimed to give an answer to basic
guestions like “what is matter?’, “what are its basic constituents?’ and “what kind of interactions exist between
particles?’. The second is related to astronomy, and is aimed to recreate with high energy collisions the same
conditions existing in the initial instants of the origin of universe, immediately after the “Big Bang”. The questions
are the following: “how was matter at that time?’, “how did the fundamental particles coalesce to make the atoms,
the stars and the galaxies we observe today?”.

By concentrating a large amount of energy into the smallest possible volume, in fact, equal numbers of
particles of matter and antimatter are created from pure energy according to the equation E = mc® The energy
concentrations created in modern particle accelerators correspond to the conditions prevailing less than 10™° s after

the Big Bang.



1.5.2 Particle accelerators, working principle

Two types of experiments can be realised in particle accelerators. In fixed target experiments the particles
are accelerated and the beam is blasted against a fixed target. In colliding-beam experiments two counter rotating
beams are blasted at each other by colliding them among themselves. The collision products are analysed in large
detectors which surround the targets or the collision points. Different layers of the detectors measure different
properties of the particles resulting from the collisions, while a magnetic field is needed to identify particles of
opposite charges and different momentum.

Two kinds of accelerators exist, linear and circular. All particle beams start their acceleration in linear
accelerators, but the need to reach very high energies would require linear accelerators of unacceptable lengths, so
that the preferred solution is to counter-rotate particle beams in circular accelerators (called storage rings) until the
desired energy is reached.

In any kind of accelerator there is exactly one curve - the design orbit- on which ideally
all particles should move. If this design orbit is curved, as in circular accelerators, bending
forces are needed. In reality, most particles of the beam will deviate slightly from the design

orbit. In order to keep these deviations small on the whole way (which might be as long as 10"

km in a storage ring), focusing forces are required.

Both bending and focusing forces can be accomplished with electromagnetic fields. In
modern accelerators the bending forces are provided by dipole magnets, while the focusing

forces are provided by quadrupole magnets.

In order to define ideal dipole and quadrupole magnets we consider a point P on the
design orbit of the particles and a local reference frame where the (X, Y) plane is transverse with
respect to the design orbit. The X axis defines the horizontal direction, the Y axis defines the

vertical direction and the z axis corresponds to the direction of particle motion.



Fig. 1.5 Lorentz force acting on a positively charged particle @) dipole field b) quadrupole field
A normal dipole magnet is a magnet which, when positioned in P, produces within its
aperture a magnetic flux density parallel to the (X, Y) plane and such that the field components

Bx and By satisfy the following equations:

BX = 0 al’ld By = B]_
(1.1)

a) )

where B1 is a constant. According to the Lorentz force, a charged particle travelling along the
direction of the Z axis through the aperture of such a magnet is deflected on a circular trajectory
parallel to the horizontal plane. The radius of curvature p is determined by the equilibrium of

Lorentz (FL.=QvB1) and centrifugal force (Fe=mV°/p) and results in:

P =p/(qBy
(1.2)

where p is the particle momentum WVN. Equation (1.2) clearly indicates that, to maintain a
constant radius of curvature as the particle is accelerated, the dipole field must be ramped up in
proportion to the particle momentum.

A normal, ideal, quadrupole magnet is designed in such a way that the field components

along its aperture can be expressed in the following way:

Bx =gy and By =gx
(1.3)

where g is a constant referred to as the quadrupole field gradient. 4 beam of positively charged
particles travelling along the z axis is horizontally focused and vertically defocused if g is
positive, and vertically focused and horizontally defocused if Q is negative. The effects of dipole

and quadrupole fields on a positively charged particle are shown in Fig. 1.5.



To obtain a net focusing effect along both X and 'y axes a pair of focusing-defocusing
quadrupoles must be used. For both kinds of quadrupoles, the focal length f is proportional to
the particle momentum [5]. This means that to maintain f constant while the particle beam is
accelerated, the quadrupole field gradient must be ramped up in proportion to the particle
momentum.

As a consequence, for both bending and focusing purposes, the magnetic field in particle
accelerator magnets is not kept constant, causing the dynamic effects on current distribution in

the magnet cables discussed in this thesis.

1.5.3 CERN-Large Hadron Collider

CERN is the European Laboratory for Particle Physics. In this laboratory both linear and
circular accelerators are installed. CERN was founded near Geneva, Switzerland, in 1954, and it
is now funded by 20 European countries. More than 6000 researchers from 80 countries work in

the facilities offered by this laboratory.

The largest accelerator under construction at CERN today is the Large Hadron Collider,
LHC. The main goal of the LHC is finding the Higgs boson, a particle which physicists retain
responsible for the mechanism how particles acquire mass. In the LHC protons and antiprotons
will collide at a center of mass energy of 14 TeV. This energy is not much larger than the kinetic
energy of a mosquito, but is concentrated in a volume which is 10* times smaller. This is why

the collimation of the particle beamsis an extremely delicate technical problem.

The layout of this accelerator is shownin Fig. 1.6. The tunnel is 27 km long and is placed
100 m below the ground. The circumference is divided into 8 octants. The particles will collide
in only 4 points along the ring circumference, corresponding to octants 1, 2, 5 and 8, asindicated

in Fig. 1.6. The storage ring will consist of about 8400 magnets, of which 3444 will be



superconducting. Among the superconducting magnets there will be 1232 main dipoles, 386

main quadrupol es and other magnets for the correction of field errors.

Fig. 1.6. Layout of the Large Hadron Collider at CERN

1.5.4  Field quality
Accelerator magnets must provide a magnetic field of high homogeneity, better than a few parts on 10000
at a radius of 60 % of the coil diameter. An ideal dipole and quadrupole field can be generated by the current
distribution shown in Fig. 1.7. An ideal dipole field is given by a cos () current distribution while an ideal
quadrupole field is obtained with a current distribution proportional to cos (2 &), where J is the azimuth angle [4].
The dipole and quadrupole current distributions are realized in practice by means of a discretization of the
homogeneous current shells. This approximation introduces a number of field imperfections, which must be

minimized and corrected. The magnetic field in the accelerator magnets is usually expressed by means of the

following complex series:



o -1
B (x,y) =B, +iB, =zCn %H
n=1 0

(1.4)
where s = x + iy is the complex co-ordinate in the (x, y) coil cross sectional plane of the magnet, R, is a reference
radius (for LHC R, = 17 mm) and C,, are the so called harmonic coefficients.
The harmonic coefficients C, can also be explicitly written as the sum of their real (referred to as normal)
and imaginary (skew) parts:
C,=A4,+ B,
1.5)

Accelerator magnets are usually produced and positioned so that they generate a pure normal or skew
multipole field of order 4. In a norma multipole magnet, for instance, the magnetic field has strictly y direction,
implying that the skew part of any harmonic coefficient must be zero. However, severa field errors are present in
superconducting magnets, and all field harmonics have to be carefully measured and controlled. These field errors

have severa origins [6].

Some field errors have a geometric origin and result from the deviation of the placement of the
conductors from the ideal current distribution giving the desired magnetic field.

Moreover, at high field significant deviation from linearity and field errors are caused by the
saturation of the iron yoke. The geometric and saturation field contributions are reproducible, can be predicted
accurately and may be largely inferred from warm measurements. These effects can also be found in normal
resistive magnets.

Additional effects peculiar to superconducting magnets are caused by the known DC diamagnetic
property of superconducting cables. As anticipated in Section 1.2, persistent currents flow in each filament in the
cable strands, so that each filament behaves as a diamagnetic material, whose contribution to the magnetic field
quality can be appreciable at low field levels.

Other effects on the field quality are associated with the superconducting properties of the cables. In

particular, a decay of the magnetic field and field harmonics is seen during long periods of constant current



excitation, followed by arapid recovery of the initial value before the drift as soon as the current is ramped (referred

to as snapback). These effects are due to the change in the filaments magnetization, which is also correlated to the

current distribution among the cable strands, as pointed out in Section 2.2.2.
Fig. 1.7 Ideal current distribution for the generation of a dipole (a) and quadrupole (b) field. The current for the

dipole field has the form I = I, cos (), while the current for the ideal quadrupole field has the form I = I, cos (2 9)



CHAPTER 2

CURRENT DISTRIBUTION: PROBLEM DEFINITION



2.1 SOURCES OF NON UNIFORM CURRENT DISTRIBUTIONS

Several possible sources of non uniform current distribution among the cable strands can be identified. Among
them, some are effective in both AC and DC conditions, while others are only effective in AC conditions. Some
possible sources of a non uniform current distribution in both stationary and dynamic conditions are listed in the

following.

« Different joint resistances of the different strands at the cable terminations [1]. The cable ends can be connected
through splices to other cables or through joints to the current leads. It is not technically possible to redlize a
perfectly identical contact between the different strands and the joints because the soldering processes cannot
be so strictly controlled. However, once the statistical distribution of the different strand joint resistances is
directly measured or identified, the effects on current distribution can be easily determined.

e Different strand critical properties. It isimpossible to manufacture perfectly identical strands: small differences
in the strand critical properties could result in some strands carrying more current than the others, in the

presence of the same external conditions.

Some possible sources of non homogenous current distributions are effective only in the
presence of time dependent magnetic fields. In particular long current loops can be induced
between the cable strands. They are basically due to an inhomogeneous distribution of the time
derivative of the magnetic flux enclosed by the various strands. The possible sources of such

inhomogeneity are listed in the following:

e Strand transposition errors with respect to the background magnetic field, for which the flux linked to the
loops formed by the strands cannot be fully compensated (geometrical errors)

+ Differencesin the strand self and mutual inductances

* Large gradients of the magnetic flux density along the cable, even with perfectly

transposed strands, which may give rise to long range coupling currents, flowing along



the whole cable length [9]. This source of non homogeneity is considered to be more

relevant in accelerator magnets than in nuclear fusion magnets.

In order to better clarify the origin and the properties of the induced circulating currents it
can be useful to distinguish cables with insulated strands and cables with non insulated strands.

The situation in cables made of insulated strands can be schematized with a lumped
parameters circuit model as shown in Fig. 2.1. In the circuit Ly, is the self inductance of strand h
and My is the mutual inductance between strand h and strand K, while ® y i is the flux enclosed
between the two strands.

The inductive terms determine the transient circulating current, while the resistive terms
determine the steady transport current. The order of the decay time constant of the induced

transient circulating current is given by [7]:

L-M
o) =—
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(2.1)
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Fig. 2.1 Lumped parameters network model showing two typical insulated strands




where L, M, and R are the typical orders of the self inductances, the mutual inductances and the

Jjoint resistances respectively. As R is usually very small (in the order of nQ) in order to reduce

the heat generation at the joints, the order of decay time constants can be very large, up to

several hours. The order of magnitude of the induced circulating current is given by [7]:

. Qvf + ®ev
Oolhi)=—

2.2)

where @, and @, represent the magnetic flux linked to the loop due to the self field and to the

external field. The induced currents can be very large when a CICC cable is exposed to a large
external magnetic field, resulting in some cases in very significant current imbalances.

In the case of non insulated strands two different types of currents can be distinguished,
namely short and long range coupling currents. The short range coupling currents are often
simply indicated as interstrand coupling currents (ISCCs) [27]. The long range coupling
currents are often indicated as "Boundary Induced Coupling Currents” (BICC's) [27] or

"Supercurrents" [10].

The short range coupling currents can be originated by a time varying magnetic field uniform along the
cable axis. The loop for the interstrand coupling currents consists of two strands and a contact electrical resistance,
as shown in Fig. 2.2a. Assuming that the cable is made of an integer number of half twist pitches, the short range
coupling current is uniform along the cable length. If dB/dt is independent of time, the following equation can be

written for the interstrand coupling current:

. dB
Q= E = 2‘[SCCRC + 2‘[SCCRC

2.3)

where @ isthe time derivative of the magnetic flux linked to the loop, S isthe area of the loop, 1. the value of the
interstrand coupling current, and R, the resistance of each contact between strands. The value of the interstrand

coupling current resultsin:



(2.4)

The order of the decay time constant is given by [7]:

O(r)~%

(2.5) where L, is the inductance of the loop. The short range coupling currents exhibit time
constants in the range from 0.01 to 1 sin typical cables. The long range coupling currents can
flow along the whole cable length. Their amplitude can be orders of magnitude higher than that

of the short range coupling currents.

dB/dt a) t b)




Fig. 2.2 Schema of the loops of short (a) and long (b) range coupling currents
The theory explaining the behaviour of this type of currentsin flat Rutherford cables was

developed in [10] and is briefly discussed in Section 2.3.5.

The sources listed above can lead to non homogeneous current distribution among the
different strands even without the intervention of external disturbances. However, it may happen
during magnet operation that a certain amount of energy is released in a portion of one or more
strands by external disturbances, determining the superconducting to normal transition in this

portion of the cable.

External disturbances can be due to unforeseen increases in steady state heat input, sudden slipping among
cable components, cracking of the insulation, beam loss in accelerator magnets. The energy deposition is usually
very localized in time and space. Consequently, a current redistribution among the neighbouring strands starts,
driven by the voltage of the normal zone. The redistribution takes place across the transverse contact resistance. If
the strands are insulated, the current can only redistribute through the cable joints. Therefore the transverse

resistance between strands is a key parameter for current re-distribution.

In systems with galvanic coupling between strands like in soldered cables the process of current redistribution
is fast, the Joule heat and the associated temperature rise are small. In cables with insulated strands, the time
constant, the Joule heat and the temperature rise increase with the conductor length: in a magnet system, an

extension of the normal part over the whole conductor cross section and a subsequent quench are very probable.

By the point of view of thermal stability a fast current distribution given by a low contact resistance between
strands is certainly very useful, as it avoids too large Joule heating in the normal zones and consequent temperature

rises. On the other hand, low contact resistances can increase the circulation currents induced in the presence of time



dependent magnetic fields, and enhance the AC losses related to these currents. From the above considerations, it
results that the interstrand contact resistance is a key parameter that should be optimized considering both thermal

stability and AC losses.

2.2 EFFECTS OF NON UNIFORM CURRENT DISTRIBUTIONS
2.2.1 Ramp rate limitation

The most serious consequence of extremely unbalanced current distributions is a severe limitation of the
total current that multistrand cables can carry in transient conditions. As anticipated in the introduction, this effect is
referred to as ramp rate limitation. The quench current of a coil is significantly affected by the ramp rate and the

powering history [13, 8, 47].

Severa sources have been identified in the previous section which can lead some strands to carry more
current than the other strands. If one of these strands exceeds its critical current, while the whole cable current is
still below its design critical value, a portion of this strand can turn into the normal state. From this normal region
formed in one strand a quench can be originated, which can propagate along the whole cable length. In these cases
the magnet must be ramped down and de-energized. This could be a direct mechanism leading to ramp-rate

limitation.

The AC losses due to the interstrand coupling currents, and possible rapid quench and recovery events
(observed in [46]) due to the fact that some strands are more charged than the others, lead some strands, in transient
conditions, to work closer to the critical surface of the superconducting material. This can decrease the cable
capability to recover the superconducting state after external energy depositions . This means that external energy
disturbances which could be absorbed with a recovery to the superconducting state if the current distribution were

uniform, can be fatal in the non uniform case. This could be an indirect mechanism of ramp rate limitation.

The phenomenon of ramp rate limitation is more severe in magnets for which thermal
stability is a major concern, i.e. magnets for nuclear fusion applications. However, it has also

been measured in magnets for particle accelerators [13].



2.2.2 Field errors

The magnetic field in accelerator magnets wound with Rutherford-type cables exhibits a periodic
modulation along the magnet [14, 16, 17]. This periodic pattern has a period identical to the cable twist pitch, and
shows a complex time and space dependence. Even at a constant transport current of the magnet the amplitude of
the periodic field modulation may increase or decrease in time, with very long time constants. Values of the order of
100 h have been measured in some cases [35]. The field modulation persists for several hours after de-energizing

the magnets.

The reason for this effect cannot be explained by flux creep in NbTi filaments. This phenomenon is due to
an uneven current distribution among the strands [9]. The field modulation itself does not strongly affect the particle
motion in the magnet bore. The average value of the field and field harmonics, however, strongly affects the
accelerator operation. It has been shown both theoretically [28] and experimentally [29] that the average strand

magnetization is affected by the field changes internal to the cable that are associated with the current redistribution.

This phenomenon is observed in accelerator magnets as a drift of the field when the transport current is
held constant (decay). The field drift must be known and corrected precisely for accurate accelerator operation.
Thus, a well established correlation and a better understanding of the current distribution as a function of the

operating conditions can lead to improved correction and control algorithms.

2.3 HISTORICAL REVIEW: THEORETICAL MODELS
2.3.1 Why modelling current distribution?

The discovery of ramp rate limitation has shown that the thermal stability to external disturbances in
multistrand cables is intimately correlated with the current distribution between the strands. It is therefore useful to
spend a few words about thermal stability modelling. The aim of the analysis of cable stability is the calculation of
the transient response of an initially superconducting cable to an arbitrary energy input, abstracting from the origin

and the nature of the disturbance spectrum.



The main result of the analysis is the stability margin or minimum quench energy (MQE), the maximum
energy that can be deposited in the cable (over a given extension in space and time and with a given waveform) for
which the transient response ends with the cable back to the superconducting state. This problem is extremely
complex, as it involves coupled thermal, fluid-dynamics and electro-dynamics phenomena occurring at cryogenic
temperatures, where the knowledge of non linear material propertiesis uncertain.

The modelling of current distribution in multistrand cables is therefore useful as it gives important
information for stability studies, helping to interpret the experimental results on cable stability. Moreover, an
accurate estimation of the AC losses in transient conditionsis very important for the design of the cryogenic system.

As in any study which involves simulations, this kind of modelling has the remarkable advantage of
studying in a very fast and cheap way a wide range of possible cable configurations, with different geometric and
electric parameters. This cannot be attained easily with an experimental apparatus.

Over the years several models of current distribution in multistrand cables have been
developed for different applications, at different levels of approximation and degrees of
complexity. The references quoted here should be considered as typical examples of the

application at the level of approximation discussed, and for obvious reasons cannot be

exhaustive of the amount of work spent in the field.

2.3.2 Network models for Rutherford Cables

In the case of Rutherford cables several network models have been developed to study
the current distribution among the strands. One of the earliest presentations of a network model
was given by Morgan in 1973 [18], and assumes that the strands in one layer have electrical
contacts with those in the other layer, but not between themselves. Morgan reports that “a
direct application of Maxwell ‘s equations to a flat metal-filled braid was attempted but dropped
owing to the non isotropic structure of the cable”. For this reason he developed a lumped-
constant circuit approach. In the Morgan’s model the Faraday’s and Kirchoff’s equations are

applied to all the loops formed by two adjacent strands of one layer crossing any two adjacent

strands of the other layer.



The braid is assumed to be infinitely long with uniform cross contact resistance and
uniform field along the cable length, even if field variations across the cable width are allowed.
In this way only N-1 independent loops have to be solved, where N is the total number of
strands (see Fig. 3.1). All loops include four resistances except those at the edges which have
three. All crossover resistances are assumed to be the same, and all loop areas the same.

The solution found for the cross over currents at an arbitrary position is then considered
to be uniformly repeated along the cable length. Morgan’s model allows to find an estimate of
the power dissipated in the cable in the presence of field ramps, if the applied field is changing
at a constant rate, so that the emf driving the loop currents is independent of time.

In more advanced versions of the network model [20, 27] the N-1 loops considered by
Morgan become the components of the basic units for the calculation of the current distribution
(called ‘columns’ [20] or ‘calculation bands’ [26, 27]), allowing to consider longitudinal
variations of the magnetic flux density along the cable length. A representation of the lumped
constant circuit model described in [27] is shown in Fig. 2.4.

A complete set of equations is written for all the columns, applying Faraday’s laws to the
N-1 loops of each column. The cross over currents in each column can be calculated step by
step from the knowledge of the cross over currents in the previous column [19]. The matrix

approach, described in detail in [20] consists in expressing this relation in a matrix form.



Fig. 2.3 Top view of the idealised geometry of the strand axes of a Rutherford cable used for the
distributed parameters model. The thick lines represent the strand segments of strand 1 and 3
considered for the calculation of the mutual inductances matrix along one pitch. The shaded

areas represent the N-1 loops used in Morgan's network model, and as elemental calculation
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bands in the following versions of the network model.



Fig. 2.4 Network model of Rutherford cable /27/. The strands axes are represented by line
elements, the resistances between adjacent and non adjacent strands are tinged respectively in

dark and light grey.

In [19] it was shown that the Morgan's solution is only a particular solution of the
general system of equations, which can be obtained imposing that the cross over currents of a
certain column are all equal to the corresponding cross over currents of the previous column.
Instead, a general solution of the system equations is characterized by the fact that the cross
over currents of the (kJrN)th column are equal to those of the K™ column, where K is the index of
the column.

This means that the cross over currents between any two strands of the cable are the
same after every twist pitch length. The remarkable consequence of this periodicity is the
periodicity of the secondary field produced by the eddy currents.

The effects of sinusoidal distributions of the magnetic field applied to cable samples of
finite length was analysed in [22], with the conclusion that the eddy currents distribution is
pseudo-periodic if the period of the magnetic field oscillations exactly coincides with the cable

twist pitch, and is periodic in the other cases.

In [27] the network model was applied to the study of the generation and development of the so called
“Boundary Induced Coupling Currents’ (BICC's), due to longitudinal variations of the cross contact resistances or
of the magnetic field perpendicular to the broad face of the cable, obtaining a good agreement with experimental
data.

The network model describes in great detail every cross contact between the strands of the two layers and
permits to obtain local information about the currents flowing in every strand and in the cross contact resistances,
and the power dissipated in the cable. It also permits to take into account variations of the cable parameters across

the cable width. One of these possible variations is due to the fact that the cable cross section is not rectangular, but



presents a dight keystone angle, which determines different pressures, and, consequently, different cross contact
resistances at the two sides of the cable. Moreover the time dependent magnetic field can present a variation across

the cable width.

Network models have also been used for the evaluation of power losses and for the study
of cable configurations with adequate anisotropic interwire resistances aimed to ensure
reduction of eddy losses without a decrease of cable stability [36, 37]. Recently the network
model has been applied to an accurate study of the possible eigen-currents of a sample of a four
strand cable subjected to a time dependent magnetic field [23]. The study has shown that the
eigen-frequency spectrum of a N strands cable consists of N-1 smooth subspectra, to each of
which correspond eigen-currents with a certain type of simmetry. In each of these sub-spectra
the minimum eigenfrequencies (maximum decay time constants) correspond to long slowly

decaying current loops.

The main drawback of the network model is that the number of unknowns is very high, growing quickly
with the cable size. This makes it very difficult to study the problem of current distribution in real long cables made

of some tens of strands used in accelerator magnets.

2.3.3 Network models for CIC Cables

Network models for CIC Conductors show a rather high level of complexity. This is due
to the complex geometry of CIC Cables, which is not easily reproducible and in any case is
strongly dependent on a complicated manufacturing process with mechanical deformation and
to the very high number of strands. A remarkable problem is also the identification of the points
of contact between the different strands.

Several simplified network models have been developed for the study of current distribution in cable in

conduit conductors. Up to now these models have been applied to study short samples of cables made of few strands

or simplified geometries of multistage cables including the final stages of the cabling process.



Fig. 2.5 Part of a lumped parameters circuit model representing a CIC cable with two cabling stages with 1 X4X 6
configuration [38].

In [38] the six petals of the final stage of atypical ITER cable have been modeled, and in a further step of
analysis the two final stages of an ITER cablein a1X4X6 configuration (see Fig. 2.5) have been implemented. In
[39] a 3X3 CIC conductor model investigated experimentally in [40] was modeled via a lumped parameters
network model implemented in SPICE. The network model appears to be very well suited to the analysis of this case
in which the strands are insulated. In the same study the network model was applied to the study of one of the 3X4
subcables (made of 12 strands) of the 3X4X4X4 WENDELSTEIN 7-X conductor. The other 180 strands were
lumped in one single branch.

Fig. 2.6. Representation of the joint and its corresponding lumped parameters circuit model [41].
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As shown in the above description, network models of CICC have the same drawback shown by the
network models of Rutherford cables, as they are characterized by a very large number of unknowns, making it very
difficult to study current distribution in very long cables.

Artificial simplifications can be eventually made in the modeling of these extremely complex structures.
Particular scaling laws can be developed for long cable lengths using well defined parameter variations, but this
operation is not straightforward, due to the non linear dependencies of the time constants on the cable length.
Moreover, the lumped parameters circuits are strongly dependent on the particular cable configuration studied, as
every contact between strands must be in principle represented.

A network model has aso been developed for the description of current distribution at the joints between
cables [41]. This kind of model is very well suited for the analysis of joints, because the joint length is not
exceedingly large, and even a detailed model describing all contacts between strands can be handled.

The description of the effects of the cable joints should be somehow included in a complete analysis of
current distribution in multistrand superconducting cables, as it may significantly affect the overall cable behaviour.
However, a simplified modeling of the cable joints can also be attained through appropriate choices of the model

parameters at the cable ends in distributed parameters circuit models [59].

2.3.4 The field model

The problem of current distribution in multistrand supercondcuting cables has also been tackled with a
continuum model directly based on field theory [44]. In the frame of this model the cable is viewed as a continuum
with anisotropic conductivity, obeying Maxwell’s equations. The current density at each point in the cable is defined
as an average over the currents in a fundamental volume element surrounding the point considered, where the
volume is large enough so that the resulting current density is a smooth function of the position. The volume
element can have any convenient shape.

The case of circular cables made of twisted strands can be studied applying the results of the analysis of
circular strands made of twisted filaments [43].

In the case of aflat Rutherford cables two different values of conductivity can be defined, corresponding to
two different directions. One direction is perpendicular to the strands and parallél to the broad face of the cable, the

other is perpendicular to the broad face of the cable. In the frame of this model, the currents flowing along the cable



can be viewed as a sum of three terms, corresponding to two terms in the directions mentioned above and an
additional term corresponding to the direction parallel to the strand axis.
Once the current density and the electric field are evaluated in a given volume element from the solution of

the Maxwell equations, the general expression of the eddy current loss per cycle can be applied [44]:

0, = _L[decyde dt (JIE +H M) (2.6)

where M is the magnetization due to local eddy currents circulating within the volume element, J is the eddy current
density averaged over the volume element, E and H are the Maxwell electric and magnetic fields.

The contribution of power loss in the crossover contacts between the strands of the two layers can be
shown to be a generalization of the results obtained by Morgan [18].

An additional loss term corresponding to currents flowing down one edge of the cable and back along the
other edge can be added to the term corresponding to the currents flowing along the upper and lower face of the
cable already considered in the model.

The field model can give a very elegant and quick estimation of the eddy losses due to the coupling
currents induced in Rutherford cables or in cable in conduit conductors in the case of an uniform time dependent
magnetic field applied perpendicular to the broad face of the cable. In the model presented in [44] the electric field
component parallel to the strand axis is taken equal to zero, considering the strand in a perfectly superconducting
state. In principle the field model can be generalized to the study of any time and space varying magnetic field, and
to the introduction of a non-linear E-J relation in the direction parallel to the strand axis.

However, this model requires the assumption that a relatively high density of electrical contacts between

the strands exists.

2.3.5 The theory of “supercurrents”

As anticipated in Section 2.1, one of the possible sources of non uniform current distributions is a
longitudinal variation of the time derivative of the magnetic field perpendicular to the broad face of the cable. Let's
consider a 2-strand cable of length 2w, much longer than the cable twist pitch L, The two strands have two contacts

per pitch and the cable is exposed to a time dependent magnetic field as shown in Fig. 2.2b. In general a finite



number of loops can be exposed to the time dependent magnetic field. Let’s consider the simple case in which only
one loop, half twist pitch, is exposed to dB/dt.

If w=N, Ly the parallel resistance seen on either side of the cable central loop is equa to:

R
R, =-¢%

2.7
If dB/dt is time independent, a steady state solution for the value of the supercurrent in the middle of the

cable can be easily found as:

2.9)

where @ is the time derivative of the magnetic flux linked to the loop. Comparing eg. (2.8) and (2.4) we note that
the magnitude of the supercurrents is much larger than that of the short range coupling currents, the ratio depending
on the cable length. As cables can be as long as many thousands of twist pitches this ratio can be very high. The

order of the longest decay time constant of the supercurrent is given by:

2
O(T) ~ Lw - Nl Lw ~ Nl Ll
R R R

w (4 C

(2.9)
where L, is the inductance relative to the length w. Typical decay time constants are in the range from 10 to 10° sin

practical cables.

The supercurrents strongly contribute to the ramp rate limitation found in
superconducting magnets [11].

The theory developed in [10] allows the evaluation of time dependent supercurrents in a
simple-two strand cable and of steady state “supercurrents” in cables made by a generic
number of strands. The exact equations for the time dependent supercurrents in a two strand

cable are derived in Section 4.2.



The approach adopted in [10] for the calculation of the steady state supercurrents was
to compute the total flux linked to two generic strands as the product of the area of the
elementary loop formed by the two strands and the local value of the magnetic flux density. The
steady state current in each strand can then be calculated considering the N-1 contributions
given by the driving voltages induced in the loops formed by the strand considered and all the
others. If the magnetic flux density change is applied to more than one loop a superposition of

the effects of the different loops is calculated and the final currents in the strands are found.

2.4 HISTORICAL REVIEW: EXPERIMENTS

The experimental activity on current distribution and redistribution is not yet enough extensive for a correct
interpretation of all the phenomena involved in these processes. However, since the middle of the 90's, several
experiments have been carried out focussing on both current distribution and its coupling with the cable thermal

stability.

Two fundamental methods have been used for the measurements of current distribution in multistrand

cables: direct and indirect [45].

In direct methods special sensors are associated to each strand of the cable and the current in the strand is
directly measured. The possible sensors that can be used are listed in the following:

e Hall Sensors are rather simple and their signals are directly proportional to the local value of the field. In
order to obtain signals proportional to the current in a particular strand the effect of the currents flowing in
the other strands must be suppressed through appropriate calibration procedures. They are especialy suited
for the measurement of slow current changes due to long range induced current loops.

e Pick up coils should be placed around the strand in order not to be affected by the neighbouring strands.

Their signal is directly proportional to the derivative of the current, which must be integrated for the



knowledge of the currents in the strands. They are especially suited for the measurement of fast current

changes, but have low sensitivity for slow processes.

The direct methods show the great advantage to provide direct data about current non-uniformity, but require
the preparation of special cables or special sample models. Moreover the installation of current sensors may change
the cable structure modifying the system to be measured. Finally these methods are practically unfeasible for cables

made of more than some tens of strands.

Indirect methods are based on the measurement of the magnetic field in severa points around the complete
cable. The measurements can be performed once again with Hall sensors or pick-up coils. By solving an inverse
electromagnetic problem, the current distribution processes inside the cable can be inferred. This part of the method
contains a remarkable margin of uncertainty which should be reduced as much as possible through appropriate
calibrations to understand the meaning of the measured data. Indirect methods do not disturb the cable structure, and
may be used in real environments, inside or near superconducting magnets, without any limitation in the total

number of strands in the cable.

We list in the following some of the experiments on current distribution found in the literature which were

performed with different cable configurations.

2.4.1 Experiments on a 2-strand cable

An experiment on current distribution was performed on a two-strand cable in order to validate the theory
of supercurrents originated by longitudinal variations of the time derivative of the magnetic flux linked to the
strands. A 4.7 m long cable twisted with a pitch of 10 mm. was soldered with Sn(50%)In. In the middle of the cable,
and over alength of approximately half atwist pitch (5 mm), aloop with a cross section of approximately 70 mm?
was formed between the strands. The cable was wound into a test coil, with the loop placed in the coil center,

normal to the coil axis, as shown in Fig. 2.7.



The coil was then placed in a background AC vertical field. The AC field caused a
variation of the flux linked with the loop in the center of the sample, inducing currents in
opposite directions in the two superconducting strands. These supercurrents could flow along

the whole cable length, closing through the solder between the two strands.

The supercurrent circulating in the center of the sample was measured by means of a Hall plate placed in
the loop. Different cycles of the externa field were performed, with field ramps alternated with constant field

phases.

2.4.2 Experiments on triplex cables
Several experiments on current distribution on triplex cables have been realized, amed to the
understanding of the coupling of current redistribution processes and cable thermal stability to thermal disturbances

[48-51].



Fig. 2.7 Experimental apparatus used for the measurement of “supercurrents” induced by the time dependent field
in the loop formed by the two strands

In this kind of experiments a heat pulse was applied to a short part of one strand, and the minimum gquench
energy and the temporal evolution of the strand current during the quench or recovery process were measured. The
experimental results showed that when the ratio between the transport current and the critical current is large, the
MQE against a local disturbance almost equals the MQE of the single strand. When the ratio of the overal /1. is
less than 0.4, the MQE against a local disturbance is much larger than that of the single strand. In this small 7,,/I,
region, when a heat pulse whose energy is dightly less than the MQE is applied, current redistribution is observed
during the recovery process. This means that the stability against local disturbance is improved by the current

redistribution only when the ratio /1. islessthan athreshold value, dependent on the thermal contact conductance
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Other experiments [52-54] have shown the influence of different strand configurations on the cable stability
to thermal disturbances. In particular the use of different materials for the strands matrices has been investigated
[52], with the result that some improvements of triplex cable stability to thermal disturbances can be obtained with
Cu matrix either than CuNi matrix because of the high heat conduction and low Joule heating of the Cu matrix.

Moreover, the influence of the number of initially quenched strands on the quench properties of the cable
was studied initiating the quench in one, two or three strands of the cable. In the case of quenching two strands
simultaneoudly, the current which redistributes to the neighbouring strand is 4 times larger than when only one

strand isinitially quenched, with the result of alower cable stability.

2.4.2 Experiments on CIC cables

Several experiments have also been performed for the study of current distribution and redistribution
phenomenain CIC cables made of more than three strands. In some of these experiments the current non-uniformity
in cables wound with insulated strands was studied in AC conditions with cables made of copper strands [55] and
usual superconducting strands [56]. These experiments clearly showed that current distribution in DC conditions or
at very low frequency operation (in the frequency region up to 0.1 Hz) is only determined by the joint resistances of
the strands. The influence of the different inductances of the insulated strands is dominant in the determination of
the current distribution above 1 hz.

Between these two regions a third intermediate region was identified, in which the current distribution is
influenced by both resistances and inductances. Even very small differences in the values of inductances can
generate large current imbalances. It is not yet clear why the inductance imbalance and the corresponding current
imbalance is generated in symmetrically assembled strands.

An extensive measurement of current distribution in a 12 strand Nbs;Sn CIC conductor was performed in
order to study the phenomenon of ramp rate limitation [46]. The experiments were performed measuring the current
in each of the 12 strands during current or field ramps. Very severe inhomogeneities of the current distribution were
found during field ramps. After a current ramp currents in strands were observed to vary from 0.28 up to 3.7 of the
average level independent of di,/dt and of the final current level. This effect was caused by uneven joint

resistances.



Immediately before quenches the individual strand currents within a triplet were
observed to differ by as much as an order of magnitude. Moreover, quench-recovery events of
some strands were observed during field ramps with a constant operation current. These events
are responsible for a extra heat release inside the conduit, which can favour the premature
quench of the cable during a ramping field experiment.

An interesting result obtained with direct measuring on this 12 strand cable wound from
four triplets is that the nucleation of a normal zone in a single strand determines a current
redistribution in which the current distributes into two adjacent strands in the same triplet as

the quenched strand, with small influence on the currents in the other strands.

Experiments on large scale CICC’s were also performed. These experiments showed that
increased AC losses are observed during the excitation of CICC coils which can be attributed to
induced coupling currents [58].

The dominant influence of the joint resistances on current distribution was suggested in
a steady state analysis of non-uniform current distribution in short 4 m samples of 40-50 kA
multistage cables [8]. Many of the conductor samples tested quenched at current levels much
lower than expected from the performance of individual strands. This was supposed to be due to
the short length available for current transfer and to the non-uniformity of joint resistances.

The tests performed suggested that the severe current non uniformities happen within
large petals among the different strands, either than among the different large petals of the last
cabling stages.

Cables wound adding some copper strands showed more premature quenches than
cables with all superconducting strands, due to the larger differences between the low joint
resistances in the cables containing copper strands.

Transient effects in pulsed mode operation in short 3.5 m samples and long 140 m single
layer coils were widely analysed in [59]. The analysis was based on a time dependent coupled
electrical-thermal model applied to a range of Nb3Sn conductors with 1000 strands and
revealed that current non uniformity gives a little degradation of stability to local thermal
disturbances, even when the non uniformity is very severe. The current redistribution times

calculated for short samples range from several tens to several hundreds of seconds. For long



140 m conductors redistribution times increase to 3000 s for the lower cabling stages and to

more than 10000 s for the final substage.

2.4.2 Experiments on Rutherford cables

An experiment on current distribution in a 1.3 m flat Rutherford cable was described in
[27]. The cable was exposed to a small local field change in order to measure the consequent
“Boundary Induced Coupling Currents” generated during field sweeps. The experiment was
aimed to study the decay of the induced currents as a function of time and their propagation
velocity along the cable length, comparing the results with the lumped parameters network
model for Rutherford cables [27].

Other experiments were conducted on short samples of Rutherford cables made of 3 and
11 strands, in order to observe the current redistribution among the strands in two different
situations [21]. In the first configuration only one strand was connected with the external power
supply, and the current entered and exited the cable from the same strand while the rest of the
cable served as a shunt. In the second configuration the current entered the cable through a
strand and got out through the rest of the cable. The analysis of the time constants of the current
redistribution after current ramps demonstrated that the largest time constant is proportional to
the square of the length of the sample, as predicted by theoretical models [20].

Extensive measurement campaigns were also conducted in order to evaluate the AC

losses and interstrand resistances of Rutherford cables [60, 61].



CHAPTER 3

THE THEORETICAL MODEL



INTRODUCTION

In this Chapter an electromagnetic model for the study of current distribution is described. The model is
based on a distributed parameters circuit, and is described by a set of partial differential equations, which are

suitable to be coupled with a complete thermo hydraulic description of the refrigerating system [31].

This model is aimed to find a synthesis between two different kinds of models previously

developed for the study of current distribution and described in Chapter 2.

On one hand, the model starts from the development of the theory of supercurrents [10],
which allows to calculate time dependent supercurrents in a simple-two strand cable and steady

state “supercurrents’ in cables made of a generic number of strands.

The model presented here intends to extend this theory to the study of time dependent supercurrents in
cables made of N strands, considering the mutual dynamic interactions between the strand currents. A simplified
modelling of this situation was proposed in [24], where a single strand was considered and all the rest of the cableis
lumped in another idealised strand, with which the current exchange takes place. An equivaent inductance of the
strand and of all the rest of the cable, as well as an equivalent conductance between these two elements is eval uated,
and the equation of current diffusion between the strand and the rest of the cable is then solved. The model

presented here contains instead a compl ete representation of the cable.

On the other hand the model is based on the achievements obtained by the development
of different network models for current distribution in Rutherford cables [19-27] and cable in
conduit conductors [8, 38]. As pointed out in Chapter 2 these network models are peculiar to

the configuration chosen and are difficult to apply to long cables, because of the very high

number of unknowns.



The model presented here intends to be suited for a correct modeling of both Rutherford
cables and cable in conduit conductors, by means of an appropriate calculation of the model

parameters.

It is therefore important to show that this model reduces to the equations found in [10]
when a 2 strand cable is considered, and is consistent with the network models of both
Rutherford cables and cable in conduit conductors in the evaluation of the strand currents. In

Chapter 3 these features of the model are demonstrated.

In order to do this the model is presented and the equations reported in [10] are derived, showing the

relations between the parameters of the two models.

Moreover the model is applied to study the generation and development of the long range coupling currents
(BICC's), induced in Rutherford cables by longitudinal variations of the time derivative of the magnetic field
perpendicular to the cable face. A comparison of the results obtained with the present model and the commonly used
network model for Rutherford cables is shown, stressing the reduction of the unknowns obtained with the present

model.

In addition to that the current redistribution after quench of one strand in a simple triplex cable is analysed.

The results are compared with those obtained with alumped parameters network model of the same cable.

Finally another interesting feature of the model is demonstrated, i.e. the possibility to simplify the analysis
of complex situations in which long cables with many strands have to be studied introducing equivalent
“superstrands’. This simplification allows a further reduction of the number of unknowns without affecting in a

relevant way the final resullts.

31 DISTRIBUTED PARAMETERS CIRCUIT MODEL



3.1.1  Model equations

The model assumes that each strand carries a current distributed in a uniform way in its cross section,
neglecting the influence of interfilament coupling currents flowing inside each strand between different
superconducting filaments. We also assume that the current transfer between different strands happens along the
length of the cable in a continuous manner. Under these assumptions we can derive approximate equations
governing the current distribution in the cable.

To do so, we consider a superconducting cable made by N strands, and we examine the elemental length
dx. Over this length the strands have parallel resistances R; = r; dx, (i=1, N), where r; are the longitudinal resistances
per unit length of cable (zero if the strand is in the superconducting state). The self inductances of the strands are
indicated with L, = [; dx where [; (i=1,N) are artificial parameters which we temporarily introduce. In the final
equations only differences between these parameters appear, which have the physical meaning of per unit length
induction coefficients. Finally, each strand can have an external voltage source V', = v*“; dx, that can be originated,
for instance, by changes of the magnetic field flux due to external sources linked to a couple of strands. This
idealised situation is represented schematically in Fig. 3.1

The strands have initia currents i; and voltages V; at the coordinate x. Over an elementa length dx the
currents will change by di; because of the current transfer through the interstrand contact resistances Ry, = 1/(gy; dx),
where gy, is the interstrand conductance per unit length. Similarly the voltages will drop by dV, due to the parallel

resistance, inductance and the voltage source.
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Fig. 3.1 The distributed parameters circuit model

Applying the Kirchhoff’s current law to the N nodes, we obtain the following N dependent equations for the

current variations;

i, = (g, *+ Gzt @y )AX V, + gy Vy + gy dX Voo +gy dxVy,
i, =+g, dxV, — (ng tgp Tt gZN)dx Vy+gypndx V. ... + g,y dxVy,
O,

iy =+ dxVi+ gy dxVytgyadi Vo =gyt gyt gNN—l)dx Vy
(3.2)

where V, is the voltage of strand / at position x.
Applying the Kirchhoff’s voltage law to evaluate the voltage drops along the elemental mesh identified,
and neglecting the inductive coupling for all sections, but for the one of length dx located at x, we obtain the

following equations:

al i,

dv, =v&dx —i,r,dx - Zlhkdxg h=1N

(3.2
In addition, the solution is subject to a condition that expresses the conservation of the total operation

current i,, in the cable cross section. We can write this condition as:

N
Z ih = iop

3.3)

that must hold at any point in time and space. The equations above can be conveniently put in the following matrix

form to ease the further algebra:

ov R ) B
—=-rTi—-l—+v
0x ot

(3.49)



(3.4b)

where we have defined the following vectors and matrices:
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If we calculate the space derivative of equation (3.4b) assuming that the interstrand
conductances are uniform along the cable axis, so that the spatial derivative of the interstrand
conductances matrix g is nil, we obtain the following differential equations for the currents in
the strands:

0i 0%

gl—+

+gri—-gv™ =0
at 0x’ BriTs

(3.6)



These are parabolic differential equations that describe the processes of current diffusion aong the cable.
The N equations in system (3.6) are linearly dependent, due to the application of the Kirchhoff's current law to all
the nodes of the distributed circuit in the elemental mesh of length dx. However we can arbitrarily consider N-1
equations for the currents in the first N-1 strands and couple them to equation (3.3). In this way we obtain a

complete set of NV independent partial differential equations for the currents in the strands at any time and position:

2.

Z al . . a L ext
[(gl)ll L.+ (gl)l,Na_;V-l- (gl’)m I+ +(gr)1,N Iy +a_xlz_(g‘))i =0

2.

l al . . a 1 ext
[(gl)21 1+ +(gl)2,zva_jtv+(gr)2,1 ll+---+(gl’)2‘N lzv"'a_xzz_(gv)z =0

2

[
O . .

al . . ew
g gl)y 117, et (gl) - LN aztv +(g) vy 11+"'+(g’")1v—1,1v Iy + —(gv)ya =
Uy

3.7)

where we indicate with (g/); ; the element i, j of the result of the matrix product gl.

A more accurate description of the meaning of the system parameters can be found in Appendix A.

These eguations are in general not linear because the strand resistance depends on the current flowing in
the strands, so that an appropriate model for the strand behaviour has to be chosen. Finally the appropriate length
for the smearing of the system parameters (resistance, inductance and external voltage) has to be chosen. As
multistrand superconducting cables have an intrinsic periodicity related to the twist pitch, good choices of the length
for the smearing of electric parameters are appropriate multiples or fractions of the pitch. Once the parameters for
matrices g and 1 are experimentally evaluated or calculated, the finite element method can be applied to solve
system (3.7).

3.1.2 Initial conditions

In order to solve system (3.7) by means of the finite element method it is necessary to fix the initial current
distribution among the cable strands. The only physical situation in which a clear condition on strand currents can

be set isat zero total current before any current ramp, when the following initial conditions hold:



i, (x,00=0 h=1N

(3.9)

A simple way to obtain this condition with areal magnet isto make it quench, so that the long “memory” of
persistent currents flowing in the strands can be erased. In other cases, after a sufficiently long time from the last
operation current variation, a simply resistive current distribution is established between the strands. As a starting
point for the calculations, it can be assumed that the initial current distribution is uniform, i. e.;

i()p (O)

i, (x,0) = h=1LN

(3.9)

3.1.3 Boundary conditions

The choice of the correct boundary conditions is quite delicate. In fact, in order to correctly model the
connection of a multistrand superconducting cable to another cable through a termination or to a current lead
through a joint, it would be necessary to have a complete description of the whole system (joint + cable + joint).
However, two reasonable choices of boundary conditions can be identified, which describe different properties of
the actual cable end surfaces.

If we consider the end surfaces to be equipotential, we can write:

v, (x,0) =v,,, (x,0) h=LN-1 x=0,x=1L
(3.10)
This condition implies that the voltage differences between all the strands and strand N are nil:
e, (x,00=0 h=1N-1 x=0,x=L
(3.11)

where we have defined:



eh (x!t) = vh (x!t) _vn (X,t)
(3.12)
Applying the method of analysis based on nodes potentials, we can write system (3.4b) in terms of the

voltage differences ¢;, (h= 1, N), obtaining a set of N-1 independent equations:
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(3.13)

The possibility to invert system (3.13) guarantees that a condition eguivalent to (3.10) can be written for
the space derivatives of the longitudinal currentsin the strands:
di,
— =0 h=LN-1 x=0,x=L
0x
(3.149)
As the operation current is only a function of time, from equation (3.3) it can be deduced that the condition
(3.14) holds for the N strand as well, so that the complete boundary conditions in the equipotential end surfaces
case can be written as:
0i
=0 h=1LN x=0,x=1L
0x
(3.15)

Another possibility is to assume that the current distribution is uniform at the cable ends, imposing the

following boundary conditions:

(¢
ih(x,t)=% h=LN x=0,x=1L

(3.16)



Different kinds of boundaries can in principle be described with an accurate choice of

the model parameters at the cable ends.

3.1.4 Equations of current diffusion in a2 strand cable

The theory of “supercurrents’ in a cable made of two strands was developed in [9, 10]. In that formulation
of the problem the contribution of external voltage sources is taken into account in the evaluation of the current
distribution at the end of a field ramp. During the constant field phase the external flux linked to the loops formed
by the two strandsis nil, and the free diffusion of “supercurrents’ along the cableis studied.

In the present model the effect of the external field is directly inserted in the model equations. The
equations reported in [10] can be found as a particular case of the general system (3.6). In fact, considering

equations (3.6) for atwo strands cable in the absence of an external voltage source, we obtain:

V2% di di di

Bf_glz 1 5, ngZIZd_;_nglZZd_tz—ngllZd_tl

[ﬂ i, oi oi oi i

Eo"—x; =81 lld_tl = 81l d_tz + glzlzzo.,_tz + glzllzﬁ_tl
(3.17)

If the parameters /;; and /,, are equal, asin the case considered in [10], we can write:

2 . .
D"Hf = g2t =gt-m) T2
[ﬂ i, 512 0"1'1

=g(l- -g(l-
0ox? = g( m) g( o

(3.18)
where / = /;; = 1,, is the common parameter representing self inductance, m = [;, = [,; the mutual inductance, and g
= g;, = g»; theinterstrand conductance.

In the case of atransport current equal to zero, we can write i, = -i,, S0 that equation (3.18) gives:



(3.19)

The corresponding equation for the free current diffusion in the two strands cable

without transport current reported in [10] is written in the following form:
2% _ I
W =
(3.20)
where I is either current i; or i,, G, isthe interstrand conductance (indicated with g in the present model) and L, the
elementary loop inductance per unit length.
We till have to show that the loop inductance L; reported in [10] is equal to the parameter 2 (/-m) of
equation (3.19).
Considering the definition of the loop inductance in the hypothesis of an uniform current distribution inside

each strand, we can write;

L=
d4rr po

(3.21)

where 7 is the volume occupied by the two strands forming the loop, and d the length of the loop along the cable

axis. The vector f is defined as follows:

£(P) = _t(P)

(3.22)



where t is the unit vector tangent to the strand, and S is the area of the cross section. The integral (3.21) can be
divided into four parts, corresponding to the integration over the volumes r; and 7, occupied by strand 1 and strand
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Defining the per unit length parameters as follows:
1 U fl(P) fl(Q) _1 ,Uo fl(P) f2 (%)
1= d4n” dipdlo hy = ” drpdtg
1 Mo fz(P) Efl(Q) lﬂo fz(P) Efz(Q)
[y = J 477.” dipdty Iy = J’J’ drpdr,

(3.24)

we can finally write:
L=l —l, +1 =1, =2(1-m)

(3.25)

3.2 MODEL PARAMETERS

3.2.1 Contact conductances per unit length

Rutherford cables

In order to define the smeared interstrand conductances, we consider that each strand crosses every other

strand in two points per twist pitch. Indicating with R,fk the interstrand cross contact resistance between strand 4



and strand &, and with L, the cable twist pitch, the cross contact conductance per unit length is given by the
following expression:

Enk Lp R;,k
(3.26)

The description of the cross contact resistance between strands given by the network model is closer to the
physical reality of the cross contacts than that given by the distributed parameters model, while a better
representation of the contact between adjacent strands is given by the present model.

However, in order to make comparisons with the network model, and to consistently calculate the

interstrand adjacent conductances, we consider that in the most advanced versions of the network model [20, 27], a
lumped contact resistance Rhf'k is inserted between two adjacent strands at the same positions in which they have

cross contacts with the strands of the other layer. Every strand crosses all the other strands in two points per twist
pitch, so that a total of 2 (N-1) lumped resistances are inserted along a twist pitch between each pair of adjacent

strands. The equivalent adjacent conductance per unit length resultsin:

« _2(N-J)
hk le,kLp

(3.27)

Cable in conduit conductors

The smeared interstrand conductance between strand h and K can be defined in the same
way as in Rutherford cables, summing all the contact conductances along a certain smearing
length and dividing by the length itself. An appropriate length for the smearing can be the twist
pitch of the last cabling stage, which we simply indicate with Ly, The contact conductance
results in:

1 Nis

Enk= 7 ;
p =E Rk

1

(3.28)



where R, is the i™ contact resistance between strand h and k along the twist pitch considered

and N, , is the total number of contacts between strand h and K along the length considered. It

may happen that some strands have no contacts along the final twist pitch of multi-stage cable
in conduit conductor, resulting in a nil contact conductance.

If the contact along two strands is continuous, like in a two-strand cable, or in a triplex
cable, the smeared interstrand conductance is coincident with the continuous conductance along
the length of the triplet.

This way to calculate smeared interstrand conductances is very well suited for the
evaluation of long range coupling currents, neglecting an accurate description of the influence

of short range coupling currents.

3.2.2 Mutual inductances matrix

The evaluation of the coefficients of the mutual inductances matrix was done numerically. A
code for the calculation of mutual and self inductances between conductors with circular cross-
section having any geometric disposition in space was developed, considering either the
possibility to have an analytical expression of the trajectory of the strands axes, or to know the
coordinates of a sufficient number of points along the strands axes, allowing to reconstruct the
strands axes by means of spline interpolation.

The code was applied to the calculation of induction coefficients for both flat Rutherford
cables and simple cable in conduit conductors.

The numerical procedures and some results of these calculations are reported in Appendix

3.2.3 Longitudinal resistance

The strand longitudinal resistance is in general dependent on the magnetic flux density B, on the
temperature 7, and on the current flowing in the strand. Once an appropriate model for the longitudinal resistance
per unit length of the strand r,, is known, the longitudinal resistance per unit length of cable r, can be calculated

according to Equation (A.19) asfollows:



rs,h

7 (x) =__ 2"
¢ cos (7;,)
(3.29)
where y;, is the angle between the unit vector t,(x) tangent to the axis of strand 4 at x, and the unit vector t.(x)

tangent to the axis of the cable at x.

3.2.4 External voltage

The external voltage per unit length can be defined in the following way (see Appendix A):

ox dA™ 1
Vht (x,1) =~ a7 (R, (x),1) Dh(x)m
(3.30)

where A is the magnetic vector potential associated with the external sources, and R,(x) is the point of the strand

axis corresponding to coordinate x (see Fig. A.1). This definition guarantees that the integral effect of the difference

exi

1 1
¥ h_vex

« dong any loop formed by two generic strands /# and £ provides a driving force equivalent to the time

derivative of the magnetic flux due to the external sources linked to the loop.
A simple expression for the externa voltage in the case of Rutherford cables can be found when the

magnetic flux density is orthogonal to the broad face of the cable (see Fig. 2.3). In this case we can write:
B =B(x,0) k
(3.31)

where k is the unit vector of the z axis, perpendicular to the broad face of the cable.

The external field is related to the external vector potential through the following relation:
Bexl — D erxl

(3.32)

Choosing a coordinate system asin Fig. 2.3, we can write the cartesian components of equation (3.32):



EPAeth aAexty _

- =0
uBextx :0 D ay aZ
ext ext
[Bextyzo D ébA x_aA Z:0
O ] 62 ax
EBeth =B(x,t) |:|
EpAexty aAextx
- = B(x,1)
H dx oy

(3.33)

A possible choice for the divergence of the vector potential is the Coulomb gauge:

a Aexlx a Aexl v a ACX[Z _
+ + =0
0x 0y 0z

(3.34)

The following expression of the vector potential of the external field satisfies both (3.33) and (3.34):

U ==B(x,t) y

D ext
U™, =0 (3.35)
EAexlz — O

We can then write:
Aext — Aextx i
(3.36)

From the general definition (3.30), and considering that for the particular geometry of Rutherford cables

cos (y,) = sin (a) (with aindicated in Fig. 2.3), we obtain:

ot _ ixt . 1 _ ext
v (X)) = Py Sln(a)—sin(a)—yh(X) Py (x,1)

(3.37)

3.3 COMPARISON WITH THE NETWORK MODEL: RUTHERFORD CABLES

We have applied the model to the evaluation of currents induced by longitudinal variations of the external

field perpendicular to the broad face of the cable. A comparison between the results obtained with the continuum



and the network model illustrated in [27] is shown in Fig. 3.2 in the case of a simple step variation of the magnetic

field along the cable axis. Asfar as possible the same conditions asin [27] have been used for the simulations.

The cable considered is a 16 strands cable, with R, = 1 uQ, R, = 10 uQ for every # and £ and L, = 100
mm. The cable is exposed to a time dependent magnetic field perpendicular to its broad face. The field is equal to O
for x < L/2 and increases with a rate of 0.01 T/s for x > L/2. It was assumed in [27] that the strand can be
characterized by a constant and uniform longitudinal effective strand resistivity. For the sake of comparison, we
have introduced a uniform and constant longitudinal resistance per unit length r,, and we have evaluated the strand
currents at the final steady state for two different values of r,, equal to 1.54 10® Q/m and 1.54 10* Q/m. These

values have been calculated according to equation (3.29).

In the case reported in Fig. 3.2 the short range coupling currents due to the uniform field applied at the
right of x = L/2 are superimposed to the main long range coupling currents due to the field variation at x = L/2. It
can be noticed that the qualitative behaviour of the BICC's obtained with the two models is very similar in both the

current distribution regimes shown.

Only a quantitative difference in the range 5-20% on the maximum amplitude of the BICC's is found. This
could be due to the slightly different description of the geometry of the cable made in the two models. The present
model in fact is based on the simple geometry illustrated in Fig. 2.3, with a discontinuous jump of the strands from
one layer to the other. In the model described in [27] instead, the strands go from one layer to the other via short

side cylinders (see Fig. 2.4).

In the evaluation of the short range coupling currents, instead, the two models strongly differ. In fact, the
amplitude of these currents obtained with the continuum model is about half of that obtained through the network
model. Thisis due to the smearing of the system parameters performed in the continuum model and can be
confirmed by an analytical calculation of the short range coupling currents in the ssmple case of atwo strand cable

made of an integer number of pitches to which an uniform time dependent magnetic field is applied (see par. 3.6).



-10 Network model
Continuum model

150

b)

100 - Strand 16

50 -

1(4)

-50 -

-100 -

150 - Y s Network model
S Continuum model

-200

0 10 20 30 40
x/ Lp

Fig. 3.2 Comparison between network and continuum model: behaviour of Boundary Induced Coupling Currents in
a 16 strands Rutherford cable at the regime condition in the case of a step-like spatial distribution of the magnetic

flux density perpendicular to the broad face of the cable. a) r, = 1.54 10 Qi b) ry = 1.54 107" m.
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Fig 3.3 Comparison between two different calculations performed with the continuum model in the same cases
reported in Fig. 3.2. The two calculations are performed with a different number of mesh points per pitch, showing

that the main BICC's can be well described with only two mesh points per pitch.



Our aim in this comparison is to model correctly the behaviour of the long range coupling currents,
neglecting the influence of the short range coupling currents. For this reason we have tried to find the minimum
number of mesh points needed for a correct evaluation of the long range BICC's. We have found that with 2 mesh
points per pitch the main BICC's can be very well approximated for the case-study previously described (see Fig.
3.3). If the longitudinal variations of the time derivative of the field were less sharp, appropriate meshing strategies
could lead to even larger meshes.

Considering that in the network model there are (5N-3) unknowns per calculation band [27], and N bands
per pitch, we end up with a total of (5N-3)[/ unknowns per pitch. In the actual implementation of the continuum
model a point collocation method [70] has been used for the numerical solution of system (3.7), with two gaussian
points per elemental mesh. This results in a total of 2M,N unknowns per pitch, where M, is the number of mesh

points per pitch. Theratio of the number of unknowns per pitch of cable in the two modelsis then equal to:

D:w
2M,

(3.38)
In the case reported in Fig. 3.4 [ is approximately equal to 16. This leads to a remarkable computational

advantage, which allows the application of the distributed parameters model to the study of real long Rutherford

cables operating in accelerator magnets, as shown in Section 5.3.

34 COMPARISON WITH THE NETWORK MODEL: CIC CONDUCTORS
We have implemented a network model for the study of current distribution in short samples of simple
cable in conduit conductors, in order to evaluate the consistence of the distributed parameters model, and the

equivalence of the two modelsin simple cases.



In particular, we have simulated the current redistribution after quench of one strand in a short sample of a
triplex cable (Fig. 3.4). The cable is 1m. long, and is composed of three strands wound helicoidally along a straight
axis, with atwist pitch L, equal to 2.5 cm. The lumped parameters network mode! isillustrated schematically in Fig.
3.5. The model is applicable to a generic number of strands and to a generic time varying operation current. The
model has been implemented both in SPICE and with a Fortran programme obtaining a good agreement between the
two codes.

The network model has been implemented in two different ways. In afirst implementation (N1) the cable is
divided into 40 sectors having the same length as the cable twist pitch. In the second implementation (N2) the cable
is divided into 80 sectors having the same length as half of the cable twist pitch.

The mutual inductance between sector i of strand / and sector j of strand & is indicated with L, ; . ; as
shown in Fig. 3.5 for the first two sectors of two generic strands. The self inductance L, ; of sector i of strand 7 is
indicated with L, ; ;, ; . Both self and mutual inductances have been calculated numerically as explained in Appendix
B, eq. (B.2). The self inductance of the first sector of strand 1 and the mutual inductances between this sector and
adjacent sectors of the same strand, (Z; ; ; ; withi =1, 20 in model (N1)), is plotted in Fig. 3.6a versus the distance

d = (i-1) Ly/2 of these sectors from sector 1.
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different strands L; ; 5



The mutual inductances among the first sector of strand 1 and different sectors of strand 2 (L ; , ; withi =
1, 40) are plotted in Fig. 3.6b versus the distance d of these sectors from sector 1 of strand 1. We can notice that the
mutual inductance between different strand sectors obviously decreases with the distance, but in principle the mutual
inductances between all the different strand sectors of the cable should be considered. For this reason we have
performed simulations with the network model both keeping the mutual inductances among all the strand sectors
(N1a-N2a), and neglecting the mutual inductances between strand sectors corresponding to different positions along
the cable length, i.e. setting Ly, ;  ; = 0if i #j (N1b-N2b).

The effect of different joint resistances on the current distributions can be taken into account. However, the
joint resistances have been taken all equal to zero, for a simple comparison with the distributed parameters model
associated with the boundary conditions (3.15), which describe equipotential cable end surfaces.

The distributed parameters circuit model has been implemented in two different ways (D1 and D2),
distributing the contact resistances and the mutual inductances along two different smearing lengths, L, and L/ 2. It
is important, in order to show the consistence of the distributed parameters model, that the results of the current re-
distribution among the different strands are not influenced significantly by the choice of the smearing length. The

values of mutual and self inductances for the distributed parameters model are reported in Table 3.1.

Smearing length Lp Ly/2
Self inductances |11 = |22 = |33 (H.H) 0.79 0.67
Mutual inductances |1, = |y = l13 = 131 = lpg =l (UH) 0.45 0.33

Table 3.1 Mutual induction coefficients for matrix l with two different smearing lengths

Strand diameter 1 mm
Cabling pitch 25 mm
Cablelength im
Initial time of the external disturbance T=1ms
Final time of the external disturbance T=2ms
Final resistance of the quenched strand 0.5:10°Q/m
Joint resistance 0Q




Operation current 1000 A

Table 3.2 Simulation of current redistribution in a triplex cable after quench in one strand: data

The parameters chosen for the simulations of redistribution after quench are shown in Table 3.2. The
guenched zone is 5 cm. long and is placed in the middle of strand 1. The quench is simulated by means of a sudden
increase of the strand longitudinal resistance in the quenched zone arising to the value of the normal matrix
resistance which is in parallel to the superconducting filaments. The operation current is kept constant during the
simulations at the value of 1000 A.

The space and time dependence of the current in the quenched strand calculated with the distributed
parameters model (D1) is shown in Fig. 3.7. It can be noticed that the length of the region from which the strand
curent is deviated to other strands increases in time. We have performed several simulations with different contact
conductances, in the range 10° — 10’ S/m, confirming that the typical redistribution times and the width of the
guenched zone decrese with increasing the contact conductances, as shown in [62] with simplified analytical

calculations.

The data reported in the following have to be considered as examples of many tests performed to

verify the agreement of the different models.

3.4.1.Distributed parameters model (D1) versus distributed parameters model (D2)

A comparison between the currents in the strands 1 and 3 calculated with the distributed
parameters models DI and D2 is presented in Fig. 3.8. The curves are very close. A very good
agreement between the two models is found, both considering time and space dependence of the
strand currents. This result confirms the consistence of the distributed parameters model and

the possibility to smear the distributed parameters along different lengths.

3.4.2 Distributed parameters model (D1) versus lumped parameters (N1b)

The comparison between strand currents found with the distributed parameters model and the lumped

parameters model are in good agreement for both space and time dependence, as shownin Fig. 3.9.



The same type of agreement, in many different situations and between all the three strand currents in space
and time, has been obtained between the lumped parameters model made of 40 sectors and the lumped parameters
model made of 80 sectors, both considered in the version which does not include the mutual inductances between
far strand sectors.

As a conclusion, the two distributed parameters models behave identically to the two lumped parameters
models which neglect inductances between far strand sectors. In addition we found that with these four models the

two non quenched strands carried exactly the same currentsin every situation.

3.4.3 Distributed parameters model (D2) versus complete lumped parameters model (N2a)

Some small deviation from this agreement is found when considering lumped network models including all
the mutual inductances between the strand sectors (N1la and N2a). A comparison between the complete network
model (N2a) and the distributed parameters model D2 is shown in Fig. 3.10. The basic features and behaviour of the
currents are identical. Only a small difference in the amplitude of the current in the non quenched strand is found. In
particular, it is found that the current in the two non quenched strands cal culated with model N2ais not exactly the
same, due to along range coupling current flowing all along the two strands and closing at the joint resistances. The
currents in the two non quenched strands along the cable length are shown in Fig. 3.11, for the case of joint
resistances all equal to zero. The amplitude of this long range current is strongly reduced with increasing the joint

resistance.

Beside this small difference (about 2% of the total strand current), the agreement between the distributed
parameters models and the network models including al the mutual inductances is satisfactory, giving therefore

confidence in the application of the distributed parameters model to more complex situations.
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Fig. 3.10 Comparison between distributed parameters model D2 (dotted line) and the lumped parameters model
(solid line) including all mutual inductances between strand sectors (N2a). Current in the non-quenched strand 2
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Fig. 3.11 Currents obtained with the complete lumped parameters network model. After 50 ms from the quench
initiation, a difference in the current of the non quenched strands is observed corresponding to a long current loop
flowing between the two strands along the whole cable length. At t = 50 ms the current in the quenched strand is

low and is not reported.



3.5 EQUIVALENT “SUPERSTRANDS’

We have shown in Section 3.3 that the distributed parameters model allows a remarkable reduction of the
number of unknowns of the problem of current distribution. A further reduction of the number of unknowns of the
problem can be obtained by introducing equivalent “superstrands’. These “superstrands’ are made assembling a
certain number of strands of the cable and defining the appropriate parameters for the solution of the equations of
current diffusion in these equivalent “superstrands’.

Let the N strands of the cable be divided in g, groups of strands which we call “superstrands’. Each strand
in the superstrand carries the same current, equal to the total current in the superstrand divided by the number of
strands in the superstrand. Each group can be represented by means of a set G, of £; integer numbers representing the
indexes of the strands owing to superstrand i.

In order to define the equivalent per unit length longitudinal resistances the value of the parallel resistance

between the strands in each superstrand can be taken:

(3.39)

where risup is the longitudinal resistance of the superstrand i. If al the strands in the superstrand have r, equal to

zerodso ;7 must be taken equal to zero.

In order to define contact conductances between superstrands, all the possible transverse paths between two

generic superstrands must be considered, summing up the corresponding conductances. The contact conductance

sup

gij between superstrand i and superstrand j can be calculated as follows:

. 1
g;,up =5 ; ;gh,l
j 2h Jll ,T/

(3.40)
Considering for example superstrand 1 made of strands (1, 2), and superstrand 2 made of strands (3, 4), the
contact conductance between superstrand 1 and superstrand 2 can be calculated as:

Sup  —

812 = &3t 83t 81at 824 (341)



A correct choice of the strands owing to a superstrand can be made taking strands which follow a close
path along the cable length, so that the vector potential of the external field is approximately equal for all strands.
The best way to build superstrands in the case of Rutherford cables is to take adjacent strands, so that if the strands
are numbered as in Fig. 2.3, the strands in each superstrand have consecutive indexes. In this case a fast way to
calculate an equivalent external voltage is to take the average external voltage of the strands in each superstrand.

The external voltage can be calculated as follows:

ext sup _ 1 Z ex.
e h
k hUG,

(3.42)

where v """ i the external voltage relative to superstrand i.

Finaly, if the origina matrix 1 for the complete cable has been calculated or measured, the equivalent
mutual inductances matrix relative to superstrands, I, can be evaluated considering that the two cables, made of
strands or superstrands, must have the same energy per unit length associated to the currents flowing in either

strands or superstrands. In order to impose this condition, we can write the following equation:

1. ap? sup. 1.7,
Z{sup supyswp :—1Tl i

(3.43)
where i"” isthe vector of the currents flowing in the equivalent superstrands.

As an example we calculate the values of matrix I in the case of a cable made of four strands and divided
into two superstrands of index 1 and 2 made of strands (1, 2) and (3, 4) respectively. The following conditions have

to be imposed:
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We obtain the following values for matrix I'#:

" ——(111‘”12 "‘121‘”22)
lyy" :—(113 +lpg + g +1p)
I3F ——(131 +lgp +ig1 +142)
Iy 22(133 gy +lag +lgy)

(3.45)

All the new parameters can be directly inserted in the same equations used for the strands. We have applied
this procedure in several cases obtaining a good approximation of the behaviour of the current distribution in the
real cable. We report in Fig. 3.12 and 3.13 the description of the BICC's in the same case study already reported in
Fig. 3.2. The origina cable is a Rutherford cable made of 16 strands, while the equivalent cable is made of 8
superstrands defined as above. It can be noticed that the current in the superstrands (which has been divided by two
for the sake of comparison) is included between the values of the currents of the two strands represented by the
superstrand. Thisistrue both in time (see Fig. 3.12a, 3.13a) and in space (see Fig. 3.12b, 3.13b).

The possibility of analysis through superstrands offered by the distributed parameters model contributes to

afurther remarkable reduction of the number of unknowns when studying very long cables.
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3.6 COMPARISON BETWEEN NETWORK AND DISTRIBUTED PARAMETERS MODEL:

2-STRAND CABLE SUBJECT TO A UNIFORM FIELD RAMP

In order to show the difference between the distributed parameters model with uniform g matrix and the
network model in the evaluation of the short range coupling currents, we consider the simple case of atwo strand-
cable subject to a uniform time dependent external field. In this situation an alternate flux, changing sign every half
twist pitch, is applied along the cable length in the loops formed by the two strands. We indicate with 4, the area of
the loops formed between the two strands.

We can write:
A=¢pl2
(3.46)
where ¢ isthe width of the loop in the case of aloop of rectangular shape or another characteristic dimension.
If the strands are in the perfectly superconducting state, and the regime condition is considered, equations (3.4.a)

and (3.4.b) can be written as follows:

a v —_— ext
— =V
0x
(3.47)
2,
0 x &
(3.48)
which give:
azi —_ ext
FI
(3.49)

For asimple, analytical solution we calculate the value of a uniform v applied along half of a cable twist pitch:

(3.50)



The following boundary conditions can be associated to Eq. (3.50), due to the inversion of the current flowing in

each strand in longitudinal direction every half twist pitch:

i(0)=0
i(L,12)=0

(351)

Theintegration of Eqg. (3.50) with the boundary conditions (3.51) gives:
. L, x*
i(x) = gBdF L -2
4 2

Substituting in (3.52) the smeared value of g obtained by the knowledge of the cross contact resistance (see Eq.

(3.52)

(3.26)):
_ 2
& L, R,
(353
we obtain:
2
i) =2 Bt - X
R, 4 2
(3.54)

which is aparabolic curve with amaximum in x = p/4.
The value of this maximum is:
iHe b= inBd
04 O 16R,
(3.55)
This current shape is the same along the whole cable length with an aternated sign due to the change of sign of the

magnetic flux.

Solving the same problem of current distribution in a 2-strand cable subject to a uniform field ramp by

means of the network model, we obtain an uniform value of current in the strands, which changes sign every half



twist pitch along the cable length. This value can be obtained considering that in a loop between two strands the
time derivative of the flux must be equal to the sum of the voltage drops across the cross contact resistances.
Indicating with I the absolute value of the current in each strand calculated with the network model, and

imposing the boundary conditionsi; = i, = I = 0 at the cable ends, we obtain the following solution:;

1
i=-1 kL, <x<tk+-0L
1 P |:| 2[] P
=+ He+ 10, <x <+, k =0123.....
0 20
i, = i,

(3.56)
The absolute value of the current through the contact resistancesis equal to the variation of the longitudinal current
in any of the two strands crossing with the other strand:
i, =0Ai =21
(3.57)
Applying the Faraday’s law to a generic loop, we obtain:
4

AR, =-p0 [=-——
=70 4R,

(3.58)
We show in Fig. 3.14 a comparison between the strand currents calculated by means of the two network model and

the distributed parameters model in this simple case.
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Fig. 3.14 Comparison between the current in the strands of a 2 strands cable, with R, = 20 1 0° Q db/dt=0.01 T/s,

Lp=100 mm, =10 mm

The voltage difference between the two strands along the cable length can be obtained by means of Eq. (3.48):
vy = 1 Q =BJO B‘R - xH
g & [4 [
(3.59)
The power dissipated in half pitch can be calculated with the distributed parameters model by means of the
following integral:

pl2 pl2 1
pistributed = €50x)i (x)dx = 2(x)dx = —— B?0°L,”
dis I ( ) 12( ) -!.gv ( ) 48 Rc P

0
(3.60)

The power per twist pitch of cable calculated with the network model is equal to:

PLZ:M{M{ — Rc (2[)2 - 161}3 3252[4})2

c

(3.612)
The following ratio of the power dissipated per twist pitch of cable calculated with the two models can be found in

this situation:



P network
dis —
P distributed
dis

(3.62)

It appears clearly from these calculations that if the distributed parameters model in the form with uniform
interstrand conductances (Equations 3.6) is used for the evaluation of long range strand currents, a suitable model
for the evaluation of the power dissipated by the short range coupling currents must be introduced for a complete
calculation of ac losses.

However, as we will show in the next paragraph, the distributed parameters model can be generalized to the study of

multistrand superconducting cables without any assumption on the interstrand conductances matrix.

3.7 GENERALIZATION OF THE DISTRIBUTED PARAMETERS MODEL

Interstrand conductances in mulstistrand superconducting cables depend on several factors, including the
level of oxidation of bare strands, the size of the contact surfaces, the soldering of the cable, the presence of
resistive barriers, the matrix material and the pressure applied transversely on the cable.

If some of these factors vary along the cable length, the matrix of interstrand conductances g is not uniform along
the cable length, and equations (3.6) cannot be applied. It is however possible to generalize the distributed
parameters model to study cables with non uniform interstrand conductances along the cable length.

In order to do this we consider the voltage differences of any strand from strand N defined in (3.12), and

we rewrite system (3.13) in the following form:

x —gr1-1017
e* =[g"] P

(3.63)

where we have defined the following vectors and matrices:



&, O
o 0O
e* = gl B g*
O 0O
G-
(3.64)

L S

=

8y &

~
Wl
=
=

N
N
0Q
N
NS

S
Wl
N

N-11 &w-1,2

81v

8on

TOOdoOOoooooogoog

It can be shown that matrix g* is always invertible, allowing to write system (3.63).

Considering system (3.4.a) and subtracting the last equation to all the first N-1 equations, we obtain:

(3.65)

de _
0x

0t

—r**i—l**—a S e

where i was defined in (3.5.a) and we have introduced the following vectors and matrices:

@l 0 Sjlexl
0 o ext
M 0O O,
e=0 [ e = %
o o .
[Fv-10 ng—l~
(3.66.3)
@ 0 - —ryd 2y = Iy,
Fan
r vO 21 tna
r**= E] UJ 1** = R
0 O
% 0 -ryq —ryQ %N—l,l Iy,
b o op o

(3.66.b)

G, O
o O
i* - E’l D
G O
O 0O
v
—V ext D
Nevct D
-vy, O
O
O
xt _VchtE
H
11,2 _lzv,z ll,N _IN,N
12,2 _IN,Z lz,zv _IN,N

lN—l,l _IN,Z lN—l,N _IN,N

0 0

AL |

Eliminating the last identity in (3.65), and introducing (3.63) in (3.65) we obtain the following system:



(3.67)

where matrix € is obtained addi ng a column made of 0 to matrix [g*]™ while matrices r and 1 and vector e are

defined as follows:

& 0 - —ry m1,1 _IN,l 11,2 _IN,Z ll,N _IN,N B %1&“ _VNM
. _ % roee =7y Di _ [Mea _IN,l 12,2 _IN,Z lz,zv _IN,N Dém - B’zm _va
O 0 O O

0 1 &

§ O
fya ThvO o Byven ~Iva Ivaa —Ive Ivay ~ILvw B E{N_lm _VNM

MOoOoOOnd

(3.68)
Finally we need to add to system (3.67) the law of conservation of the total operation current at any time and
position:

It

Z lh = lop

(3.69)

Equations (3.67) and (3.69) represent the extension of the distributed parameters model to the analysis of cables
with variable tranverse conductances and are in a form that is well suited for the coupling with a complete thermal

and fluid-dynamic description of the refrigeration system, as shown in [74].



CHAPTER 4

THE ANALYTICAL SOLUTION



INTRODUCTION

An important advantage of the description of current distribution phenomena by means
of partial differential equations is the possibility to determine an analytical solution of the
problem equations [65]. The analytical solution can be useful for the validation of numerical
codes, and for fast parametric studies on current distribution and redistribution phenomena.

The study of current distribution and redistribution phenomena by means of the
analytical solution of the equations of current diffusion in a 2-strand cable has been already
carried on in several works [10, 59, 73]. In particular, Turck [73] analysed current sharing
between two non-insulated coupled superconducting wires with different joint resistances, with
and without superficial oxides. The equilibrium current sharing imposed at the input by the
boundary conditions propagates axially along the composite to produce equal current
redistribution. This propagation is achieved with a magnetic diffusivity dependent on the
interstrand contact resistance and on the mutual coupling between the strands. Moreover, the
analytical solution was applied to study the current redistribution in the presence of a faulty

wire or of a short circuit between strands.

In [6] the analytical solution of the equation of current distribution in a 2-strand cable was used for the
study of long range "supercurrents' induced by longitudinal variations of the time derivative of the magnetic field
applied perpendicular to the cable face. The evaluation of the strand currents in the presence of a generic current
cycle was obtained by considering two different analytical solutions of the equation of current diffusion in the
presence of field ramps (forced diffusion), and during constant field phases (free diffusion). The fina currentsin the
two strands were then evaluated by a superposition of the effects of different ramps and constant field phases.

In Chapter 4 the analytical solution of the equations of current diffusion for cables made of a generic
number of strands is given and compared to the numerical solution in both transient conditions and steady state. Itis
also shown that the general solution reduces to the solution given in [10] when atwo-strand cable is considered.

4.1 THE ANALYTICAL SOLUTION FOR CABLESWITH SYMMETRIC STRANDS



A necessary condition for the evaluation of the analytical solution is the determination of the eigenvalues
and eigenvectors of matrices g and 1 appearing in system (3.6).

In Appendix C it is shown that when Rutherford cables or simple cable in conduit conductors are
considered, it is possible to determine in a simple way the eigenvalues and eigenvectors of matrices g and 1. The

equations of system (3.6) are reported in the following with a particular choice of the boundary conditions:

O . 2.
ot 2 () i) 2 () = v ()
0 ot Ox

G (e=00)=i (e = Lr)= 2

O
Ei (x,t = O) =i (0)(x)
2

withi=1, N

(4.2)
We consider the simple case in which al the strand longitudinal resistances are equal to a given value r (if
the strands are in the superconducting state » = 0) so that matrix r can be written as » I where I is the unit matrix.

Matrices1 and g are defined asin (3.5.b). The boundary conditions can be written as follows:

iop (t)
IN

i(x=07)=ilx=1Lr)= b,

4.2
where by is one of the eigenvectors of both matrices g and 1 and is defined in Appendix C, eq. (C.11).

We define the current variations from the uniform current distribution as:

5 (0)=i (1) %’) by

(4.3)

and rewrite system (4.1), considering that gl by = g Agbg = Yy Ag by = 0:



. 2 <o
Egl%(x,mgrai(x,f)ﬁa 5

Di(x=0,)=3di(x=L,r)=0

(v.1) =g v (xr)

D i (¢=0)
i(x,r =0)=iO()- 2~
Filer =)= ) =020,

(4.9

Using the trigonometric base, orthogonal in [0. L], {sin (nw/L)},, with nO1N, the following series

developments can be defined:

0L

rle)= 3660 snfF7 B 602 prtean 27 i

(4.5)

and the system (4.1) can be redefined as follows:

O
gl
[l
1,0=0)=10- 1=, 2 [1 (]

dain . _ 7T . - ext
() aran, (-7 Dot ()= v

(4.6)

Using the base by, with k= p, p—1, ..., 1,0, =1, ... —(p—1), defined in (C.11) we can write:

_%bmn,k 0 - 140)=5[51,0) V)= %b () - v, ©)=0Ive0 ()

di, ()=
k=={p-1) -1)

and the problem (4.6) can be redefined in the following way:

g dn, T
T T ey, Q- B0, 0= 1 0

N =0) =i

withk=p,p—1, ,1,-1,... =(p=1) (4.7)



It is worth remarking that £ # 0, because 1,0 = O as a consequence of bgb'i(x,t) =0. Problem (4.7) can

be solved directly:

Eak —t-— mn,k_vnk(t)
0o d g v0OLOf 0

_tD_iEm-[ d _(I_T)D—iEﬁTHD
n, k(l‘) (bz (0))6/\/E v.OL D5+itvnk(r)e A g y.0L DEdT
Ay 3
(4.8)
The solution can then be written as follows:
i(x,t): iop(t)b0+ \ bk N n k(t)SinMH 0
\/ﬁ i;;—l) n= ’ oL O
_,D apn 0
l(xt op() Z ZbT (o) A B v OL Dgsin KﬂxHF
k= -1)  h OL 0O
(-1) 31 g2 .
-7 1 e
-!dr Z ii(bli ext k g_ﬁ%mgsm ET[XH
Sz 1)/] k n= OL O
G- LpE
i,r) = JO’dE (i (5 B wbibE Xl . EnTe H
= ‘1) OL 0O OL O

k#0

P —(I—T)D _imnds
_‘[d{[d k:_Z 1 I m(f T))Z g yk%gasmmgsinwg




i (x, )_ i d{ S'b, b iO@E)r, (x,&.0)+

k= 1)

2 J’d{!drk_i 5 D v (6, 0)r, (v, 60 - 1)

(4.9)

Considering that sin(ey; )sin(w, )= %[cos(oo1 ~w, )-cos(wy, +w,)| and the definition of the

had 2
elliptic function 9, [52]: I3 (u, q) =1+ 22 g" €0S2nu , the Green functions T, can be written as:

n=1
-0 1
» o-1E7HE
M &r)=3 e R DﬂsnBﬂEan”—Ez
=]
—rt H —rt g
< A -8 et & £)
ZnXeVDLDcosEW H 5 Z yDLDCOSMH
=6A/ %H x—¢ Aktykélggﬁ sy A:ykélggEE
4 35” 2L ' 0 SD 2L ' g
H 0O 0 0 ia
(4.10)

withk=p, p—1, ..., 1, -1, ... =(p—1). The Green matrices are then expressed by:

0) I . I
K ;E!t - r !E!t b K 1£1t - r 1£;t
(x ) /15;6% _1/5 (x )bk k (x ) 115;6% ) k (x ) A

(4.11) and the final solution of problem (4.1) can be written as:

. (t) 2L 2L t
i(v,0)= 20+ 2 aE KO, &,0) iO@)+ 2 [ae far K(v,&0-1)ve ¢.7)

(4.12)
It is worth noting that solution (4.12) is invariant to the addition of terms proportional to by to the source

termsi©(x) and v®(x, 7). We can write, in fact:



KO &) FO€)+7€)bo}= KO (. () + $E)K O w.£)b, = KO ) (€)
K(x,g‘,r){ v""’(f,r)+ ﬁ({,r) bo}z
=K(x,&1) v (E,1)+5(E 1)K (x,&,7) by = K (x,&,7)v (£,7)

(4.13)

This means that the solution does not change if we substitute 3i®(x) to i©(x) in the first integral of (4.12)

or changing the voltage reference.

The integration of the kernels K© and K can cause convergence problems, as the function I tends to the

Dirac ddistribution, when ¢ tends to zero:
. = . @nx . @n& L
ml )= = -
! o) nzzlsmm @gnm E 25(x ¢)

(4.14)
It is therefore advantageous, if i®(x) and v®(x, 7) are derivable with respect to x, to refer to the following

equivalent form of the solution, obtained by means of an integration per parts. Let's define function ', as follows:

i R i

0 A/«E VkDLDE

'3
Oy (&)= [T &r)de =2Ly = — sin@”?@s‘nzﬁqﬁg
0 n=1

02L
(4.15)

withk=p, p—1, ..., 1, -1, ... —=(p—1); and new integration kernels K e K as:

b,b;
Ak

p p
KOGe)= Sr(ér) bl K(v, &)= > r (&)
k=- —) k=— —)
k#0 k#0

(4.16)

The solution of problem (4.1) can then be written as:



O 200 O 5 )i O(FYe 2 sy O ) (e p)
l(x,r)_WbO+L£dfa KY(x,&,0)i%(&)+ IdEJ'dT K(x,&,t-1) v (&,7)=

pé)bo+%ZK®KXEt)®M9D:o LfdgLf®(5¢ﬂﬁ__@)+

=L t ex
*%%dr K (x,&,t =T (f,r)@zo -%g defdr [K(x &0~ 7)] a;{ €1)
(4.17)

and finally:

()= ji)b + 2KO (1.0 )-2 J’df KO0 (5)+

ot 2 B v
+Z-([dr K(x,L,t -t v (L,1) L%’df%’drg(x,f,t T)y(f,l’)

(4.18)

The calculation of K and K does not give convergence problems, as function ' tends to the step-like
Heaviside function, when ¢ tends a zero:

j[rgik(x,f:t)=z—sn5ﬂﬁsn LH——U(& ) x<¢

Lnmr 0L O 0200 x>&

(4.19)
In the case study reported in Fig. 3.2 and 3.3, the components of vector i(x) are all equal and v®'(x, 1) is
independent of time, so that the solution (4.19) can be further smplified. In fact defining:
H -t D 1 ngDH
M (&)= _[Fk(xg‘r)dr—z A" o g vt D@DsmErﬂHsnEr;E

=1 et O OL O 0L
@ VkD gg ﬁ

(4.20)

withk =p, p—1, ..., 1, -1, ... =(p—1), and the integration kernel:



Ke(E)= S Melnér)
k==(p-1)
k#0

byby
Ak
(4.21)

the solution of problem (4.1) can be written in the following form:

oy i)
l(x’t)_\/ﬁ

2
b, +Z-([d5 K* (x,&,1) v (¢)

(4.22)

We have tested the numerical simulations of Boundary Induced Coupling Currents generated in a 16 strand
Rutherford cable by a step-like time varying magnetic field reported in Fig. 3.2 and 3.3 comparing them with the
analytical solution of the same problem given by (4.22). The comparison between numerical and analytical solution
isreported in Fig. 4.1 and 4.2. A very good agreement is obtained between the numerical and analytical solution of
the problem. The integral in eg. (4.22) has been performed numerically, with an adaptive gaussian integration. The
times required for the integration of (4.21) can in some cases be remarkable due to the space oscillations of vector

v in Rutherford cables.
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S —— strand 12_numerical

g 260 strand 4_analytical
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0 500 1?90 1500 2000
t (S} (S)



Fig. 4.1 Comparison between analytical and numerical solution: time dependence of Boundary Induced Coupling
Currents in a 16 strands Rutherford cable exposed to a step-like spatial distribution of the magnetic flux density

perpendicular to the broad face of the cable. a) r, = 1.54 10 ° Q/m b) r, = 1.54 10 """ m. Data for the

simulations are reported in Section 3.3.



4.2 COMPARISON WITH THE ANALYTICAL SOLUTION OF THE 2-STRAND MODEL

It has been shown in Section 3.1.4 that the equations of free current diffusion in atwo strand cable derived
in [10] can be obtained from equations (4.1) given the appropriate relation between the parameters of the two
models.

In this section the analytical solution given in [10] for the 2-strand model is derived from the analytical

solution of the general system 4.12. In order to compare the two solutions we introduce the same assumptions

assumed in [10]:
iop(t) = 0
° r = O

e The cablelength is multiple of an even number of twist pitches
« i%)=0
e The externa field excitation is independent of time and is limited to a short interval of length din the

middle of the cable.

Under these assumptions we can write:

(4.23)

where U is the Heaviside function, and @ thetime derivative of the magnetic flux linked to the two strands along

the length &. In the case considered, N=2, p=1; so that matrices1 and g can be written as follows:

|= (hy 1120 _Ggp *tgpd
= i U g-0 _ U
12 a0 g1 ~—&1200

(4.24)

The eigenvalues of 1 are positive and given by:
Ao =l +1pp M =l =l
(4.25)

The eigenvalues of g are negative (except for ) o which isnil) and can be written as:



yo=0 and y1=-2812

(4.26)
The base by, with £ = 1, 0, is common to both matrices:
01 10 01 10
by =G =0 bi =G=~=0
° T E2'V2t YRR 2r

(4.27)

As shown in Section 3.1.4 the following relations hold for the main parameters of the two models:

L1=2(l1— ), Gi1=gn (4.28)

Moreover, we introduce the following parameters defined accordingly to [10]:

L=2w+d a=nw(2w+9d I, :WQ;Gl

(4.29)
The following relations hold, which are useful for the calculations:

(Td/2L) +a =71/2 m/L=a/w

(4.30)

We can then write:
() P F_L_0 9_
ve'(£)= 5 ULE 5 2[HU > EHsz

(4.31)

Applying equation (4.20) we obtain:

L 0O

EsinEWTstinEWEH=
ﬁ OL O 0O

2
- 2820 l” 5 L (1= 17)anEE Pan e

<o OL O 0L O



To obtain (4.32) the following relation has been considered:

Lglpmge 1 51 pmhp

/11@ Ol Og h-h B 0L 07
1 7 712 gt

(4.33)

The following equation holds for the integration kernel :

o
bl _ (&2 f01 _
<) A, A, O 1DH/__ \/_E
H V28
_ P &)Ey2 -v20 X&) 31 -10
b, Hue +w2H "2, B o+

Lz = 1 -m?ir ) : j -0
— 81 ; ?(1—e’ ! )sm é@@sm &HH{L +1H

s OL O

K* (x,&,0) =T} (x

(4.34)

The solution can be written as follows:

(x,)= —J’dg‘ K* (x,&,¢) v () =

2 —in? r Bi'l _1D Lx,
2g,L Z (l / &E{d{sm&ﬁml +1D &)=
(r.+3)12
@glz /r g 4 Ba_HBﬂ ~106-10_
N Ll R o s
® (z+3)12
% 1 (L ,f)sm Bﬂ_H IdfsmBLHHZD
ﬂ25 / “5)12
(4.35)

In this case i,, = 0, s0 that i, = -i,; considering only i(x, 7), we get:



ll(x 2@GL -tm? /r &H J’df SlI’IMH—
OL O

o (L 0)l 2

(z+0)12
- AL Z e /T &H J'df sanH—
n'2W5 0w D(LJ)IZ OL O
(L+6)/2
_i[m 12( _ /r) MH_ J’dg‘smMH
W= (1.-6)12 0L O

(4.36)

In order to further smplify the solution, we can write:
L+0)/
L (t+0)

2
—(L ‘g)a/'g; sn&@—%gm E— cos HT%:
= 2L gnHRin BQH
nmo 02 [ L O

(4.37)

Assin (nv2) = 0 for n even, we can calculate the sumin (4.36) with only uneven values of ». We can also note that:
sinBLnH:sinM+naH:sinMEcos(na%cosMEsin(na)
[2C [ 2L L [2L [ [2L [

(4.39)

Assuming & << L, we get:

0
1 (z+0)12

€ sin %HD V1)
—( I)d{ SmBnL E— BEL‘SHDSI B” Ecos(na)+coqu;Esn(na)HDsn(na)

02L O

(4.39)
Thisis equivalent to directly approximate the integral in (4.37):

Lo sl a2 L an o —ant)

(L 0)2

(4.40)



Defining 7, = 7/#° we finally obtain the analytical solution for current i, which isidentical to that reported in [10],
eg. (29):

4 & 1 _ . ax[].
wet)=—1, Y = (L—e o, )sm H' Y Hein (nar)
m = n 0w 0O
nuneven
(4.412)
If the external field ramp is stopped at time ¢; and the field is kept constant, the supercurrents start decaying. Each

component under the sumin (4.41) decays with its correspondent time constant [10]:

il(x’t):%[m i niz (L_e_tllr” )Sln DLTVX Qsin (na’)e_(t_tl)/r”
n uneven

(4.42)

4.3 THE REGIME SOLUTION

Dueto its definition, ', can cause convergence problems, because the seriesis made of oscillating terms:

. —tD 1 D
M (e, &)= > e /\E Bl DE EymstmEWfH—
=]
ot n? B]IH —rt o B]Ig
o) i _ /\k . n
= > e OO coann(x E)H_e S oAV OLD COSBZHX-FE)H
=) o L 0O 245 O L O
s t t
_e 3§’Tx kykélgg E—ﬁsgrﬂ,emélgg%
H [l 0

(4.42)

It can be shown [63] that the elliptic function 9, admits the following representation, with non oscillating
terms:

o w _(u—nm)?
=S J— —}’ZZS —_ 7_T B
79364,6 )— Ze cosznu_,/sn:z_: s

n=—0

(4.43)



The function I, admits the following alternative representation:

=rt
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Finaly, defining 9=+1 O ZdG—%, we obtain for rk*the following expression:
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. t
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- x=¢ . . .
Defining Q = T —nlL , the single term of the series can be written as:



Jr rB A 0 |-V ky"‘Q‘D
L MY Ie 6? ng / /‘kyk —2\Q\\/—ryk-r A 546
2 T3 2

(4.46)

Defining y = 9\/7 N AV — |Q| 0 8= )2}\/1+\/y A /]k|Q|1’ we get:

Ak ]
”"Fé g

(4.47)
We obtain:
-r@? /\ka
/]kyk\ﬁ 2 e 10 =
3 Je
f i :
U [0z e-y2%+ y N
R e Jy2+41Q|\/"’Vkﬁ
(4.48)

2
Defining the error function erf(x) = TIe Y dy anderfc (x) = 1 — erf (x), we get:
T

r¢9 Ayk
_ AV v 2 e ¢ 40 =
2 n e
L [ve 201w DA erf(_oo)+_e fE/ _ T A "ka|Q|E» (@.49)
4 Vi B
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Settingw2 = y2 +4{Q| -ry, U wdw= ydy weobtain:
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and finally:
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Thefirst two termsin the sum are independent of time and represent the regime solution. We can write:
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It is worth noting that lim ", * (X, g t) = 0 and that it is possibile to evaluate in a simple way the regime value
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of I'*. We havein fact:
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Considering that L Big \/7 ~Vas [63], we can write:
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Aswehave0<x < L and0< ¢ < L, decomposing the seriesin positive and negative values, we get:
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c n_ 1 _ ,
where we have used the formula: Z q  =-—"Finaly, we can write:
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These regime values (4.56) can be directly inserted into eq.(4.21) obtaining:
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K (s dm)= i_)r (2, 600)
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(4.57)

The regime solution is finally given by (4.22), with the appropriate kernel K*:
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(4.58)



We have checked the regime solution for the evaluation of BICC's in a 16 strand Rutherford cable, for the
same case study reported in Figs. 4.1. The comparison bewteen analytical and numerical resultsis shownin Fig. 4.2.
The two curves are not distinguishable in both the regimes studied, due to a very good agreement with the numerical
results relative to the steady state currents obtained at the end of the long transients.
Fig. 4.2 Comparison between analytical and numerical solution: regime solution of Boundary Induced Coupling
Currents in a 16 strands Rutherford cable exposed to a step-like spatial distribution of the magnetic flux density
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