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7KLV�ZRUN�FRXOGQ¶W�KDYH�EHHQ�UHDOL]HG�ZLWKRXW�WKH�YDOXDEOH�KHOS�RI�VHYHUDO�WHDFKHUV�PHW�
GXULQJ�WKHVH�\HDUV�RI�VWXG\��,�DP�YHU\�JUDWHIXO�IRU�WKH�FRQWLQXRXV�VFLHQWLILF�VXSSRUW�DQG�VWLPXOXV�
JLYHQ�PH�E\�DOO�WKH�PHPEHUV�RI�P\�UHVHDUFK�WHDP�DW�WKH�'HSDUWPHQW�RI�(OHFWULFDO�(QJLQHHULQJ�RI�
WKH� 8QLYHUVLW\� RI� %RORJQD�� ,� ZRXOG� OLNH� WR� DFNQRZOHGJH� HYHU\� PHPEHU� RI� WKH� JURXS�� 3URI��
)UDQFHVFR� 1HJULQL� IRU� KDYLQJ� LQLWLDWHG� PH� WR� WKLV� LQWHUHVWLQJ� UHVHDUFK� ILHOG�� 'U�� $QGUHD�
&ULVWRIROLQL�DQG�'U��0DVVLPR�)DEEUL�IRU�WKHLU�SUHFLRXV�WHFKQLFDO�DVVLVWDQFH��
� $ YHU\� VSHFLDO� DFNQRZOHGJPHQW� JRHV� WR� 3URI�� 3LHUOXLJL� 5LEDQL� IRU� KDYLQJ� SDWLHQWO\�
IROORZHG�DQG�VXVWDLQHG�PH�LQ�HYHU\�VWHS�RI�WKLV�ZRUN��
� 3DUW�RI�WKLV�ZRUN�ZDV�GHYHORSHG�GXULQJ�P\�VWD\�DW�WKH�07$�*URXS�RI�WKH�/+&�'LYLVLRQ�
RI� &(51�� *HQHYD�� 6ZLW]HUODQG�� ,� ZDQW� WR� UHFDOO� KHUH� DOO� WKH� PHPEHUV� RI� WKH� *URXS� DQG� LWV�
/HDGHU�� 'U�� 3HWHU� 6LHYHUV�� IRU� WKH� YHU\� QLFH� DQG� VWLPXODWLQJ� ZRUNLQJ� HQYLURQPHQW� IRXQG� DW�
&(51��
� , H[SUHVV�DOO�P\�SHUVRQDO�JUDWLWXGH�WRZDUGV�'U��/XFD�%RWWXUD��6HFWLRQ�/HDGHU�07$��IRU�
KDYLQJ�LQVSLUHG�PRVW�RI�WKLV�ZRUN��DQG�KHOSHG�PH�WR�HQWHU�WKH�FRPSOH[�ZRUOG�RI�VXSHUFRQGXFWLQJ�
FDEOHV�DQG�PDJQHWV��
� , DP� JUDWHIXO� WR� 'U�� $OHNVDQGHU� $NKPHWRY� IURP� /+&� DQG� WKH� 5XVVLDQ� $FDGHP\� RI�
6FLHQFHV�IRU�PDQ\�XVHIXO�VXJJHVWLRQV�RQ�WKH�PRGHOOLQJ�RI�IODW�5XWKHUIRUG�FDEOHV��,�DOVR�ZDQW�WR�
DFNQRZOHGJH�'U��6WHSKDQ�5XVVHQVFKXFN� IURP�/+&� IRU�KDYLQJ�SURYLGHG� WKH� ILHOG�PDSV� IRU� WKH�
FDOFXODWLRQV�DQG�'U��$UQDXG�'HYUHG�IURP�&($�6DFOD\��'U��3LHUUH�3XJQDW��0DUNXV�+DYHUNDPS��
7KRPDV�6FKUHLQHU�IURP�/+&�IRU�PDQ\�YDOXDEOH�GLVFXVVLRQV��7KH�H[SHULPHQWDO�GDWD�RQ�FXUUHQW�
GLVWULEXWLRQ� LQ� D� WZR� VWUDQG� FDEOH� ZHUH� NLQGO\� SURYLGHG� E\� 'U�� &XUW� 6FKPLGW� IURP� )=.��
.DUOVUXKH��
 /DVW� EXW� QRW� OHDVW�� ,� ZRXOG� OLNH� WR� WKDQN�P\� IDPLO\� IRU� WKH�PRUDO� DQG� ORJLVWLF� VXSSRUW�
DFFRUGHG� PH� GXULQJ� DOO� WKHVH� \HDUV� RI� VWXG\� DQG� DOO� P\� IULHQGV� IRU� WKHLU� FRQWLQXRXV�
HQFRXUDJHPHQW��
�
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7KH� VFRSH� RI� WKLV� ZRUN� LV� WKH� DQDO\VLV� RI� FXUUHQW� GLVWULEXWLRQ� DPRQJ� WKH� VWUDQGV� LQ�
PXOWLVWUDQG�VXSHUFRQGXFWLQJ�FDEOHV�WKURXJK�WKH�GHYHORSPHQW�RI�DQ�DSSURSULDWH�HOHFWURPDJQHWLF�
PRGHO��7KH�PRGHO�PXVW�EH�VXLWDEOH� WR�EH�DSSOLHG�WR�DOO� WKH�PDLQ�FRQILJXUDWLRQV�RI�PXOWLVWUDQG�
FDEOHV��DQG�EH�DEOH�WR�GHVFULEH�FXUUHQW�GLIIXVLRQ�SURFHVVHV�LQ�UHDO�ORQJ�FDEOHV�XVHG�LQ�PDJQHWV��

,Q &KDSWHU���VRPH�EDVLF� LQIRUPDWLRQ�RQ�VXSHUFRQGXFWLQJ�FDEOHV�DQG�PDJQHWV� LV�JLYHQ��
PRWLYDWLQJ�WKH�XVH�RI�WKH�SDUWLFXODU�FRQILJXUDWLRQ�RI�PXOWLVWUDQG�FDEOHV��7KH�RSHUDWLQJ�SULQFLSOH�
RI�SDUWLFOH�DFFHOHUDWRUV�LV�EULHIO\�GLVFXVVHG��VWUHVVLQJ�WKH�QHHG�IRU�PDJQHWLF�ILHOGV�RI�D�YHU\�KLJK�
TXDOLW\���

,Q &KDSWHU� �� WKH� SUREOHP�RI� FXUUHQW�GLVWULEXWLRQ� LV� GHVFULEHG�� LOOXVWUDWLQJ� WKH�SRVVLEOH�
VRXUFHV�� DQG� WKH� ILQDO� HIIHFWV� RI� D� QRQ�XQLIRUP� FXUUHQW� GLVWULEXWLRQ� DPRQJ� WKH� VWUDQGV� RI� WKH�
PXOWLVWUDQG�FDEOHV��3DUWLFXODU�DWWHQWLRQ�LV�IRFXVHG�RQ�LWV�LQIOXHQFH�RQ�WKH�FDEOH�WKHUPDO�VWDELOLW\�
LQ WKH�FDVH�RI�&,&�FRQGXFWRUV�DQG�RQ�WKH�TXDOLW\�RI�WKH�ILHOG�JHQHUDWHG�E\�WKH�FDEOH�LQ�WKH�FDVH�
RI� IODW� 5XWKHUIRUG� FDEOHV�� $Q� RYHUYLHZ� RI� WKH� WKHRUHWLFDO� PRGHOV� DQG� RI� WKH� H[SHULPHQWV�
FRQFHUQLQJ�FXUUHQW�GLVWULEXWLRQ�LQ�PXOWLVWUDQG�VXSHUFRQGXFWLQJ�FDEOHV�LV�DOVR�SUHVHQWHG��

,Q &KDSWHU���DQ�HOHFWURPDJQHWLF�PRGHO�EDVHG�RQ�WKH�UHSUHVHQWDWLRQ�RI�WKH�FDEOH�VWUDQGV�
E\ PHDQV� RI� D� GLVWULEXWHG� SDUDPHWHUV� FLUFXLW� PRGHO� LV� GHVFULEHG� LQ� GHWDLO�� 7KH� UHVXOWV� RI� WKH�
PRGHO� DUH� FRPSDUHG� ZLWK� WKRVH� REWDLQHG� ZLWK� GLIIHUHQW� PRGHOV� IRU� WKH� VWXG\� RI� FXUUHQW�
GLVWULEXWLRQ��LQ�SDUWLFXODU�ZLWK�WKH�QHWZRUN�PRGHO�EDVHG�RQ�D�OXPSHG�SDUDPHWHUV�FLUFXLW��

,Q &KDSWHU���WKH�DQDO\WLFDO�VROXWLRQ�RI�WKH�PRGHO�HTXDWLRQV�LV�JLYHQ�DQG�FRPSDUHG�WR�WKH�
QXPHULFDO� VLPXODWLRQV� DQG� WR� WKH� VLPSOLILHG� DQDO\WLFDO� VROXWLRQ� IRXQG� LQ� WKH� OLWHUDWXUH� DQG�
UHODWLYH�WR�FXUUHQW�GLIIXVLRQ�LQ�D���VWUDQG�FDEOH��

,Q &KDSWHU� �� WKH� PRGHO� LV� DSSOLHG� WR� WKH� DQDO\VLV� RI� H[SHULPHQWDO� UHVXOWV� RQ� WKH�
JHQHUDWLRQ� DQG� GHYHORSPHQW� RI� ORQJ� FXUUHQW� ORRSV� LQGXFHG� LQ� D� WZR�VWUDQG� FDEOH��0RUHRYHU��
H[WHQVLYH� PHDVXUHPHQWV� RI� WKH� PDJQHWLF� ILHOG� LQ� WKH� ERUH� RI� D� VKRUW� /+&� GLSROH� PRGHO� LQ�
GLIIHUHQW�SRZHULQJ�FRQGLWLRQV�DUH�GHVFULEHG�DQG�DQDO\VHG� LQ�GHWDLO�� VWXG\LQJ� WKH�HIIHFWV�RI� WKH�
FXUUHQW�GLVWULEXWLRQ�LQ�WKH�FDEOH�RQ�WKH�ILHOG�TXDOLW\�RI�WKH�PDJQHW��

$SSHQGL[�$�JLYHV� WKH�GHWDLO�RQ�WKH�GHULYDWLRQ�RI�WKH�GLVWULEXWHG�SDUDPHWHUV�PRGHO�IURP�
WKH�0D[ZHOO� HTXDWLRQV� RI� HOHFWURPDJQHWLVP�� $SSHQGL[� %� GHDOV� ZLWK� QXPHULFDO� FDOFXODWLRQ� RI�
PXWXDO� DQG� VHOI� LQGXFWDQFHV�� D� JHQHUDO� PHWKRG� IRU� WKH� FDOFXODWLRQ� RI� WKH� PXWXDO� LQGXFWDQFH�
EHWZHHQ� FRQGXFWRUV� ZLWK� FLUFXODU� FURVV� VHFWLRQV� GLVSODFHG� LQ� VSDFH� ZLWK� DQ\� JHRPHWULF�
FRQILJXUDWLRQ� LV�GHYHORSHG��$SSHQGL[�&�GHULYHV� WKH�HLJHQYDOXHV�DQG�HLJHQYHFWRUV�RI� WKH�PRGHO�
PDWULFHV��
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%F critical field 
 7F critical temperature 
 -F� � � critical�current density 
 

ρ radius of curvature in the particle accelerator 
 S particle momentum PY 

J quadrupole field gradient 
 &Q� � � complex�harmonic coefficient of the multipole expansion %

%Q and $Q� � normal and skew harmonic coefficients 
 V complex co-ordinate in the coil cross sectional plane 
 5� reference radius for LHC 

�% magnetic flux density 
�
0 magnetization 

 - current density  
 ( electric field 
 + magnetic field 
 1 number of strands in the cable 
 UL longitudinal resistance of strand L per unit length of cable 
 UVL longitudinal resistance of strand L per unit length of strand 
 YH[W� � � vector of the external voltage source per unit length of cable 
 L� � � vector of strand currents 
 J interstrand conductances matrix 
 U matrix of longitudinal resistances 
 O per unit length mutual inductances matrix�

LRS� operation current of the cable 
 

VK voltage of strand K



HK� � � voltage difference (9K – 91)

/�� � � elementary loop inductance per unit length 
 WK unit vector tangent to the axis of strand K

Wc unit vector tangent to the axis of the cable at [
6K area of the cross section of strand K
5F

K�N� � � interstrand cross contact resistance between strand K and strand N
5D�

K�N contact resistance between adjacent strands K and strand N
/S cable twist pitch 

 

K angle between the unit vector WK tangent to the strand axis and the 

unit vector Wc tangent to the cable axis 
 $H[W magnetic vector potential associated with the external sources 
 5K �[�� � � point of the strand axis corresponding to coordinate [

3K �[� generic point in strand K at coordinate [
*L set of the indexes of the strands owing to superstrand L
Ni number of strands owing to superstrand L
VXSU matrix of longitudinal resistances relative to superstrands 

 JVXS contact conductances matrix relative to superstrands 
 OVXS mutual inductances matrix relative to superstrands 
 LVXS� � � vector of the currents flowing in the superstrands 
 EN eigenvectors of both matrices J and O

8 Heaviside function 
 

Φ magnetic flux  
 ,)7 flat top current 
 W)7 flat top time 
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The design of large magnets for nuclear fusion reactors and for research in the field of 

particle physics requires the generation of very high magnetic fields in large volumes. The use of 

conventional resistive cables employing copper for the windings would require a big cooling 

system and would result in a very large consumption of electric power. 

 

The discovery and development of type II or “hard” superconductors [1] has given a new 

possibility for the construction of these magnets. These materials carry electrical current without 

resistance at low temperatures also in the presence of high magnetic fields. This results in values 

of the power dissipated in the magnets which are several orders of magnitude smaller than in the 

resistive case. The most important materials of this class are superconducting alloys such as 

NbTi or compounds as Nb3Sn, with critical fields at 4.2 K of 11 and 21-28 T respectively. 

 

The superconducting materials are arranged in thin filaments which are then twisted and 

embedded in a matrix of normal metal, forming strands. The strands are then twisted or 

transposed together to build the final cable. The technical reasons for the choice of this structure 

of multistrand superconducting cables are outlined in section 1.3. 

 

Several kinds of configurations have been developed starting from this basic structure. The 

two configurations most commonly used in technical applications are the following: 

 

� Rutherford type cables consist of a few tens of strands, twisted together with a pitch of some 

centimeters and then shaped into a flat, two layer, slightly keystoned cable. The filaments are 

usually made of NbTi and the matrix is made of high purity copper. These cables are usually 

employed in accelerator magnets, where they are electrically insulated and cooled in a 

helium bath. 

 

� Cable in conduit conductors (indicated as CICC's) are made of a very large number of 

strands which are twisted to form sub-cables in different cabling stages. The strands are then 

wrapped inside a stainless steel jacket and cooled by means of a forced flow of helium filling 



the voids between strands. This direct contact of coolant and strands strongly enhances the 

cable performances in terms of thermal stability to external disturbances. For this reason 

these cables are the preferred choice for magnets that must operate in a noisy 

electromagnetic and mechanical environment, where the operating conditions require a 

reliable and stiff design. 

 

Magnetic fields in particle accelerator magnets are generated over a large dynamic range. At 

the extreme of very long time scales, superconducting dipole magnets operate with large charge 

up times, in the range of tens of seconds to the steady state. 

In magnets for fusion applications long current ramps in the order of hundreds of seconds are 

needed to produce the electric field necessary for the plasma confinement. 

 

The application of current ramps or time dependent external fields generates in the cables a 

variety of screening currents. Interfilament coupling currents flow inside each strand between the 

superconducting filaments and in the normal metal matrix. Several methods have been proposed 

to analyse these currents and the corresponding AC losses. The study of these currents is beyond 

the scope of this work. 

 

We focus our attention on the study of the eddy currents distribution which is induced by 

time dependent magnetic fields in the paths formed by the contacts between the different strands 

of the multistrand cable. These interstrand eddy currents are superimposed to the currents 

flowing between the filaments inside the strands, but the approximation to study the two 

phenomena independently is widely accepted, because of the different time constants of the two 

current distributions. 

 

A further contribution to the current imbalance between strands can result from different 

contact resistances of the strands to the joints at the cable ends. 

 

The superposition of these unbalanced currents to the transport current in the strands and 

the heat due to the ac losses associated with these currents or to external disturbances can push 

the current of some strands beyond the critical value of the strand current itself, such generating 

a normal conducting region.  



The resistive heat generated by the normal conducting material can be removed both by 

conduction to the neighboring parts of the conductor or by convection to the coolant. In some 

cases, this removal is sufficient for the conductor to recover the initial superconducting state. In 

other cases the conduction and convection heat fluxes propagate the normal zone over a very 

long part of conductor, requiring the magnet to be switched off. This is the TXHQFK of the 

magnet.  

 

This phenomenon is particularly important during fast field ramps and limits the 

maximum current achievable with a multistrand cable in dynamic powering conditions. For this 

reason it is generally indicated as UDPS�UDWH�OLPLWDWLRQ. A correct modeling of these phenomena 

can help in the choice of optimal cable parameters to avoid strong ramp rate limitations and 

enhance the cable stability. 

 

Moreover, a “secondary” magnetic field varying in time and space is generated by the 

eddy currents induced by time dependent magnetic fields. This field component affects GLUHFWO\�
the magnetic field in the magnet bore of particle accelerator magnets determining a modulation 

of the field along the length of the magnet axis known as PDJQHWLF�ILHOG�SDWWHUQ��Moreover, this 

field component changes in time, contributing to change the magnetization of the 

superconducting filaments in the strands. This LQGLUHFW influence on strand magnetization 

contributes to a drift of the average field in the magnet bore during phases of constant operation 

current. 

 

The field quality is a major concern for magnets used in particle accelerators, due to its 

influence on the beam optics. Up to now, these dynamic effects on field quality, which show a 

clear dependence on ramp rate and powering history of the cable, cannot be avoided. Therefore, 

a correct modeling of these phenomena can be useful for their compensation.  

 

Existing network models for current distribution in Rutherford cables are characterized 

by a very large number of unknowns, which makes it difficult to study current distribution in 

real long cables used in magnets. 

 



$OO� WKHVH� FRQVLGHUDWLRQV� UHVXOW� LQ� WKH�QHFHVVLW\�RI� DQ� HOHFWURPDJQHWLF�PRGHO�RI� FXUUHQW�
GLVWULEXWLRQ�� IOH[LEOH�HQRXJK�WR�EH�DSSOLHG�DQ\�NLQG�RI�PXOWLVWUDQG�VXSHUFRQGXFWLQJ�FDEOH��DQG�
FKDUDFWHUL]HG�E\�WKH�SRVVLELOLW\�WR�VWURQJO\�UHGXFH�WKH�QXPEHU�RI�XQNQRZQV��IRU�WKH�VWXG\�RI�ORQJ�
UDQJH�SKHQRPHQD�LQ�UHDO�PXOWLVWUDQG�FDEOHV�XVHG�LQ�PDJQHWV��7KH�PRGHO�VKRXOG�DOVR�EH�VXLWDEOH�
WR� EH� FRXSOHG�ZLWK� D� WKHUPR�K\GUDXOLF�GHVFULSWLRQ�RI� WKH� UHIULJHUDWLQJ� V\VWHP��EHFDXVH�RI� WKH�
VWULFW� FRXSOLQJ� EHWZHHQ� HOHFWULFDO�� WKHUPDO� DQG� K\GUDXOLF� SKHQRPHQD� RFFXUULQJ� LQ� FRROHG�
VXSHUFRQGXFWLQJ�FDEOHV���

 

The objective of this work is therefore to review the main phenomena related to current 

distribution in multistrand superconducting cables and to develop an electromagnetic model 

suited for the analysis and improved understanding of these phenomena. The results of the 

model will be compared with pre-existing models of current distribution, showing advantages 

and drawbacks of the novel approach. 

 

The analytical solution of the equations of current diffusion in multistrand cables made 

of a generic number of strands will be given, and compared with the numerical results and 

simplified solutions found in the literature. 

 

The model will be applied to study existing experimental results on current distribution 

in multistrand superconducting cables. An extensive measurement of magnetic field pattern in a 

superconducting dipole will also be presented in order to study the influence of the current 

distribution on the field quality of accelerator magnets. The possibility to apply the 

electromagnetic model to long cables made of some tens of strands will be demonstrated 

applying it to the analysis of the experimental results. 
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1. 1 SUPERCONDUCTING MATERIALS�

Superconductivity is a very peculiar state of matter discovered in 1911 by Kamerlingh Onnes in the 

University of Leiden, Denmark [2-3]. Onnes found that below a certain very low temperature, called critical 

temperature 7F� the electrical resistance of a sample of mercury dropped abruptly to zero. He called this state 

“superconducting state”. In the following years the researches of many chemists and physicists discovered the same 

phenomenon in 26 metallic elements of the periodic table. 

 

Onnes immediately understood the potential applications of his discovery, but his first attempts to build 

magnets with these materials were frustrated by the discovery of other limiting physical conditions to be respected 

in order to keep the superconducting state [4]. In particular it was found that superconductivity is possible only 

below a certain value of the applied magnetic field, called critical field %F. A very peculiar magnetic phenomenon, 

called the Meissner effect, was observed below the critical field. In these conditions the superconducting elements 

showed a perfect diamagnetic behaviour, with a complete expulsion of the magnetic flux from the material. These 

materials are called W\SH� , superconductors. In these materials the critical field is too low for the application of 

superconducting materials to the generation of high magnetic fields. 

�
However, in the early 1960s new superconducting alloys and compounds, like NbTi and Nb3Sn, were 

discovered and studied. These materials showed a different magnetic behaviour, and were called W\SH ,, 
superconductors. In these materials the complete expulsion of the magnetic flux is observed only below a small 

value of the applied magnetic field, generally indicated with %F�. For higher values of the magnetic field the flux 

lines start penetrating the material, which still shows a zero DC resistance until a second critical field, called %F�, is 

reached. When the second critical field is reached the flux is totally penetrated in the conductor and 

superconductivity is lost. 

�
A third critical parameter needs to be carefully controlled when dealing with superconducting materials. 

This is the current density, which must be lower than a critical value -F.

A fourth critical parameter which should not be overcome in order to keep the superconducting state is the 

frequency of the electromagnetic field applied to the material. The critical frequency is extremely high, around 1011 

Hz, and it is usually not reached in practical large scale applications of superconductivity. 

�

The three main critical parameters, temperature, field and current density, are related by an experimental 

correlation which can be written in the form -F = -F (B,T). This relation is shown in Fig. 1.1 for three different 

superconducting materials. The critical surface -F (B,T) defines two regions in the space: in the region included 

between the surface and the coordinate planes the material is superconducting, in the outer region the material is 

normally conducting. The most widely used materials for technical applications are NbTi and Nb3Sn, which 

combine high values of all three critical parameters, as shown in Table 1.1. 



In late 1986 Bednorz and Muller of the IBM research laboratory in Zurich, Switzerland, reported the 

observation of superconductivity in lanthanum copper oxides doped with barium or strontium at temperatures up to 

38 K, above the ceiling of 30 K for the critical temperature that had been theoretically predicted almost 20 years 

earlier. Since then, hundreds of scientists rushed to try different compounds to see which one would give the highest 

7F. These new, ceramic materials show physical and chemical properties which are very different from those of 

metallic superconductors. The most important ceramic superconductors for applications are YBCO (yttrium barium 

copper oxide), BSCCO (bismuth strontium calcium copper oxide) and HBCCO (mercury barium calcium copper 

oxide). Their chemical formulas and transition temperatures are shown in Table 1.2. 

)LJ������&ULWLFDO�VXUIDFH�RI�VRPH�WHFKQLFDO�VXSHUFRQGXFWLQJ�PDWHULDOV�
 The ceramic superconductors show the great advantage of high critical temperatures, which makes it 

possible to obtain proper refrigeration with liquid nitrogen, while low temperature superconductors need to be 

refrigerated with liquid helium, which needs a much more complex and expensive cryogenic system. Conventional 

low temperature superconductors are often used in magnets running at 4 K, but they lose superconductivity in high 

magnetic fields, typically above 6 T, although NbTi remains superconducting up 10 or 15 T. The ceramics 

superconductors have better performances. Bismuth strontium copper oxide (BSCCO) carries adequate currents and 

remains superconducting above 20 T, at 20 K. Therefore, the best way to obtain very high magnetic fields is to use 

ceramic superconductors at low temperatures. 

�
On the other hand, some remarkable problems have been encountered in the application of ceramic 

materials to superconducting magnets. In order to wind a coil to produce a magnetic field, the first prerequisite is to 



make long lengths of wire from the superconducting material. Ceramic superconductors are not ductile, and are very 

brittle, so that the development of a reliable wire-manufacturing technique is an extremely delicate problem. 

Another problem is related to the granular nature of these materials. Very large currents can flow within grains, but 

grain boundaries impede the current flow between grains. Methods have been developed both to align grains and to 

provide “clean” grain boundaries, but these processing methods still need improvement.  

�
All these technical difficulties, combined with time consuming thermal and mechanical treatments, result in 

very high fabrication costs. For all these considerations, at the present state low temperature superconductors are 

still the most used materials for large scale applications in high energy physics magnets and thermonuclear fusion 

magnets. 
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Yttrium barium copper oxide 

Bismuth strontium calcium copper 

oxide (2223 phase) 

 

Thallium barium calcium copper 

oxide (1223) phase 

 

Mercury barium calcium copper 

oxide (1223 phase) 
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1.2 SUPERCONDUCTING STRANDS 

 

Superconducting materials are usually 

reinforced for the application in cables with additional 

components for structural, electrical and thermal 

stability reasons. In general the superconducting 

material is shaped to form very thin filaments, which are then embedded in a matrix of low resistivity material, 

forming strands. A typical cross section of a superconducting strand is shown in Fig. 1.2. 

 

This low resistance material provides a “shunt” when a part of a superconducting filament undergoes a 

transition to the normal state. In this case the resistance in the superconducting material becomes orders of 

magnitude higher than that of the matrix material, and the matrix can rapidly conduct the heat and transfer the 

current of the filament to other adjacent filaments. The resistivity of the matrix should therefore be small, especially 

in the longitudinal direction. A typical low resistivity material used for the matrix is copper. 

 

Technical values of the matrix resistivity for copper are about 1-2 10-10 Ωm. The resistivity of copper matrices 

is often indicated with the so called 555-value (Residual Resistivity Ratio), which gives the ratio between the 

resistivity at 300 K and at 4 K in the absence of applied field. This value is generally about 50-200 for practical 

NbTi strands. 

The use of the copper matrix with fine filaments was started after the first coils wound from bulk 

superconducting wires tripped off unpredictably at current levels much lower than the expected critical current. The 

reason for this behaviour was identified with the so called IOX[�MXPSV.
The origin of flux jumps is due to the fact that the flux penetration in superconductors is associated to a small 

power generation, due to the resistive decay of the screening currents exceeding -F. The power generated by the flux 

penetration increases the local temperature, reducing -F, and hence inducing further flux penetration and heating. As 

the thermal diffusivity in the superconductor is orders of magnitude smaller than the magnetic diffusivity, the flux 

penetration may turn into a very fast avalanche effect, even at very slow external field variation. 

A restriction to the flux motion is provided by a reduction of the filament size, which 

also limits the energy associated to a flux jump. The presence of a high conductivity stabiliser as 

the copper matrix works as a heat sink and electrical bridge around the flux jump affected zone 

allowing recovery in case the local temperature exceeds the critical temperature of the 

superconductor. 

The threshold for flux jumps is about 60-80 µm filament size. Most technical superconductors are 

manufactured today with much smaller filaments (5-30 µm for NbTi and 2-8 µm for Nb3Sn). However, collective 

Table 2. Formulae and critical 

temperatures of some HTSC materials 



interaction among filaments may give rise to flux jumps at low fields. These interactions are called “bridging” when 

the superconducting filaments have physical contacts through which current exchange takes place, and “proximity 

effects” when tunnelling of Cooper pairs occurs through the copper matrix. Both phenomena enhance the effective 

diameter of the filament at low magnetic fields. 

 

Fig. 1.2 &URVV� VHFWLRQ� RI� D� VXSHUFRQGXFWLQJ� VWUDQG� FRQWDLQLQJ� ����� ILODPHQWV� RI� 1E7L�� JDWKHUHG� LQ� KH[DJRQDO�
EXQGOHV��DQG�HPEHGGHG�LQ�D�FRSSHU�PDWUL[��

Another reason for the limitation of the filament size, at least in particle accelerator applications, is the 

necessity to limit field distorsions resulting from superconductor magnetisation at low field. 

In the presence of an external field, in fact, persistent currents flow in the superconducting filaments shielding 

the interior of the filaments from the applied field. The persistent currents generate a residual field which increases 

increasing the filament diameter and the critical current density. At low external fields the critical current density is 

increased and so does the residual field due to persistent currents, resulting in a high relative field error in the bore 

of the magnets. 

 

The filament uniformity, the absence of ruptures along the filament length, and the current density of the 

superconducting material are crucial parameters for a high overall strand critical current. 

 

When time varying magnetic fields are applied to strands, eddy currents are induced both in the filaments and in 

the copper matrix. An interfilament coupling loss is associated with these currents. For this reason the filaments are 

in general twisted in order to reduce the area enclosed by any two filaments and therefore the interfilament coupling 

loss. The interfilament coupling currents exhibit time constants of 0.01 to 0.1 s and a characteristic loop length 

equal to the twist pitch of the filaments. 

 



Another important parameter that must be optimized while manufacturing strands is the copper-to-

superconductor ratio, which should be not too small to limit conductor heating in the case of a quench but neither 

too large because of the need of high overall strand current densities. 

 

The strand coating can in some cases be essential to prevent too high interstrand currents and losses. Bare 

strands can be used for pure DC applications, where the coupling currents loss is not an issue. For materials like 

Nb3Sn and Nb3Al, the typical material used for the coating is Cromium. 

For NbTi strands, several coatings are available, including Cr, Ni, Zn, SnAg, and PbSn.  

 

Insulating coatings are also possible, but should be avoided as they don’t allow current redistribution between 

neighbouring strand in the case of superconducting to normal transition of one or more strands. This can lead to a 

severe limitation of the cable stability to thermal disturbances. 

 

1.3 SUPERCONDUCTING CABLES 

 

������:K\�PXOWLVWUDQG�FDEOHV"�
Superconducting magnets for particle accelerators or fusion applications are often wound from multistrand 

superconducting cables. These cables show the following advantages as compared to single wires [5]: 

 

• the strand to strand current redistribution in the case of localized defects or in case of quench initiation in 

some strands is very useful to improve the cable thermal stability 

• the piece length requirement for wire manufacturing is reduced of a factor 1, where 1 is the number of 

strands in the superconducting cable 

• the number of turns is limited and the coil winding facilitated 

• the coil inductance is limited to a value ��1� smaller than that of a similar coil wound from a single strand 

cable. A smaller inductance reduces the voltage requirements on the power supply to ramp up the magnets 

to their operating current in a given time and limits the maximum voltage to ground in case of a quench�

The main drawback of using a cable is the high operating current which requires large current supplies and 

large current leads. The development of reliable current leads made with high temperature superconductors gives a 

new possibility for the construction of this technically delicate part of the system.�

������&DEOH�FRROLQJ�DQG�LQVXODWLRQ�



In order to properly operate a superconducting cable, the conductor must be cooled below the critical 

temperature of the superconducting material. One way to distinguish superconducting cables is a classification based 

according to the cooling mode, either by forced-flow of helium, or by pool boiling. 

 

• In forced flow conductors the helium flows in a channel which is in thermal contact with the 

superconductor. These cables are particularly suited for applications in which the thermal stability of the 

cable is a major concern, because of the direct contact between the coolant and the cable strands and the 

well defined flow regime which helps to know the operating conditions in detail. Among the forced-flow 

conductors the most interesting configuration is that of the so called “Cable in Conduit Conductors” 

(CICC’s). In the CICC configuration the strands are twisted in subsequent stages to form a final stage cable 

with interstitial voids whose area covers the 40% of the cable cross sectional area. Examples of this 

configuration are shown in Fig. 1.3. The cable is enclosed in a very tight stainless steel jacket, and the 

helium flows in the voids of the cable, so that the contact between coolant and strands is direct and 

characterised by a high heat transfer coefficient. 

• In the cables refrigerated by pool boiling the cooling is achieved by heat exchange and natural convection 

from the coil winding pack to a bath of liquid helium. The thermal contact of coolant and conductor is 

worse than in the CIC configuration. This kind of cooling is ideally suited for magnets which operate in 

“persistent” mode, i.e. with a constant operating current, such as magnets for magnetic resonance imaging. 

 

The cable insulation must satisfy some important requirements, which are listed in the following. 

• a good dielectric strength at very low temperatures, around 4.2 K, and under high transverse pressure. This 

is also due to the fact that the dielectric strength of helium gas at 4.2 K is very low and far worse than that 

of liquid helium. 

• the possibility to keep good mechanical properties in a wide range of temperature. 

 

a) b)



Fig. 1.3. a) &URVV� VHFWLRQ� RI� D� FDEOH� LQ� FRQGXLW� FRQGXFWRU�� VKRZLQJ� VWUDQGV� HQFORVHG� LQ� D� VWDLQOHVV� VWHHO� MDFNHW��
+HOLXP�IORZV�LQ�WKH�YRLGV�EHWZHHQ�VWUDQGV��E��([DPSOH�RI�FDEOH�LQ�FRQGXLW�FRQGXFWRU�ZLWK�LQWHUQDO�KHOLXP�FKDQQHO��

 

• a small thickness to maximize the overall current density of the coil 

• ability to withstand radiations for applications in an accelerator environment 

• possibility to provide a means of bonding the coil turns together to give the coil a rigid shape and facilitate 

its manipulation during the subsequent steps of the magnet assembly 

• a sufficient porousity to allow permeation of the helium, giving a better thermal contact with the conductor 

 

The insulation of most NbTi cables is constituted of one or two inner layers of polyamide film, wrapped 

helically around the conductor, completed by an outer layer of resin-impregnated glass fiber tape (see Fig. 1.4.b). 

The outer layer is wrapped with a gap to set up helium cooling channels  

between coil turns. The resin is of thermosetting-type and requires heat to increase cross-link density and cure into a 

rigid bonding agent. 

 

As anticipated in the introduction, the coils for high field accelerator magnets are often wound from high-

current Rutherford type cables. The cable is generally obtained by flattening a hollow tubular cable comprising 

between 20 and 40 strands. The final geometry is shown in Fig. 1.4.a. The strands are fully transposed with a twist 

pitch /S� The cable cross section presents a small keystone angle which ensures a more uniform structure of the coils 

and facilitates the winding of the magnets. 

 

Fig. 1.4. a) )LQDO�JHRPHWU\�RI�IODW�5XWKHUIRUG�FDEOH�IRU�/+&�PDJQHWV. b) ,QVXODWLRQ�RI�D�IODW�FDEOH��UHDOLVHG�ZLWK�D�
JODVV�ILEUH�WDSH�DQG�D�NDSWRQ�IRLO��
 

A resistive barrier between the top and bottom layer of flat cables is sometimes added in order to enhance the 

contact resistance between strands and limit the interstrand coupling currents induced by time dependent magnetic 

fields. 

a) b)a)



The main parameters of the Rutherford cables used to wind dipoles in two layers (inner and outer) for the LHC 

(Large Hadron Collider) project at CERN (see section 1.5.3) are listed in Table 3. 

 

Outer layer Inner layer 

Diameter of strands (mm) 0.825 1.065 

Copper/Superconductor ratio 1.9 1.6 

Filament size (µm) 7 6 

Bref (T) 9 10 

Tref (K) 1.9 1.9 

Jc (Bref, Tref ) (A/mm2) 1953.0 1433.3 

7DEOH���0DLQ�SDUDPHWHUV�RI�IODW�5XWKHUIRUG�FDEOHV�XVHG�IRU�WKH�
/+&�GLSROHV�

 

1.4 SUPERCONDUCTING MAGNETS 

 

The possibility offered by superconducting cables to conduct high currents with low power losses is ideally 

suited for the construction of electromagnets. Extremely high fields (up to 20T and more) can be produced in 

volumes in the range from 0.01 to 1 dm3, while fields in the range from 5 to 6 T can be produced in volumes of the 

order of 1 m3.

7KH�PRVW�W\SLFDO�DSSOLFDWLRQ�RI�VXSHUFRQGXFWLQJ�PDJQHWV�DUH�OLVWHG�LQ�WKH�IROORZLQJ��
• Magnetic separators are devices used to capture ferromagnetic, diamagnetic, or paramagnetic particles 

from a streaming fluid, in order to filter impurities or to separate particles with different magnetic 

susceptivities. The capture capability strongly depends on the field module and on the field gradient. The 

choice of superconducting magnets is very competitive for the separation of very small particles, down to 1 

µm of diameter, which are very difficult to capture with conventional electromagnets. 

• MHD generators� are devices for the magneto-fluid dynamic generation of energy. In these devices the 

power produced depends on the second power of the module of the magnetic induction. Superconducting 



cables are necessary, because with conventional magnets the power required by the conversion cycle would 

be higher than the power produced. 

• MRI (magnetic resonance imaging)�magnets allow to obtain images with a very high resolution, used for 

medical diagnostics. The possibility to use the magnets in “persistent mode”, with a fixed and stable value 

of the operating current, leads to the required field uniformity in space and time. MRI magnets have 

revealed to be the most profitable investment for the superconductive technology since the 1980s. 

• Nuclear fusion magnets are used to generate the magnetic field for the plasma confinement in the 

controlled thermonuclear fusion devices. Two main kinds of magnets are used in the tokamak 

configuration: the toroidal field coils which enclose the plasma ring, and pulsed transformer coils, for the 

poloidal field. Both kinds of coils are subject to the time dependent magnetic field generated by the 

transformer coils and are introduced in a very noisy electromagnetic environment, so that the preferred 

choice for a stable operation is to wind them with cable in conduit conductors. 

 

1.5 PARTICLE ACCELERATORS 

������Why particle accelerators? 

 

Particle accelerators are needed for the investigation of two very fundamental research topics, which are 

nowadays strictly correlated. The first is related to particle physics, and is aimed to give an answer to basic 

questions like “what is matter?”, “what are its basic constituents?” and “what kind of interactions exist between 

particles?”. The second is related to astronomy, and is aimed to recreate with high energy collisions the same 

conditions existing in the initial instants of the origin of universe, immediately after the “Big Bang”. The questions 

are the following: “how was matter at that time?”, “how did the fundamental particles coalesce to make the atoms, 

the stars and the galaxies we observe today?”. 

By concentrating a large amount of energy into the smallest possible volume, in fact, equal numbers of 

particles of matter and antimatter are created from pure energy according to the equation ( = Pc2. The energy 

concentrations created in modern particle accelerators correspond to the conditions prevailing less than 10-10 s after 

the Big Bang. 

�



1.5.2 3DUWLFOH�DFFHOHUDWRUV��ZRUNLQJ�SULQFLSOH�
 

Two types of experiments can be realised in particle accelerators. In IL[HG�WDUJHW experiments the particles 

are accelerated and the beam is blasted against a fixed target. In FROOLGLQJ�EHDP experiments two counter rotating 

beams are blasted at each other by colliding them among themselves. The collision products are analysed in large 

detectors which surround the targets or the collision points. Different layers of the detectors measure different 

properties of the particles resulting from the collisions, while a magnetic field is needed to identify particles of 

opposite charges and different momentum. 

Two kinds of accelerators exist, linear and circular. All particle beams start their acceleration in linear 

accelerators, but the need to reach very high energies would require linear accelerators of unacceptable lengths, so 

that the preferred solution is to counter-rotate particle beams in circular accelerators (called storage rings) until the 

desired energy is reached. 

,Q�DQ\�NLQG�RI�DFFHOHUDWRU�WKHUH�LV�H[DFWO\�RQH�FXUYH���WKH�GHVLJQ�RUELW��RQ�ZKLFK�LGHDOO\�
DOO� SDUWLFOHV� VKRXOG�PRYH�� ,I� WKLV� GHVLJQ� RUELW� LV� FXUYHG�� DV� LQ� FLUFXODU� DFFHOHUDWRUV�� EHQGLQJ�
IRUFHV� DUH� QHHGHG�� ,Q� UHDOLW\��PRVW� SDUWLFOHV�RI� WKH�EHDP�ZLOO� GHYLDWH� VOLJKWO\� IURP� WKH�GHVLJQ�
RUELW��,Q�RUGHU�WR�NHHS�WKHVH�GHYLDWLRQV�VPDOO�RQ�WKH�ZKROH�ZD\��ZKLFK�PLJKW�EH�DV�ORQJ�DV������
NP�LQ�D�VWRUDJH�ULQJ���IRFXVLQJ�IRUFHV�DUH�UHTXLUHG��
�

%RWK� EHQGLQJ�DQG� IRFXVLQJ� IRUFHV� FDQ�EH�DFFRPSOLVKHG�ZLWK� HOHFWURPDJQHWLF� ILHOGV�� ,Q�
PRGHUQ� DFFHOHUDWRUV� WKH� EHQGLQJ� IRUFHV� DUH� SURYLGHG� E\� GLSROH� PDJQHWV�� ZKLOH� WKH� IRFXVLQJ�
IRUFHV�DUH�SURYLGHG�E\�TXDGUXSROH�PDJQHWV� 

,Q RUGHU� WR� GHILQH� LGHDO� GLSROH� DQG� TXDGUXSROH�PDJQHWV�ZH� FRQVLGHU� D� SRLQW�P RQ� WKH�
GHVLJQ�RUELW�RI�WKH�SDUWLFOHV�DQG�D�ORFDO�UHIHUHQFH�IUDPH�ZKHUH�WKH��x, y� SODQH�LV�WUDQVYHUVH�ZLWK�
UHVSHFW� WR� WKH� GHVLJQ� RUELW�� 7KH�x D[LV� GHILQHV� WKH� KRUL]RQWDO� GLUHFWLRQ�� WKH�y D[LV GHILQHV� WKH�
YHUWLFDO�GLUHFWLRQ�DQG�WKH�]�D[LV�FRUUHVSRQGV�WR�WKH�GLUHFWLRQ�RI�SDUWLFOH�PRWLRQ��
�



)LJ. ��� Lorentz force acting on a positively charged particle a) dipole field b) quadrupole field�
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7R�REWDLQ� D� QHW� IRFXVLQJ� HIIHFW� DORQJ�ERWK�x DQG�y D[HV�D�SDLU�RI� IRFXVLQJ�GHIRFXVLQJ�
TXDGUXSROHV�PXVW�EH�XVHG��)RU�ERWK�NLQGV�RI�TXDGUXSROHV��WKH�IRFDO�OHQJWK�f LV SURSRUWLRQDO�WR�
WKH�SDUWLFOH�PRPHQWXP�>�@��7KLV�PHDQV� WKDW� WR�PDLQWDLQ� f FRQVWDQW�ZKLOH� WKH�SDUWLFOH�EHDP�LV�
DFFHOHUDWHG�� WKH� TXDGUXSROH� ILHOG� JUDGLHQW� PXVW� EH� UDPSHG� XS� LQ� SURSRUWLRQ� WR� WKH� SDUWLFOH�
PRPHQWXP��

$V�D�FRQVHTXHQFH��IRU�ERWK�EHQGLQJ�DQG�IRFXVLQJ�SXUSRVHV��WKH�PDJQHWLF�ILHOG�LQ�SDUWLFOH�
DFFHOHUDWRU�PDJQHWV�LV�QRW�NHSW�FRQVWDQW��FDXVLQJ�WKH�G\QDPLF�HIIHFWV�RQ�FXUUHQW�GLVWULEXWLRQ�LQ�
WKH�PDJQHW�FDEOHV�GLVFXVVHG�LQ�WKLV�WKHVLV��
�
1.5.3 CERN-/DUJH�+DGURQ�&ROOLGHU�

� CERN is the European Laboratory for Particle Physics. In this laboratory both linear and 

circular accelerators are installed. CERN was founded near Geneva, Switzerland, in 1954, and it 

is now funded by 20 European countries. More than 6000 researchers from 80 countries work in 

the facilities offered by this laboratory. 

The largest accelerator under construction at CERN today is the Large Hadron Collider, 

LHC. The main goal of the LHC is finding the Higgs boson, a particle which physicists retain 

responsible for the mechanism how particles acquire mass. In the LHC protons and antiprotons 

will collide at a center of mass energy of 14 TeV. This energy is not much larger than the kinetic 

energy of a mosquito, but is concentrated in a volume which is 1012 times smaller. This is why 

the collimation of the particle beams is an extremely delicate technical problem.  

The layout of this accelerator is shown in Fig. 1.6. The tunnel is 27 km long and is placed 

100 m below the ground. The circumference is divided into 8 octants. The particles will collide 

in only 4 points along the ring circumference, corresponding to octants 1, 2, 5 and 8, as indicated 

in Fig. 1.6. The storage ring will consist of about 8400 magnets, of which 3444 will be 



superconducting. Among the superconducting magnets there will be 1232 main dipoles, 386 

main quadrupoles and other magnets for the correction of field errors. 

 

Fig. 1.6. /D\RXW�RI�WKH�/DUJH�+DGURQ�&ROOLGHU�DW�&(51�
������ )LHOG�TXDOLW\�

Accelerator magnets must provide a magnetic field of high homogeneity, better than a few parts on 10000 

at a radius of 60 % of the coil diameter. An ideal dipole and quadrupole field can be generated by the current 

distribution shown in Fig. 1.7. An ideal dipole field is given by a cos (ϑ) current distribution while an ideal 

quadrupole field is obtained with a current distribution proportional to cos (2 ϑ���where ϑ is the azimuth angle [4]. 

The dipole and quadrupole current distributions are realized in practice by means of a discretization of the 

homogeneous current shells. This approximation introduces a number of field imperfections, which must be 

minimized and corrected. The magnetic field in the accelerator magnets is usually expressed by means of the 

following complex series: 
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where�V = [ + i\ is the complex co-ordinate in the ([, \) coil cross sectional plane of the magnet, 5� is a reference 

radius (for LHC 5� = 17 mm) and &Q are the so called harmonic coefficients. 

The harmonic coefficients &Q can also be explicitly written as the sum of their real (referred to as QRUPDO)
and imaginary (VNHZ) parts: 

 &Q = $Q +i %Q

(1.5) 

 Accelerator magnets are usually produced and positioned so that they generate a pure normal or skew 

multipole field of order N. In a normal multipole magnet, for instance, the magnetic field has strictly \ direction, 

implying that the VNHZ part of any harmonic coefficient must be zero. However, several field errors are present in 

superconducting magnets, and all field harmonics have to be carefully measured and controlled. These field errors 

have several origins [6]. 

 

Some field errors have a JHRPHWULF origin and result from the deviation of the placement of the 

conductors from the ideal current distribution giving the desired magnetic field. 

 Moreover, at high field significant deviation from linearity and field errors are caused by the 

VDWXUDWLRQ of the iron yoke. The geometric and saturation field contributions are reproducible, can be predicted 

accurately and may be largely inferred from warm measurements. These effects can also be found in normal 

resistive magnets. 

 Additional effects peculiar to superconducting magnets are caused by the known DC diamagnetic 

property of superconducting cables. As anticipated in Section 1.2, persistent currents flow in each filament in the 

cable strands, so that each filament behaves as a diamagnetic material, whose contribution to the magnetic field 

quality can be appreciable at low field levels. 

 Other effects on the field quality are associated with the superconducting properties of the cables. In 

particular, a GHFD\ of the magnetic field and field harmonics is seen during long periods of constant current 



excitation, followed by a rapid recovery of the initial value before the drift as soon as the current is ramped (referred 

to as VQDSEDFN). These effects are due to the change in the filaments magnetization, which is also correlated to the 

current distribution among the cable strands, as pointed out in Section 2.2.2. 

Fig. 1.7�,GHDO�FXUUHQW�GLVWULEXWLRQ�IRU�WKH�JHQHUDWLRQ�RI�D�GLSROH��D��DQG�TXDGUXSROH��E��ILHOG��7KH�FXUUHQW�IRU�WKH�
GLSROH�ILHOG�KDV�WKH�IRUP�,� �,� cos�(ϑ), ZKLOH�WKH�FXUUHQW�IRU�WKH�LGHDO TXDGUXSROH�ILHOG�KDV�WKH�IRUP ,  �,� cos�(2 ϑ)
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CURRENT DISTRIBUTION: PROBLEM DEFINITION 

 



2.1 SOURCES OF NON UNIFORM CURRENT DISTRIBUTIONS 

 

Several possible sources of non uniform current distribution among the cable strands can be identified. Among 

them, some are effective in both AC and DC conditions, while others are only effective in AC conditions. Some 

possible sources of a non uniform current distribution in both stationary and dynamic conditions are listed in the 

following. 

 

• Different joint resistances of the different strands at the cable terminations [1]. The cable ends can be connected 

through splices to other cables or through joints to the current leads. It is not technically possible to realize a 

perfectly identical contact between the different strands and the joints because the soldering processes cannot 

be so strictly controlled. However, once the statistical distribution of the different strand joint resistances is 

directly measured or identified, the effects on current distribution can be easily determined. 

• Different strand critical properties. It is impossible to manufacture perfectly identical strands: small differences 

in the strand critical properties could result in some strands carrying more current than the others, in the 

presence of the same external conditions. 

�
6RPH� SRVVLEOH� VRXUFHV� RI� QRQ� KRPRJHQRXV� FXUUHQW� GLVWULEXWLRQV� DUH� HIIHFWLYH� RQO\� LQ� WKH�

SUHVHQFH� RI� WLPH� GHSHQGHQW�PDJQHWLF� ILHOGV�� ,Q� SDUWLFXODU� ORQJ� FXUUHQW� ORRSV� FDQ� EH� LQGXFHG�
EHWZHHQ�WKH�FDEOH�VWUDQGV��7KH\�DUH�EDVLFDOO\�GXH�WR�DQ�LQKRPRJHQHRXV�GLVWULEXWLRQ�RI�WKH�WLPH�
GHULYDWLYH� RI� WKH�PDJQHWLF� IOX[� HQFORVHG� E\� WKH� YDULRXV� VWUDQGV�� 7KH� SRVVLEOH� VRXUFHV� RI� VXFK�
LQKRPRJHQHLW\�DUH�OLVWHG�LQ�WKH�IROORZLQJ��
 

• Strand transposition errors with respect to the background magnetic field, for which the flux linked to the 

loops formed by the strands cannot be fully compensated (geometrical errors) 

• Differences in the strand self and mutual inductances 

• /DUJH� JUDGLHQWV� RI� WKH� PDJQHWLF� IOX[� GHQVLW\� DORQJ� WKH� FDEOH�� HYHQ� ZLWK� SHUIHFWO\�
WUDQVSRVHG�VWUDQGV��ZKLFK�PD\�JLYH�ULVH�WR�ORQJ�UDQJH�FRXSOLQJ�FXUUHQWV��IORZLQJ�DORQJ�



WKH�ZKROH� FDEOH� OHQJWK� >�@�� 7KLV� VRXUFH� RI� QRQ� KRPRJHQHLW\� LV� FRQVLGHUHG� WR� EH�PRUH�
UHOHYDQW�LQ�DFFHOHUDWRU�PDJQHWV�WKDQ�LQ�QXFOHDU�IXVLRQ�PDJQHWV��

�
,Q�RUGHU�WR�EHWWHU�FODULI\�WKH�RULJLQ�DQG�WKH�SURSHUWLHV�RI�WKH�LQGXFHG�FLUFXODWLQJ�FXUUHQWV�LW�

FDQ�EH�XVHIXO�WR�GLVWLQJXLVK�FDEOHV�ZLWK�LQVXODWHG�VWUDQGV�DQG�FDEOHV�ZLWK�QRQ�LQVXODWHG�VWUDQGV��
7KH VLWXDWLRQ� LQ� FDEOHV� PDGH� RI� LQVXODWHG� VWUDQGV� FDQ� EH� VFKHPDWL]HG� ZLWK� D� OXPSHG�

SDUDPHWHUV�FLUFXLW�PRGHO�DV�VKRZQ�LQ�)LJ�������,Q�WKH�FLUFXLW�Lh LV�WKH�VHOI�LQGXFWDQFH�RI�VWUDQG�h
DQG�Mh,k LV WKH�PXWXDO�LQGXFWDQFH�EHWZHHQ�VWUDQG�h DQG�VWUDQG�k� ZKLOH�Φ h,k�LV�WKH�IOX[�HQFORVHG�
EHWZHHQ�WKH�WZR�VWUDQGV��

7KH LQGXFWLYH� WHUPV� GHWHUPLQH� WKH� WUDQVLHQW� FLUFXODWLQJ� FXUUHQW�� ZKLOH� WKH� UHVLVWLYH� WHUPV�
GHWHUPLQH� WKH� VWHDG\� WUDQVSRUW� FXUUHQW�� 7KH� RUGHU� RI� WKH� GHFD\� WLPH� FRQVWDQW� RI� WKH� LQGXFHG�
WUDQVLHQW�FLUFXODWLQJ�FXUUHQW�LV�JLYHQ�E\�>�@��
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ZKHUH�L� M� DQG�R DUH�WKH�W\SLFDO�RUGHUV�RI�WKH�VHOI�LQGXFWDQFHV��WKH�PXWXDO�LQGXFWDQFHV�DQG�WKH�
MRLQW�UHVLVWDQFHV�UHVSHFWLYHO\��$V�R LV XVXDOO\�YHU\�VPDOO��LQ�WKH�RUGHU�RI�QΩ� LQ�RUGHU�WR�UHGXFH�
WKH� KHDW� JHQHUDWLRQ� DW� WKH� MRLQWV�� WKH� RUGHU� RI� GHFD\� WLPH� FRQVWDQWV� FDQ� EH� YHU\� ODUJH�� XS� WR�
VHYHUDO�KRXUV��7KH�RUGHU�RI�PDJQLWXGH�RI�WKH�LQGXFHG�FLUFXODWLQJ�FXUUHQW�LV�JLYHQ�E\�>�@��
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ZKHUH� VI DQG� H[ UHSUHVHQW�WKH�PDJQHWLF�IOX[�OLQNHG�WR�WKH�ORRS�GXH�WR�WKH�VHOI�ILHOG�DQG�WR�WKH�
H[WHUQDO�ILHOG��7KH�LQGXFHG�FXUUHQWV�FDQ�EH�YHU\�ODUJH�ZKHQ�D�&,&&�FDEOH�LV�H[SRVHG�WR�D�ODUJH�
H[WHUQDO�PDJQHWLF�ILHOG��UHVXOWLQJ�LQ�VRPH�FDVHV�LQ�YHU\�VLJQLILFDQW�FXUUHQW�LPEDODQFHV��

,Q�WKH�FDVH�RI�QRQ�LQVXODWHG�VWUDQGV�WZR�GLIIHUHQW�W\SHV�RI�FXUUHQWV�FDQ�EH�GLVWLQJXLVKHG��
QDPHO\� VKRUW� DQG� ORQJ� UDQJH� FRXSOLQJ� FXUUHQWV�� 7KH� VKRUW� UDQJH� FRXSOLQJ� FXUUHQWV� DUH� RIWHQ�
VLPSO\� LQGLFDWHG� DV� LQWHUVWUDQG� FRXSOLQJ� FXUUHQWV� �,6&&V�� >��@�� 7KH� ORQJ� UDQJH� FRXSOLQJ�
FXUUHQWV� DUH� RIWHQ� LQGLFDWHG� DV� �%RXQGDU\� ,QGXFHG� &RXSOLQJ� &XUUHQWV�� �%,&&
V�� >��@� RU�
�6XSHUFXUUHQWV��>��@���

The short range coupling currents can be originated by a time varying magnetic field uniform along the 

cable axis. The loop for the interstrand coupling currents consists of two strands and a contact electrical resistance, 

as shown in Fig. 2.2a. Assuming that the cable is made of an integer number of half twist pitches, the short range 

coupling current is uniform along the cable length. If G%�GW is independent of time, the following equation can be 

written for the interstrand coupling current: 

 FVFFFVFF 5,5,GW
G%

22 +==�

(2.3) 

where � is the time derivative of the magnetic flux linked to the loop, 6 is the area of the loop, ,VFF the value of the 

interstrand coupling current, and 5F the resistance of each contact between strands. The value of the interstrand 

coupling current results in: 
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The order of the decay time constant is given by [7]: 

 
F5
/2 1)( ≈τ

(2.5) where /� is the inductance of the loop. The short range coupling currents exhibit time 

constants in the range from 0.01 to 1 s in typical cables. The long range coupling currents can 

flow along the whole cable length. Their amplitude can be orders of magnitude higher than that 

of the short range coupling currents. 

 

a) b)



Fig. 2.2 6FKHPD�RI�WKH�ORRSV�RI�VKRUW��D��DQG�ORQJ��E��UDQJH�FRXSOLQJ�FXUUHQWV�
The theory explaining the behaviour of this type of currents in flat Rutherford cables was 

developed in [10] and is briefly discussed in Section 2.3.5. 

 

The sources listed above can lead to non homogeneous current distribution among the 

different strands even without the intervention of external disturbances. However, it may happen 

during magnet operation that a certain amount of energy is released in a portion of one or more 

strands by external disturbances, determining the superconducting to normal transition in this 

portion of the cable. 

 

External disturbances can be due to unforeseen LQFUHDVHV� LQ� VWHDG\� VWDWH� KHDW� LQSXW, sudden VOLSSLQJ among 

cable components, FUDFNLQg of the insulation, EHDP� ORVV in accelerator magnets. The energy deposition is usually 

very localized in time and space. Consequently, a current UHGLVWULEXWLRQ among the neighbouring strands starts, 

driven by the voltage of the normal zone. The redistribution takes place across the transverse contact resistance. If 

the strands are insulated, the current can only redistribute through the cable joints. Therefore the transverse 

resistance between strands is a key parameter for current re-distribution. 

 

In systems with galvanic coupling between strands like in soldered cables the process of current redistribution 

is fast, the Joule heat and the associated temperature rise are small. In cables with insulated strands, the time 

constant, the Joule heat and the temperature rise increase with the conductor length: in a magnet system, an 

extension of the normal part over the whole conductor cross section and a subsequent quench are very probable. 

 

By the point of view of thermal stability a fast current distribution given by a low contact resistance between 

strands is certainly very useful, as it avoids too large Joule heating in the normal zones and consequent temperature 

rises. On the other hand, low contact resistances can increase the circulation currents induced in the presence of time 



dependent magnetic fields, and enhance the AC losses related to these currents. From the above considerations, it 

results that the interstrand contact resistance is a key parameter that should be optimized considering both thermal 

stability and AC losses.  

 

2.2 EFFECTS OF NON UNIFORM CURRENT DISTRIBUTIONS 

2.2.1 5DPS�UDWH�OLPLWDWLRQ�
The most serious consequence of extremely unbalanced current distributions is a severe limitation of the 

total current that multistrand cables can carry in transient conditions. As anticipated in the introduction, this effect is 

referred to as UDPS�UDWH�OLPLWDWLRQ. The quench current of a coil is significantly affected by the ramp rate and the 

powering history [13, 8, 47]. 

 

Several sources have been identified in the previous section which can lead some strands to carry more 

current than the other strands. If one of these strands exceeds its critical current, while the whole cable current is 

still below its design critical value, a portion of this strand can turn into the normal state. From this normal region 

formed in one strand a quench can be originated, which can propagate along the whole cable length. In these cases 

the magnet must be ramped down and de-energized. This could be a GLUHFW mechanism leading to ramp-rate 

limitation. 

 

The AC losses due to the interstrand coupling currents, and possible rapid quench and recovery events 

(observed in [46]) due to the fact that some strands are more charged than the others, lead some strands, in transient 

conditions, to work closer to the critical surface of the superconducting material. This can decrease the cable 

capability to recover the superconducting state after external energy depositions . This means that external energy 

disturbances which could be absorbed with a recovery to the superconducting state if the current distribution were 

uniform, can be fatal in the non uniform case. This could be an LQGLUHFW mechanism of ramp rate limitation. 

 

7KH�SKHQRPHQRQ�RI� UDPS� UDWH� OLPLWDWLRQ� LV�PRUH� VHYHUH� LQ�PDJQHWV� IRU�ZKLFK� WKHUPDO�
VWDELOLW\�LV�D�PDMRU�FRQFHUQ��L�H��PDJQHWV�IRU�QXFOHDU�IXVLRQ�DSSOLFDWLRQV��+RZHYHU��LW�KDV�DOVR�
EHHQ�PHDVXUHG�LQ�PDJQHWV�IRU�SDUWLFOH�DFFHOHUDWRUV�>��@��



2.2.2 )LHOG�HUURUV�
The magnetic field in accelerator magnets wound with Rutherford-type cables exhibits a periodic 

modulation along the magnet [14, 16, 17]. This SHULRGLF�SDWWHUQ has a period identical to the cable twist pitch, and 

shows a complex time and space dependence. Even at a constant transport current of the magnet the amplitude of 

the periodic field modulation may increase or decrease in time, with very long time constants. Values of the order of 

100 h have been measured in some cases [35]. The field modulation persists for several hours after de-energizing 

the magnets. 

 

The reason for this effect cannot be explained by flux creep in NbTi filaments. This phenomenon is due to 

an uneven current distribution among the strands [9]. The field modulation itself does not strongly affect the particle 

motion in the magnet bore. The average value of the field and field harmonics, however, strongly affects the 

accelerator operation. It has been shown both theoretically [28] and experimentally [29] that the average strand 

magnetization is affected by the field changes internal to the cable that are associated with the current redistribution. 

 

This phenomenon is observed in accelerator magnets as a drift of the field when the transport current is 

held constant (GHFD\). The field drift must be known and corrected precisely for accurate accelerator operation. 

Thus, a well established correlation and a better understanding of the current distribution as a function of the 

operating conditions can lead to improved correction and control algorithms. 

 

2.3 HISTORICAL REVIEW: THEORETICAL MODELS 

2.3.1 :K\�PRGHOOLQJ�FXUUHQW�GLVWULEXWLRQ"�
The discovery of ramp rate limitation has shown that the thermal stability to external disturbances in 

multistrand cables is intimately correlated with the current distribution between the strands. It is therefore useful to 

spend a few words about thermal stability modelling. The aim of the analysis of cable stability is the calculation of 

the transient response of an initially superconducting cable to an arbitrary energy input, abstracting from the origin 

and the nature of the disturbance spectrum. 



The main result of the analysis is the VWDELOLW\�PDUJLQ�or PLQLPXP�TXHQFK�HQHUJ\� �04(�, the maximum 

energy that can be deposited in the cable (over a given extension in space and time and with a given waveform) for 

which the transient response ends with the cable back to the superconducting state. This problem is extremely 

complex, as it involves coupled thermal, fluid-dynamics and electro-dynamics phenomena occurring at cryogenic 

temperatures, where the knowledge of non linear material properties is uncertain. 

The modelling of current distribution in multistrand cables is therefore useful as it gives important 

information for stability studies, helping to interpret the experimental results on cable stability. Moreover, an 

accurate estimation of the AC losses in transient conditions is very important for the design of the cryogenic system. 

As in any study which involves simulations, this kind of modelling has the remarkable advantage of 

studying in a very fast and cheap way a wide range of possible cable configurations, with different geometric and 

electric parameters. This cannot be attained easily with an experimental apparatus. 

2YHU� WKH� \HDUV� VHYHUDO�PRGHOV� RI� FXUUHQW� GLVWULEXWLRQ� LQ�PXOWLVWUDQG� FDEOHV� KDYH� EHHQ�
GHYHORSHG� IRU� GLIIHUHQW� DSSOLFDWLRQV�� DW� GLIIHUHQW� OHYHOV� RI� DSSUR[LPDWLRQ� DQG� GHJUHHV� RI�
FRPSOH[LW\�� 7KH� UHIHUHQFHV� TXRWHG� KHUH� VKRXOG� EH� FRQVLGHUHG� DV� W\SLFDO� H[DPSOHV� RI� WKH�
DSSOLFDWLRQ� DW� WKH� OHYHO� RI� DSSUR[LPDWLRQ� GLVFXVVHG�� DQG� IRU� REYLRXV� UHDVRQV� FDQQRW� EH�
H[KDXVWLYH�RI�WKH�DPRXQW�RI�ZRUN�VSHQW�LQ�WKH�ILHOG��
 

2.3.2 1HWZRUN�PRGHOV�IRU�5XWKHUIRUG�&DEOHV�
,Q� WKH�FDVH�RI�5XWKHUIRUG�FDEOHV� VHYHUDO�QHWZRUN�PRGHOV�KDYH�EHHQ�GHYHORSHG� WR�VWXG\�

WKH�FXUUHQW�GLVWULEXWLRQ�DPRQJ�WKH�VWUDQGV��2QH�RI�WKH�HDUOLHVW�SUHVHQWDWLRQV�RI�D�QHWZRUN�PRGHO�
ZDV�JLYHQ�E\�0RUJDQ� LQ������>��@��DQG�DVVXPHV� WKDW� WKH�VWUDQGV�LQ�RQH�OD\HU�KDYH�HOHFWULFDO�
FRQWDFWV� ZLWK� WKRVH� LQ� WKH� RWKHU� OD\HU�� EXW� QRW� EHWZHHQ� WKHPVHOYHV�� 0RUJDQ� UHSRUWV� WKDW� ³D�
GLUHFW�DSSOLFDWLRQ�RI�0D[ZHOOµV�HTXDWLRQV�WR�D�IODW�PHWDO�ILOOHG�EUDLG�ZDV�DWWHPSWHG�EXW�GURSSHG�
RZLQJ� WR� WKH� QRQ� LVRWURSLF� VWUXFWXUH� RI� WKH� FDEOH´�� )RU� WKLV� UHDVRQ� KH� GHYHORSHG� D� OXPSHG�
FRQVWDQW�FLUFXLW�DSSURDFK��,Q� WKH�0RUJDQ¶V�PRGHO� WKH�)DUDGD\¶V�DQG�.LUFKRII¶V�HTXDWLRQV�DUH�
DSSOLHG�WR�DOO�WKH�ORRSV�IRUPHG�E\�WZR�DGMDFHQW�VWUDQGV�RI�RQH�OD\HU�FURVVLQJ�DQ\�WZR�DGMDFHQW�
VWUDQGV�RI�WKH�RWKHU�OD\HU��



7KH� EUDLG� LV� DVVXPHG� WR� EH� LQILQLWHO\� ORQJ� ZLWK� XQLIRUP� FURVV� FRQWDFW� UHVLVWDQFH� DQG�
XQLIRUP�ILHOG�DORQJ�WKH�FDEOH�OHQJWK��HYHQ�LI�ILHOG�YDULDWLRQV�DFURVV�WKH�FDEOH�ZLGWK�DUH�DOORZHG��
,Q WKLV� ZD\� RQO\�N�� LQGHSHQGHQW� ORRSV� KDYH� WR� EH� VROYHG�� ZKHUH�N LV WKH� WRWDO� QXPEHU� RI�
VWUDQGV� �VHH�)LJ��������$OO� ORRSV� LQFOXGH� IRXU�UHVLVWDQFHV�H[FHSW� WKRVH�DW� WKH�HGJHV�ZKLFK�KDYH�
WKUHH��$OO�FURVVRYHU�UHVLVWDQFHV�DUH�DVVXPHG�WR�EH�WKH�VDPH��DQG�DOO�ORRS�DUHDV�WKH�VDPH��

7KH�VROXWLRQ�IRXQG�IRU�WKH�FURVV�RYHU�FXUUHQWV�DW�DQ�DUELWUDU\�SRVLWLRQ�LV�WKHQ�FRQVLGHUHG�
WR�EH�XQLIRUPO\�UHSHDWHG�DORQJ�WKH�FDEOH�OHQJWK��0RUJDQ¶V�PRGHO�DOORZV�WR�ILQG�DQ�HVWLPDWH�RI�
WKH�SRZHU�GLVVLSDWHG�LQ�WKH�FDEOH�LQ�WKH�SUHVHQFH�RI�ILHOG�UDPSV��LI�WKH�DSSOLHG�ILHOG�LV�FKDQJLQJ�
DW D�FRQVWDQW�UDWH��VR�WKDW�WKH�HPI�GULYLQJ�WKH�ORRS�FXUUHQWV�LV�LQGHSHQGHQW�RI�WLPH��

,Q PRUH�DGYDQFHG�YHUVLRQV�RI� WKH�QHWZRUN�PRGHO�>������@�WKH�N�� ORRSV�FRQVLGHUHG�E\�
0RUJDQ�EHFRPH�WKH�FRPSRQHQWV�RI�WKH�EDVLF�XQLWV�IRU�WKH�FDOFXODWLRQ�RI�WKH�FXUUHQW�GLVWULEXWLRQ�
�FDOOHG� µFROXPQV¶� >��@� RU� µFDOFXODWLRQ� EDQGV¶� >���� ��@��� DOORZLQJ� WR� FRQVLGHU� ORQJLWXGLQDO�
YDULDWLRQV�RI� WKH�PDJQHWLF� IOX[�GHQVLW\�DORQJ� WKH�FDEOH� OHQJWK��$�UHSUHVHQWDWLRQ�RI� WKH� OXPSHG�
FRQVWDQW�FLUFXLW�PRGHO�GHVFULEHG�LQ�>��@�LV�VKRZQ�LQ�)LJ��������

$ FRPSOHWH�VHW�RI�HTXDWLRQV�LV�ZULWWHQ�IRU�DOO�WKH�FROXPQV��DSSO\LQJ�)DUDGD\¶V�ODZV�WR�WKH�
N�� ORRSV�RI� HDFK�FROXPQ��7KH�FURVV�RYHU�FXUUHQWV� LQ�HDFK�FROXPQ�FDQ�EH�FDOFXODWHG� VWHS�E\�
VWHS� IURP� WKH� NQRZOHGJH� RI� WKH� FURVV� RYHU� FXUUHQWV� LQ� WKH� SUHYLRXV� FROXPQ� >��@�� 7KH�PDWUL[�
DSSURDFK��GHVFULEHG�LQ�GHWDLO�LQ�>��@�FRQVLVWV�LQ�H[SUHVVLQJ�WKLV�UHODWLRQ�LQ�D�PDWUL[�IRUP��
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Fig. 2.3�7RS�YLHZ�RI�WKH�LGHDOLVHG�JHRPHWU\�RI�WKH�VWUDQG�D[HV�RI�D�5XWKHUIRUG�FDEOH�XVHG�IRU�WKH�
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DUHDV� UHSUHVHQW� WKH�1��� ORRSV�XVHG� LQ�0RUJDQ
V�QHWZRUN�PRGHO��DQG�DV�HOHPHQWDO�FDOFXODWLRQ�

EDQGV�LQ�WKH�IROORZLQJ�YHUVLRQV�RI�WKH�QHWZRUN�PRGHO��
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)LJ�� ��� Network model of Rutherford cable >��@. The strands axes are represented by line 

elements, the resistances between adjacent and non adjacent strands are tinged respectively in 

dark and light grey.  

�
,Q� >��@� LW� ZDV� VKRZQ� WKDW� WKH� 0RUJDQ
V� VROXWLRQ� LV� RQO\� D� SDUWLFXODU� VROXWLRQ� RI� WKH�

JHQHUDO�V\VWHP�RI�HTXDWLRQV��ZKLFK�FDQ�EH�REWDLQHG�LPSRVLQJ�WKDW�WKH�FURVV�RYHU�FXUUHQWV�RI�D�
FHUWDLQ�FROXPQ�DUH�DOO�HTXDO� WR� WKH�FRUUHVSRQGLQJ�FURVV�RYHU�FXUUHQWV�RI�WKH�SUHYLRXV�FROXPQ��
,QVWHDG�� D�JHQHUDO� VROXWLRQ�RI� WKH� V\VWHP�HTXDWLRQV� LV� FKDUDFWHUL]HG�E\� WKH� IDFW� WKDW� WKH�FURVV�
RYHU�FXUUHQWV�RI�WKH��k�N�th�FROXPQ�DUH�HTXDO�WR�WKRVH�RI�WKH�kth�FROXPQ��ZKHUH�k LV WKH�LQGH[�RI�
WKH�FROXPQ��

7KLV PHDQV� WKDW� WKH� FURVV� RYHU� FXUUHQWV� EHWZHHQ� DQ\� WZR� VWUDQGV� RI� WKH� FDEOH� DUH� WKH�
VDPH� DIWHU� HYHU\� WZLVW� SLWFK� OHQJWK�� 7KH� UHPDUNDEOH� FRQVHTXHQFH� RI� WKLV� SHULRGLFLW\� LV� WKH�
SHULRGLFLW\�RI�WKH�VHFRQGDU\�ILHOG�SURGXFHG�E\�WKH�HGG\�FXUUHQWV��

7KH HIIHFWV�RI�VLQXVRLGDO�GLVWULEXWLRQV�RI� WKH�PDJQHWLF� ILHOG�DSSOLHG�WR�FDEOH�VDPSOHV�RI�
ILQLWH� OHQJWK� ZDV� DQDO\VHG� LQ� >��@�� ZLWK� WKH� FRQFOXVLRQ� WKDW� WKH� HGG\� FXUUHQWV� GLVWULEXWLRQ� LV�
SVHXGR�SHULRGLF�LI�WKH�SHULRG�RI�WKH�PDJQHWLF�ILHOG�RVFLOODWLRQV�H[DFWO\�FRLQFLGHV�ZLWK�WKH�FDEOH�
WZLVW�SLWFK��DQG�LV�SHULRGLF�LQ�WKH�RWKHU�FDVHV��

In [27] the network model was applied to the study of the generation and development of the so called 

“Boundary Induced Coupling Currents” (BICC's), due to longitudinal variations of the cross contact resistances or 

of the magnetic field perpendicular to the broad face of the cable, obtaining a good agreement with experimental 

data. 

The network model describes in great detail every cross contact between the strands of the two layers and 

permits to obtain local information about the currents flowing in every strand and in the cross contact resistances, 

and the power dissipated in the cable. It also permits to take into account variations of the cable parameters across 

the cable width. One of these possible variations is due to the fact that the cable cross section is not rectangular, but 



presents a slight keystone angle, which determines different pressures, and, consequently, different cross contact 

resistances at the two sides of the cable. Moreover the time dependent magnetic field can present a variation across 

the cable width. 

1HWZRUN�PRGHOV�KDYH�DOVR�EHHQ�XVHG�IRU�WKH�HYDOXDWLRQ�RI�SRZHU�ORVVHV�DQG�IRU�WKH�VWXG\�
RI� FDEOH� FRQILJXUDWLRQV� ZLWK� DGHTXDWH� DQLVRWURSLF� LQWHUZLUH� UHVLVWDQFHV� DLPHG� WR� HQVXUH�
UHGXFWLRQ� RI� HGG\� ORVVHV�ZLWKRXW� D� GHFUHDVH� RI� FDEOH� VWDELOLW\� >���� ��@�� 5HFHQWO\� WKH� QHWZRUN�
PRGHO�KDV�EHHQ�DSSOLHG�WR�DQ�DFFXUDWH�VWXG\�RI�WKH�SRVVLEOH�HLJHQ�FXUUHQWV�RI�D�VDPSOH�RI�D�IRXU�
VWUDQG�FDEOH� VXEMHFWHG� WR�D� WLPH�GHSHQGHQW�PDJQHWLF� ILHOG�>��@��7KH�VWXG\�KDV�VKRZQ� WKDW� WKH�
HLJHQ�IUHTXHQF\� VSHFWUXP�RI� D�N VWUDQGV� FDEOH� FRQVLVWV� RI�N�� VPRRWK� VXEVSHFWUD�� WR�HDFK�RI�
ZKLFK�FRUUHVSRQG�HLJHQ�FXUUHQWV�ZLWK�D�FHUWDLQ�W\SH�RI�VLPPHWU\��,Q�HDFK�RI�WKHVH�VXE�VSHFWUD�
WKH� PLQLPXP� HLJHQIUHTXHQFLHV� �PD[LPXP� GHFD\� WLPH� FRQVWDQWV�� FRUUHVSRQG� WR� ORQJ� VORZO\�
GHFD\LQJ�FXUUHQW�ORRSV��

The main drawback of the network model is that the number of unknowns is very high, growing quickly 

with the cable size. This makes it very difficult to study the problem of current distribution in real long cables made 

of some tens of strands used in accelerator magnets. 

 

2.3.3 1HWZRUN�PRGHOV�IRU�&,&�&DEOHV�
1HWZRUN�PRGHOV�IRU�&,&�&RQGXFWRUV�VKRZ�D�UDWKHU�KLJK�OHYHO�RI�FRPSOH[LW\��7KLV�LV�GXH�

WR� WKH� FRPSOH[� JHRPHWU\� RI�&,&�&DEOHV��ZKLFK� LV� QRW� HDVLO\� UHSURGXFLEOH� DQG� LQ� DQ\� FDVH� LV�
VWURQJO\�GHSHQGHQW�RQ�D�FRPSOLFDWHG�PDQXIDFWXULQJ�SURFHVV�ZLWK�PHFKDQLFDO�GHIRUPDWLRQ�DQG�
WR�WKH�YHU\�KLJK�QXPEHU�RI�VWUDQGV��$�UHPDUNDEOH�SUREOHP�LV�DOVR�WKH�LGHQWLILFDWLRQ�RI�WKH�SRLQWV�
RI�FRQWDFW�EHWZHHQ�WKH�GLIIHUHQW�VWUDQGV��

Several simplified network models have been developed for the study of current distribution in cable in 

conduit conductors. Up to now these models have been applied to study short samples of cables made of few strands 

or simplified geometries of multistage cables including the final stages of the cabling process. 



Fig. 2.5�3DUW�RI�D�OXPSHG�SDUDPHWHUV�FLUFXLW�PRGHO�UHSUHVHQWLQJ�D�&,&�FDEOH�ZLWK�WZR�FDEOLQJ�VWDJHV�ZLWK��×�×�
FRQILJXUDWLRQ�[38]. 

In [38] the six petals of the final stage of a typical ITER cable have been modeled, and in a further step of 

analysis the two final stages of an ITER cable in a 1×4×6 configuration (see Fig. 2.5) have been implemented. In 

[39] a 3×3 CIC conductor model investigated experimentally in [40] was modeled via a lumped parameters 

network model implemented in SPICE. The network model appears to be very well suited to the analysis of this case 

in which the strands are insulated. In the same study the network model was applied to the study of one of the 3×4

subcables (made of 12 strands) of the 3×4×4×4 WENDELSTEIN 7-X conductor. The other 180 strands were 

lumped in one single branch. 

Fig. 2.6� 5HSUHVHQWDWLRQ�RI�WKH�MRLQW�DQG�LWV�FRUUHVSRQGLQJ�OXPSHG�SDUDPHWHUV�FLUFXLW�PRGHO�[41]. 



As shown in the above description, network models of CICC have the same drawback shown by the 

network models of Rutherford cables, as they are characterized by a very large number of unknowns, making it very 

difficult to study current distribution in very long cables. 

Artificial simplifications can be eventually made in the modeling of these extremely complex structures. 

Particular scaling laws can be developed for long cable lengths using well defined parameter variations, but this 

operation is not straightforward, due to the non linear dependencies of the time constants on the cable length. 

Moreover, the lumped parameters circuits are strongly dependent on the particular cable configuration studied, as 

every contact between strands must be in principle represented. 

A network model has also been developed for the description of current distribution at the joints between 

cables [41]. This kind of model is very well suited for the analysis of joints, because the joint length is not 

exceedingly large, and even a detailed model describing all contacts between strands can be handled. 

The description of the effects of the cable joints should be somehow included in a complete analysis of 

current distribution in multistrand superconducting cables, as it may significantly affect the overall cable behaviour. 

However, a simplified modeling of the cable joints can also be attained through appropriate choices of the model 

parameters at the cable ends in distributed parameters circuit models [59]. 

 

2.3.4 7KH�ILHOG�PRGHO�
The problem of current distribution in multistrand supercondcuting cables has also been tackled with a 

continuum model directly based on field theory [44]. In the frame of this model the cable is viewed as a continuum 

with anisotropic conductivity, obeying Maxwell’s equations. The current density at each point in the cable is defined 

as an average over the currents in a fundamental volume element surrounding the point considered, where the 

volume is large enough so that the resulting current density is a smooth function of the position. The volume 

element can have any convenient shape. 

The case of circular cables made of twisted strands can be studied applying the results of the analysis of 

circular strands made of twisted filaments [43]. 

In the case of a flat Rutherford cables two different values of conductivity can be defined, corresponding to 

two different directions. One direction is perpendicular to the strands and parallel to the broad face of the cable, the 

other is perpendicular to the broad face of the cable. In the frame of this model, the currents flowing along the cable 



can be viewed as a sum of three terms, corresponding to two terms in the directions mentioned above and an 

additional term corresponding to the direction parallel to the strand axis.  

Once the current density�and the electric field are evaluated in a given volume element from the solution of 

the Maxwell equations, the general expression of the eddy current loss per cycle can be applied [44]: 

 ∫ ∫ ⋅+⋅=
9

F\FOHH GWG94 )( 0+(- (2.6) 

where 0 is the magnetization due to local eddy currents circulating within the volume element, - is the eddy current 

density averaged over the volume element, ( and + are the Maxwell electric and magnetic fields. 

The contribution of power loss in the crossover contacts between the strands of the two layers can be 

shown to be a generalization of the results obtained by Morgan [18]. 

An additional loss term corresponding to currents flowing down one edge of the cable and back along the 

other edge can be added to the term corresponding to the currents flowing along the upper and lower face of the 

cable already considered in the model. 

The field model can give a very elegant and quick estimation of the eddy losses due to the coupling 

currents induced in Rutherford cables or in cable in conduit conductors in the case of an uniform time dependent 

magnetic field applied perpendicular to the broad face of the cable. In the model presented in [44] the electric field 

component parallel to the strand axis is taken equal to zero, considering the strand in a perfectly superconducting 

state. In principle the field model can be generalized to the study of any time and space varying magnetic field, and 

to the introduction of a non-linear (-- relation in the direction parallel to the strand axis. 

However, this model requires the assumption that a relatively high density of electrical contacts between 

the strands exists. 

 

2.3.5 7KH�WKHRU\�RI�³VXSHUFXUUHQWV´�
 As anticipated in Section 2.1, one of the possible sources of non uniform current distributions is a 

longitudinal variation of the time derivative of the magnetic field perpendicular to the broad face of the cable. Let’s 

consider a 2-strand cable of length 2Z��much�longer than the cable twist pitch /3. The two strands have two contacts 

per pitch and the cable is exposed to a time dependent magnetic field as shown in Fig. 2.2b. In general a finite 



number of loops can be exposed to the time dependent magnetic field. Let’s consider the simple case in which only 

one loop, half twist pitch, is exposed to G%�GW.
If Z = 1O /3 the parallel resistance seen on either side of the cable central loop is equal to: 

 
O
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(2.7) 

If G%�GW is time independent, a steady state solution for the value of the supercurrent in the middle of the 

cable can be easily found as: 
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where � is the time derivative of the magnetic flux linked to the loop. Comparing eq. (2.8) and (2.4) we note that 

the magnitude of the supercurrents is much larger than that of the short range coupling currents, the ratio depending 

on the cable length. As cables can be as long as many thousands of twist pitches this ratio can be very high. The 

order of the longest decay time constant of the supercurrent is given by: 
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where /Z is the inductance relative to the length Z. Typical decay time constants are in the range from 10 to 105 s in 

practical cables. 

7KH� VXSHUFXUUHQWV� VWURQJO\� FRQWULEXWH� WR� WKH� UDPS� UDWH� OLPLWDWLRQ� IRXQG� LQ�
VXSHUFRQGXFWLQJ�PDJQHWV�>��@��

7KH�WKHRU\�GHYHORSHG�LQ�>��@�DOORZV�WKH�HYDOXDWLRQ�RI�WLPH�GHSHQGHQW�VXSHUFXUUHQWV�LQ�D�
VLPSOH�WZR� VWUDQG� FDEOH� DQG� RI� steady state� ³VXSHUFXUUHQWV´� LQ� FDEOHV� PDGH� E\� D� JHQHULF�
QXPEHU�RI� VWUDQGV��7KH� H[DFW� HTXDWLRQV� IRU� WKH� WLPH�GHSHQGHQW� VXSHUFXUUHQWV� LQ�D� WZR� VWUDQG�
FDEOH�DUH�GHULYHG�LQ�6HFWLRQ������



7KH�DSSURDFK�DGRSWHG�LQ�>��@�IRU�WKH�FDOFXODWLRQ�RI�WKH�VWHDG\�VWDWH�VXSHUFXUUHQWV�ZDV�
WR� FRPSXWH� WKH� WRWDO� IOX[� OLQNHG� WR� WZR� JHQHULF� VWUDQGV� DV� WKH� SURGXFW� RI� WKH� DUHD� RI� WKH�
HOHPHQWDU\�ORRS�IRUPHG�E\�WKH�WZR�VWUDQGV�DQG�WKH�ORFDO�YDOXH�RI�WKH�PDJQHWLF�IOX[�GHQVLW\��7KH�
VWHDG\� VWDWH� FXUUHQW� LQ� HDFK� VWUDQG� FDQ� WKHQ� EH� FDOFXODWHG� FRQVLGHULQJ� WKH�N�� FRQWULEXWLRQV�
JLYHQ�E\�WKH�GULYLQJ�YROWDJHV�LQGXFHG�LQ�WKH�ORRSV�IRUPHG�E\�WKH�VWUDQG�FRQVLGHUHG�DQG�DOO�WKH�
RWKHUV��,I�WKH�PDJQHWLF�IOX[�GHQVLW\�FKDQJH�LV�DSSOLHG�WR�PRUH�WKDQ�RQH�ORRS�D�VXSHUSRVLWLRQ�RI�
WKH�HIIHFWV�RI�WKH�GLIIHUHQW�ORRSV�LV�FDOFXODWHG�DQG�WKH�ILQDO�FXUUHQWV�LQ�WKH�VWUDQGV�DUH�IRXQG��
 

2.4 HISTORICAL REVIEW: EXPERIMENTS 

 The experimental activity on current distribution and redistribution is not yet enough extensive for a correct 

interpretation of all the phenomena involved in these processes. However, since the middle of the 90’s, several 

experiments have been carried out focussing on both current distribution and its coupling with the cable thermal 

stability. 

 

Two fundamental methods have been used for the measurements of current distribution in multistrand 

cables: GLUHFW and LQGLUHFW�[45]. 

 

In GLUHFW methods special sensors are associated to each strand of the cable and the current in the strand is 

directly measured. The possible sensors that can be used are listed in the following: 

• Hall Sensors are rather simple and their signals are directly proportional to the local value of the field. In 

order to obtain signals proportional to the current in a particular strand the effect of the currents flowing in 

the other strands must be suppressed through appropriate calibration procedures. They are especially suited 

for the measurement of slow current changes due to long range induced current loops. 

• Pick up coils should be placed around the strand in order not to be affected by the neighbouring strands. 

Their signal is directly proportional to the derivative of the current, which must be integrated for the 



knowledge of the currents in the strands. They are especially suited for the measurement of fast current 

changes, but have low sensitivity for slow processes. 

 

The GLUHFW methods show the great advantage to provide direct data about current non-uniformity, but require 

the preparation of special cables or special sample models. Moreover the installation of current sensors may change 

the cable structure modifying the system to be measured. Finally these methods are practically unfeasible for cables 

made of more than some tens of strands. 

 

,QGLUHFW methods are based on the measurement of the magnetic field in several points around the complete 

cable. The measurements can be performed once again with Hall sensors or pick-up coils. By solving an inverse 

electromagnetic problem, the current distribution processes inside the cable can be inferred. This part of the method 

contains a remarkable margin of uncertainty which should be reduced as much as possible through appropriate 

calibrations to understand the meaning of the measured data. Indirect methods do not disturb the cable structure, and 

may be used in real environments, inside or near superconducting magnets, without any limitation in the total 

number of strands in the cable. 

 

We list in the following some of the experiments on current distribution found in the literature which were 

performed with different cable configurations. 

 

2.4.1 ([SHULPHQWV�RQ�D���VWUDQG�FDEOH�
An experiment on current distribution was performed on a two-strand cable in order to validate the theory 

of supercurrents originated by longitudinal variations of the time derivative of the magnetic flux linked to the 

strands. A 4.7 m long cable twisted with a pitch of 10 mm. was soldered with Sn(50%)In. In the middle of the cable, 

and over a length of approximately half a twist pitch (5 mm), a loop with a cross section of approximately 70 mm2

was formed between the strands. The cable was wound into a test coil, with the loop placed in the coil center, 

normal to the coil axis, as shown in Fig. 2.7. 

 



7KH� FRLO� ZDV� WKHQ� SODFHG� LQ� D� EDFNJURXQG� $&� YHUWLFDO� ILHOG�� 7KH� $&� ILHOG� FDXVHG� D�
YDULDWLRQ� RI� WKH� IOX[� OLQNHG� ZLWK� WKH� ORRS� LQ� WKH� FHQWHU� RI� WKH� VDPSOH�� LQGXFLQJ� FXUUHQWV� LQ�
RSSRVLWH�GLUHFWLRQV� LQ� WKH� WZR�VXSHUFRQGXFWLQJ� VWUDQGV��7KHVH� VXSHUFXUUHQWV�FRXOG� IORZ�DORQJ�
WKH�ZKROH�FDEOH�OHQJWK��FORVLQJ�WKURXJK�WKH�VROGHU�EHWZHHQ�WKH�WZR�VWUDQGV���
 The supercurrent circulating in the center of the sample was measured by means of a Hall plate placed in 

the loop. Different cycles of the external field were performed, with field ramps alternated with constant field 

phases. 

 

2.4.2 ([SHULPHQWV�RQ�WULSOH[�FDEOHV�
Several experiments on current distribution on triplex cables have been realized, aimed to the 

understanding of the coupling of current redistribution processes and cable thermal stability to thermal disturbances 

[48-51]. 



Fig. 2.7 ([SHULPHQWDO�DSSDUDWXV�XVHG�IRU�WKH�PHDVXUHPHQW�RI�³VXSHUFXUUHQWV´�LQGXFHG�E\�WKH�WLPH�GHSHQGHQW�ILHOG�
LQ�WKH�ORRS�IRUPHG�E\�WKH�WZR�VWUDQGV 

In this kind of experiments a heat pulse was applied to a short part of one strand, and the minimum quench 

energy and the temporal evolution of the strand current during the quench or recovery process were measured. The 

experimental results showed that when the ratio between the transport current and the critical current is large, the 

MQE against a local disturbance almost equals the MQE of the single strand. When the ratio of the overall ,RS�,F is 

less than 0.4, the MQE against a local disturbance is much larger than that of the single strand. In this small ,RS�,F
region, when a heat pulse whose energy is slightly less than the MQE is applied, current redistribution is observed 

during the recovery process. This means that the stability against local disturbance is improved by the current 

redistribution only when the ratio ,RS�,F is less than a threshold value, dependent on the thermal contact conductance 

between the strands. 



Other experiments [52-54] have shown the influence of different strand configurations on the cable stability 

to thermal disturbances. In particular the use of different materials for the strands matrices has been investigated 

[52], with the result that some improvements of triplex cable stability to thermal disturbances can be obtained with 

Cu matrix either than CuNi matrix because of the high heat conduction and low Joule heating of the Cu matrix.  

Moreover, the influence of the number of initially quenched strands on the quench properties of the cable 

was studied initiating the quench in one, two or three strands of the cable. In the case of quenching two strands 

simultaneously, the current which redistributes to the neighbouring strand is 4 times larger than when only one 

strand is initially quenched, with the result of a lower cable stability. 

 

2.4.2 ([SHULPHQWV�RQ�&,&�FDEOHV�
Several experiments have also been performed for the study of current distribution and redistribution 

phenomena in CIC cables made of more than three strands. In some of these experiments the current non-uniformity 

in cables wound with insulated strands was studied in AC conditions with cables made of copper strands [55] and 

usual superconducting strands [56]. These experiments clearly showed that current distribution in DC conditions or 

at very low frequency operation (in the frequency region up to 0.1 Hz) is only determined by the joint resistances of 

the strands. The influence of the different inductances of the insulated strands is dominant in the determination of 

the current distribution above 1 hz.  

Between these two regions a third intermediate region was identified, in which the current distribution is 

influenced by both resistances and inductances. Even very small differences in the values of inductances can 

generate large current imbalances. It is not yet clear why the inductance imbalance and the corresponding current 

imbalance is generated in symmetrically assembled strands. 

 An extensive measurement of current distribution in a 12 strand Nb3Sn CIC conductor was performed in 

order to study the phenomenon of ramp rate limitation [46]. The experiments were performed measuring the current 

in each of the 12 strands during current or field ramps. Very severe inhomogeneities of the current distribution were 

found during field ramps. After a current ramp currents in strands were observed to vary from 0.28 up to 3.7 of the 

average level independent of GLRS�GW and of the final current level. This effect was caused by uneven joint 

resistances. 



,PPHGLDWHO\� EHIRUH� TXHQFKHV� WKH� LQGLYLGXDO� VWUDQG� FXUUHQWV� ZLWKLQ� D� WULSOHW� ZHUH�
REVHUYHG�WR�GLIIHU�E\�DV�PXFK�DV�DQ�RUGHU�RI�PDJQLWXGH��0RUHRYHU��TXHQFK�UHFRYHU\�HYHQWV�RI�
VRPH�VWUDQGV�ZHUH�REVHUYHG�GXULQJ�ILHOG�UDPSV�ZLWK�D�FRQVWDQW�RSHUDWLRQ�FXUUHQW��7KHVH�HYHQWV�
DUH UHVSRQVLEOH� IRU� D� H[WUD� KHDW� UHOHDVH� LQVLGH� WKH� FRQGXLW�� ZKLFK� FDQ� IDYRXU� WKH� SUHPDWXUH�
TXHQFK�RI�WKH�FDEOH�GXULQJ�D�UDPSLQJ�ILHOG�H[SHULPHQW���

$Q�LQWHUHVWLQJ�UHVXOW�REWDLQHG�ZLWK�GLUHFW�PHDVXULQJ�RQ�WKLV����VWUDQG�FDEOH�ZRXQG�IURP�
IRXU� WULSOHWV� LV� WKDW� WKH� QXFOHDWLRQ� RI� D� QRUPDO� ]RQH� LQ� D� VLQJOH� VWUDQG� GHWHUPLQHV� D� FXUUHQW�
UHGLVWULEXWLRQ� LQ�ZKLFK� WKH�FXUUHQW�GLVWULEXWHV� LQWR� WZR�DGMDFHQW�VWUDQGV� LQ� WKH�VDPH� WULSOHW�DV�
WKH�TXHQFKHG�VWUDQG��ZLWK�VPDOO�LQIOXHQFH�RQ�WKH�FXUUHQWV�LQ�WKH�RWKHU�VWUDQGV��

�

([SHULPHQWV�RQ�ODUJH�VFDOH�&,&&¶V�ZHUH�DOVR�SHUIRUPHG��7KHVH�H[SHULPHQWV�VKRZHG�WKDW�
LQFUHDVHG�$&�ORVVHV�DUH�REVHUYHG�GXULQJ�WKH�H[FLWDWLRQ�RI�&,&&�FRLOV�ZKLFK�FDQ�EH�DWWULEXWHG�WR�
LQGXFHG�FRXSOLQJ�FXUUHQWV�>��@���

7KH�GRPLQDQW�LQIOXHQFH�RI�WKH�MRLQW�UHVLVWDQFHV�RQ�FXUUHQW�GLVWULEXWLRQ�ZDV�VXJJHVWHG�LQ�
D VWHDG\� VWDWH� DQDO\VLV� RI� QRQ�XQLIRUP� FXUUHQW� GLVWULEXWLRQ� LQ� VKRUW� ��P� VDPSOHV� RI� ������ N$�
PXOWLVWDJH�FDEOHV� >�@��0DQ\�RI� WKH�FRQGXFWRU�VDPSOHV� WHVWHG�TXHQFKHG�DW�FXUUHQW� OHYHOV�PXFK�
ORZHU�WKDQ�H[SHFWHG�IURP�WKH�SHUIRUPDQFH�RI�LQGLYLGXDO�VWUDQGV��7KLV�ZDV�VXSSRVHG�WR�EH�GXH�WR�
WKH�VKRUW�OHQJWK�DYDLODEOH�IRU�FXUUHQW�WUDQVIHU�DQG�WR�WKH�QRQ�XQLIRUPLW\�RI�MRLQW�UHVLVWDQFHV��

7KH� WHVWV� SHUIRUPHG� VXJJHVWHG� WKDW� WKH� VHYHUH� FXUUHQW� QRQ� XQLIRUPLWLHV� KDSSHQ�ZLWKLQ�
ODUJH�SHWDOV�DPRQJ�WKH�GLIIHUHQW�VWUDQGV��HLWKHU�WKDQ�DPRQJ�WKH�GLIIHUHQW�ODUJH�SHWDOV�RI�WKH�ODVW�
FDEOLQJ�VWDJHV���

&DEOHV� ZRXQG� DGGLQJ� VRPH� FRSSHU� VWUDQGV� VKRZHG� PRUH� SUHPDWXUH� TXHQFKHV� WKDQ�
FDEOHV� ZLWK� DOO� VXSHUFRQGXFWLQJ� VWUDQGV�� GXH� WR� WKH� ODUJHU� GLIIHUHQFHV� EHWZHHQ� WKH� ORZ� MRLQW�
UHVLVWDQFHV�LQ�WKH�FDEOHV�FRQWDLQLQJ�FRSSHU�VWUDQGV��

7UDQVLHQW�HIIHFWV�LQ�SXOVHG�PRGH�RSHUDWLRQ�LQ�VKRUW�����P�VDPSOHV�DQG�ORQJ�����P�VLQJOH�
OD\HU�FRLOV�ZHUH�ZLGHO\�DQDO\VHG�LQ�>��@��7KH�DQDO\VLV�ZDV�EDVHG�RQ�D�WLPH�GHSHQGHQW�FRXSOHG�
HOHFWULFDO�WKHUPDO� PRGHO� DSSOLHG� WR� D� UDQJH� RI� 1E�6Q� FRQGXFWRUV� ZLWK� ����� VWUDQGV� DQG�
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GLVWXUEDQFHV�� HYHQ� ZKHQ� WKH� QRQ� XQLIRUPLW\� LV� YHU\� VHYHUH�� 7KH� FXUUHQW� UHGLVWULEXWLRQ� WLPHV�
FDOFXODWHG�IRU�VKRUW�VDPSOHV�UDQJH�IURP�VHYHUDO�WHQV�WR�VHYHUDO�KXQGUHGV�RI�VHFRQGV��)RU�ORQJ�
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2.4.2 ([SHULPHQWV�RQ�5XWKHUIRUG�FDEOHV�

$Q�H[SHULPHQW�RQ�FXUUHQW�GLVWULEXWLRQ�LQ�D�����P�IODW�5XWKHUIRUG�FDEOH�ZDV�GHVFULEHG�LQ�
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VWUDQG�DQG�JRW�RXW�WKURXJK�WKH�UHVW�RI�WKH�FDEOH��7KH�DQDO\VLV�RI�WKH�WLPH�FRQVWDQWV�RI�WKH�FXUUHQW�
UHGLVWULEXWLRQ�DIWHU�FXUUHQW�UDPSV�GHPRQVWUDWHG�WKDW�WKH�ODUJHVW�WLPH�FRQVWDQW�LV�SURSRUWLRQDO�WR�
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ORVVHV�DQG�LQWHUVWUDQG�UHVLVWDQFHV�RI�5XWKHUIRUG�FDEOHV�>������@��
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THE THEORETICAL MODEL 

 



INTRODUCTION 

 

In this Chapter an electromagnetic model for the study of current distribution is described. The model is 

based on a distributed parameters circuit, and is described by a set of partial differential equations, which are 

suitable to be coupled with a complete thermo hydraulic description of the refrigerating system [31]. 

�

7KLV�PRGHO�LV�DLPHG�WR�ILQG�D�V\QWKHVLV�EHWZHHQ�WZR�GLIIHUHQW�NLQGV�RI�PRGHOV�SUHYLRXVO\�
GHYHORSHG�IRU�WKH�VWXG\�RI�FXUUHQW�GLVWULEXWLRQ�DQG�GHVFULEHG�LQ�&KDSWHU����

�

2Q�RQH�KDQG��WKH�PRGHO�VWDUWV�IURP�WKH�GHYHORSPHQW�RI�WKH�WKHRU\�RI�VXSHUFXUUHQWV�>��@��
ZKLFK�DOORZV�WR�FDOFXODWH�WLPH�GHSHQGHQW�VXSHUFXUUHQWV�LQ�D�VLPSOH�WZR�VWUDQG�FDEOH�DQG�VWHDG\�
VWDWH�³VXSHUFXUUHQWV´�LQ�FDEOHV�PDGH�RI�D�JHQHULF�QXPEHU�RI�VWUDQGV��

�

The model presented here intends to extend this theory to the study of time dependent supercurrents in 

cables made of 1 strands, considering the mutual dynamic interactions between the strand currents. A simplified 

modelling of this situation was proposed in [24], where a single strand was considered and all the rest of the cable is 

lumped in another idealised strand, with which the current exchange takes place. An equivalent inductance of the 

strand and of all the rest of the cable, as well as an equivalent conductance between these two elements is evaluated, 

and the equation of current diffusion between the strand and the rest of the cable is then solved. The model 

presented here contains instead a complete representation of the cable. 

�

2Q�WKH�RWKHU�KDQG�WKH�PRGHO�LV�EDVHG�RQ�WKH�DFKLHYHPHQWV�REWDLQHG�E\�WKH�GHYHORSPHQW�
RI�GLIIHUHQW�QHWZRUN�PRGHOV� IRU�FXUUHQW�GLVWULEXWLRQ�LQ�5XWKHUIRUG�FDEOHV�>�����@�DQG�FDEOH� LQ�
FRQGXLW�FRQGXFWRUV�>�����@��$V�SRLQWHG�RXW� LQ�&KDSWHU��� WKHVH�QHWZRUN�PRGHOV�DUH�SHFXOLDU� WR�
WKH� FRQILJXUDWLRQ� FKRVHQ� DQG� DUH� GLIILFXOW� WR� DSSO\� WR� ORQJ� FDEOHV�� EHFDXVH� RI� WKH� YHU\� KLJK�
QXPEHU�RI�XQNQRZQV���



7KH�PRGHO�SUHVHQWHG�KHUH�LQWHQGV�WR�EH�VXLWHG�IRU�D�FRUUHFW�PRGHOLQJ�RI�ERWK�5XWKHUIRUG�
FDEOHV�DQG� FDEOH� LQ� FRQGXLW� FRQGXFWRUV��E\�PHDQV�RI�DQ�DSSURSULDWH�FDOFXODWLRQ�RI� WKH�PRGHO�
SDUDPHWHUV��

�

It is therefore important to show that this model reduces to the equations found in [10] 

when a 2 strand cable is considered, and is consistent with the network models of both 

Rutherford cables and cable in conduit conductors in the evaluation of the strand currents. In 

Chapter 3 these features of the model are demonstrated. 

�

In order to do this the model is presented and the equations reported in [10] are derived, showing the 

relations between the parameters of the two models. 

 

Moreover the model is applied to study the generation and development of the long range coupling currents 

(BICC’s), induced in Rutherford cables by longitudinal variations of the time derivative of the magnetic field 

perpendicular to the cable face. A comparison of the results obtained with the present model and the commonly used 

network model for Rutherford cables is shown, stressing the reduction of the unknowns obtained with the present 

model. 

 

In addition to that the current redistribution after quench of one strand in a simple triplex cable is analysed. 

The results are compared with those obtained with a lumped parameters network model of the same cable. 

 

Finally another interesting feature of the model is demonstrated, i.e. the possibility to simplify the analysis 

of complex situations in which long cables with many strands have to be studied introducing equivalent 

“superstrands”. This simplification allows a further reduction of the number of unknowns without affecting in a 

relevant way the final results. 

 

3.1 DISTRIBUTED PARAMETERS CIRCUIT MODEL 

 



������ 0RGHO�HTXDWLRQV�
The model assumes that each strand carries a current distributed in a uniform way in its cross section, 

neglecting the influence of interfilament coupling currents flowing inside each strand between different 

superconducting filaments. We also assume that the current transfer between different strands happens along the 

length of the cable in a continuous manner. Under these assumptions we can derive approximate equations 

governing the current distribution in the cable. 

To do so, we consider a superconducting cable made by 1 strands, and we examine the elemental length 

G[. Over this length the strands have parallel resistances 5L  UL G[, (L=1, 1), where UL are the longitudinal resistances 

per unit length of cable (zero if the strand is in the superconducting state). The self inductances of the strands are 

indicated with /LL� OLL�G[ where OLL� �L ��1� are artificial parameters which we temporarily introduce. In the final 

equations only differences between these parameters appear, which have the physical meaning of per unit length 

induction coefficients. Finally, each strand can have an external voltage source 9H[W
L� YH[WL G[, that can be originated, 

for instance, by changes of the magnetic field flux due to external sources linked to a couple of strands. This 

idealised situation is represented schematically in Fig. 3.1 

The strands have initial currents LL and voltages 9L at the coordinate [. Over an elemental length G[ the 

currents will change by GLL because of the current transfer through the interstrand contact resistances 5KN� ����JKN�G[�,
where JKN is the interstrand conductance per unit length. Similarly the voltages will drop by G9K due to the parallel 

resistance, inductance and the voltage source. 
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Applying the Kirchhoff’s current law to the 1 nodes, we obtain the following 1 dependent equations for the 

current variations:  
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(3.1) 

where 9K is the voltage of strand K at position [.
Applying the Kirchhoff’s voltage law to evaluate the voltage drops along the elemental mesh identified, 

and neglecting the inductive coupling for all sections, but for the one of length G[ located at [, we obtain the 

following equations: 
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(3.2) 

In addition, the solution is subject to a condition that expresses the conservation of the total operation 

current LRS�in the cable cross section. We can write this condition as: 

 RS

1

K
K LL =∑

=1

(3.3) 

that must hold at any point in time and space. The equations above can be conveniently put in the following matrix 

form to ease the further algebra: 
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,I� ZH� FDOFXODWH� WKH� VSDFH� GHULYDWLYH� RI� HTXDWLRQ� ����E�� DVVXPLQJ� WKDW� WKH� LQWHUVWUDQG�
FRQGXFWDQFHV�DUH�XQLIRUP�DORQJ�WKH�FDEOH�D[LV��VR�WKDW�WKH�VSDWLDO�GHULYDWLYH�RI�WKH�LQWHUVWUDQG�
FRQGXFWDQFHV�PDWUL[�J LV�QLO��ZH�REWDLQ�WKH�IROORZLQJ�GLIIHUHQWLDO�HTXDWLRQV�IRU�WKH�FXUUHQWV�LQ�
WKH�VWUDQGV��
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These are parabolic differential equations that describe the processes of current diffusion along the cable. 

The 1 equations in system (3.6) are linearly dependent, due to the application of the Kirchhoff’s current law to all 

the nodes of the distributed circuit in the elemental mesh of length G[��However we can arbitrarily consider 1-1 

equations for the currents in the first 1-1 strands and couple them to equation (3.3). In this way we obtain a 

complete set of 1 independent partial differential equations for the currents in the strands at any time and position: 
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(3.7) 

 

where we indicate with (JO)L��M the element L��M of the result of the matrix product JO.
A more accurate description of the meaning of the system parameters can be found in Appendix A. 

These equations are in general not linear because the strand resistance depends on the current flowing in 

the strands, so that an appropriate model for the strand behaviour has to be chosen. Finally the appropriate length 

for the smearing of the system parameters (resistance, inductance and external voltage) has to be chosen. As 

multistrand superconducting cables have an intrinsic periodicity related to the twist pitch, good choices of the length 

for the smearing of electric parameters are appropriate multiples or fractions of the pitch. Once the parameters for 

matrices J and O are experimentally evaluated or calculated, the finite element method can be applied to solve 

system (3.7).  

������,QLWLDO�FRQGLWLRQV�
�

In order to solve system (3.7) by means of the finite element method it is necessary to fix the initial current 

distribution among the cable strands. The only physical situation in which a clear condition on strand currents can 

be set is at zero total current before any current ramp, when the following initial conditions hold: 



1K[LK ,10)0,( ==

(3.8) 

 

A simple way to obtain this condition with a real magnet is to make it quench, so that the long “memory” of 

persistent currents flowing in the strands can be erased. In other cases, after a sufficiently long time from the last 

operation current variation, a simply resistive current distribution is established between the strands. As a starting 

point for the calculations, it can be assumed that the initial current distribution is uniform, i. e.: 
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The choice of the correct boundary conditions is quite delicate. In fact, in order to correctly model the 

connection of a multistrand superconducting cable to another cable through a termination or to a current lead 

through a joint, it would be necessary to have a complete description of the whole system (joint + cable + joint). 

However, two reasonable choices of boundary conditions can be identified, which describe different properties of 

the actual cable end surfaces. 

If we consider the end surfaces to be equipotential, we can write: 
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(3.10) 

This condition implies that the voltage differences between all the strands and strand 1 are nil: 

 /[[1K[HK ==−== ,01,10)0,(

(3.11) 

where we have defined: 
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(3.12) 

Applying the method of analysis based on nodes potentials, we can write system (3.4b) in terms of the 

voltage differences HK (K= 1, 1), obtaining a set of 1-1 independent equations: 
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(3.13) 

 

The possibility to invert system (3.13) guarantees that a condition equivalent to (3.10) can be written for 

the space derivatives of the longitudinal currents in the strands: 
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(3.14) 

As the operation current is only a function of time, from equation (3.3) it can be deduced that the condition 

(3.14) holds for the 1WK strand as well, so that the complete boundary conditions in the equipotential end surfaces 

case can be written as: 
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(3.15) 

Another possibility is to assume that the current distribution is uniform at the cable ends, imposing the 

following boundary conditions: 
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(3.16) 



'LIIHUHQW�NLQGV�RI�ERXQGDULHV�FDQ� LQ�SULQFLSOH�EH�GHVFULEHG�ZLWK�DQ�DFFXUDWH�FKRLFH�RI�
WKH�PRGHO�SDUDPHWHUV�DW�WKH�FDEOH�HQGV��
�
3.1.4 Equations of current diffusion in a 2 strand cable 

The theory of “supercurrents” in a cable made of two strands was developed in [9, 10]. In that formulation 

of the problem the contribution of external voltage sources is taken into account in the evaluation of the current 

distribution at the end of a field ramp. During the constant field phase the external flux linked to the loops formed 

by the two strands is nil, and the free diffusion of “supercurrents” along the cable is studied. 

In the present model the effect of the external field is directly inserted in the model equations. The 

equations reported in [10] can be found as a particular case of the general system (3.6). In fact, considering 

equations (3.6) for a two strands cable in the absence of an external voltage source, we obtain: 
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If the parameters O�� and O�� are equal, as in the case considered in [10], we can write: 
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(3.18) 

where O = O�� = O�� is the common parameter representing self inductance, P  �O��� �O�� the mutual inductance, and J
 J��� �J�� the interstrand conductance. 

In the case of a transport current equal to zero, we can write L�  �L�, so that equation (3.18) gives: 
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7KH� FRUUHVSRQGLQJ� HTXDWLRQ� IRU� WKH� IUHH� FXUUHQW� GLIIXVLRQ� LQ� WKH� WZR� VWUDQGV� FDEOH�
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where , is either current L� or L�, *� is the interstrand conductance (indicated with J in the present model) and /� the�
elementary loop inductance per unit length. 

We still have to show that the loop inductance /� reported in [10] is equal to the parameter 2 (O�P) of 

equation (3.19). 

Considering the definition of the loop inductance in the hypothesis of an uniform current distribution inside 

each strand, we can write: 
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where τ is the volume occupied by the two strands forming the loop, and G the length of the loop along the cable 

axis. The vector I is defined as follows: 
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where W is the unit vector tangent to the strand, and 6 is the area of the cross section. The integral (3.21) can be 

divided into four parts, corresponding to the integration over the volumes τ� and τ� occupied by strand 1 and strand 

2: 
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Defining the per unit length parameters as follows: 
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we can finally write: 

 )(2212212111 POOOOO/ −=−+−=

(3.25) 

 

3.2 MODEL PARAMETERS 

3.2.1 Contact conductances per unit length 
�

5XWKHUIRUG�FDEOHV�
In order to define the smeared interstrand conductances, we consider that each strand crosses every other 

strand in two points per twist pitch. Indicating with F
NK5 , the interstrand cross contact resistance between strand K



and strand N, and with /S the cable twist pitch, the cross contact conductance per unit length is given by the 

following expression: 

 
F
NKS

F
NK 5/J

,
,

2=

(3.26) 

The description of the cross contact resistance between strands given by the network model is closer to the 

physical reality of the cross contacts than that given by the distributed parameters model, while a better 

representation of the contact between adjacent strands is given by the present model. 

However, in order to make comparisons with the network model, and to consistently calculate the 

interstrand adjacent conductances, we consider that in the most advanced versions of the network model [20, 27], a 

lumped contact resistance D
NK5 , is inserted between two adjacent strands at the same positions in which they have 

cross contacts with the strands of the other layer. Every strand crosses all the other strands in two points per twist 

pitch, so that a total of 2 (1-1) lumped resistances are inserted along a twist pitch between each pair of adjacent 

strands. The equivalent adjacent conductance per unit length results in: 
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(3.27) 

&DEOH�LQ�FRQGXLW�FRQGXFWRUV�
� 7KH�VPHDUHG�LQWHUVWUDQG�FRQGXFWDQFH�EHWZHHQ�VWUDQG�h DQG�k FDQ�EH�GHILQHG�LQ�WKH�VDPH�
ZD\�DV� LQ�5XWKHUIRUG�FDEOHV�� VXPPLQJ�DOO� WKH�FRQWDFW�FRQGXFWDQFHV�DORQJ�D�FHUWDLQ� VPHDULQJ�
OHQJWK�DQG�GLYLGLQJ�E\�WKH�OHQJWK�LWVHOI��$Q�DSSURSULDWH�OHQJWK�IRU�WKH�VPHDULQJ�FDQ�EH�WKH�WZLVW�
SLWFK� RI� WKH� ODVW� FDEOLQJ� VWDJH�� ZKLFK� ZH� VLPSO\� LQGLFDWH� ZLWK� Lp� 7KH� FRQWDFW� FRQGXFWDQFH�
UHVXOWV�LQ��
� ∑

=
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ZKHUH� L
NK5 , LV�WKH�ith�FRQWDFW�UHVLVWDQFH�EHWZHHQ�VWUDQG�h DQG�k DORQJ�WKH�WZLVW�SLWFK�FRQVLGHUHG�

DQG� F
NK1 , LV�WKH�WRWDO�QXPEHU�RI�FRQWDFWV�EHWZHHQ�VWUDQG�h DQG�k DORQJ�WKH�OHQJWK�FRQVLGHUHG��,W�

PD\�KDSSHQ�WKDW�VRPH�VWUDQGV�KDYH�QR�FRQWDFWV�DORQJ�WKH�ILQDO�WZLVW�SLWFK�RI�PXOWL�VWDJH�FDEOH�
LQ�FRQGXLW�FRQGXFWRU��UHVXOWLQJ�LQ�D�QLO�FRQWDFW�FRQGXFWDQFH��

,I�WKH�FRQWDFW�DORQJ�WZR�VWUDQGV�LV�FRQWLQXRXV��OLNH�LQ�D�WZR�VWUDQG�FDEOH��RU�LQ�D�WULSOH[�
FDEOH��WKH�VPHDUHG�LQWHUVWUDQG�FRQGXFWDQFH�LV�FRLQFLGHQW�ZLWK�WKH�FRQWLQXRXV�FRQGXFWDQFH�DORQJ�
WKH�OHQJWK�RI�WKH�WULSOHW��

7KLV� ZD\� WR� FDOFXODWH� VPHDUHG� LQWHUVWUDQG� FRQGXFWDQFHV� LV� YHU\� ZHOO� VXLWHG� IRU� WKH�
HYDOXDWLRQ�RI�ORQJ�UDQJH�FRXSOLQJ�FXUUHQWV��QHJOHFWLQJ�DQ�DFFXUDWH�GHVFULSWLRQ�RI�WKH�LQIOXHQFH�
RI�VKRUW�UDQJH�FRXSOLQJ�FXUUHQWV� 

3.2.2 Mutual inductances matrix 

7KH�HYDOXDWLRQ�RI�WKH�FRHIILFLHQWV�RI�WKH�PXWXDO�LQGXFWDQFHV�PDWUL[�ZDV�GRQH�QXPHULFDOO\��$�
FRGH�IRU�WKH�FDOFXODWLRQ�RI�PXWXDO�DQG�VHOI�LQGXFWDQFHV�EHWZHHQ�FRQGXFWRUV�ZLWK�FLUFXODU�FURVV�
VHFWLRQ� KDYLQJ� DQ\� JHRPHWULF� GLVSRVLWLRQ� LQ� VSDFH� ZDV� GHYHORSHG�� FRQVLGHULQJ� HLWKHU� WKH�
SRVVLELOLW\�WR�KDYH�DQ�DQDO\WLFDO�H[SUHVVLRQ�RI�WKH�WUDMHFWRU\�RI�WKH�VWUDQGV�D[HV��RU�WR�NQRZ�WKH�
FRRUGLQDWHV�RI�D�VXIILFLHQW�QXPEHU�RI�SRLQWV�DORQJ�WKH�VWUDQGV�D[HV��DOORZLQJ�WR�UHFRQVWUXFW�WKH�
VWUDQGV�D[HV�E\�PHDQV�RI�VSOLQH�LQWHUSRODWLRQ��

7KH� FRGH�ZDV� DSSOLHG� WR� WKH� FDOFXODWLRQ� RI� LQGXFWLRQ� FRHIILFLHQWV� IRU� ERWK� IODW�5XWKHUIRUG�
FDEOHV�DQG�VLPSOH�FDEOH�LQ�FRQGXLW�FRQGXFWRUV��

7KH�QXPHULFDO�SURFHGXUHV�DQG�VRPH�UHVXOWV�RI�WKHVH�FDOFXODWLRQV�DUH�UHSRUWHG�LQ�$SSHQGL[�
%��

�
������/RQJLWXGLQDO�UHVLVWDQFH�
�

The strand longitudinal resistance is in general dependent on the magnetic flux density %, on the 

temperature 7, and on the current flowing in the strand. Once an appropriate model for the longitudinal resistance 

per unit length of the strand UV�K is known, the longitudinal resistance per unit length of cable UK can be calculated 

according to Equation (A.19) as follows: 



( )K
KVK

U[U
cos

)( ,=

(3.29) 

where K is the angle between the unit vector WK([) tangent to the axis of strand K at [, and the unit vector WF([)
tangent to the axis of the cable at [.

������([WHUQDO�YROWDJH�
The external voltage per unit length can be defined in the following way (see Appendix A): 
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(3.30) 

where $H[W is the magnetic vector potential associated with the external sources, and 5K�[� is the point of the strand 

axis corresponding to coordinate [ (see Fig. A.1). This definition guarantees that the integral effect of the difference 

YH[WK - YH[WN along any loop formed by two generic strands K and N provides a driving force equivalent to the time 

derivative of the magnetic flux due to the external sources linked to the loop. 

A simple expression for the external voltage in the case of Rutherford cables can be found when the 

magnetic flux density is orthogonal to the broad face of the cable (see Fig. 2.3). In this case we can write: 

N% ),( W[%H[W =

(3.31) 

where N is the unit vector of the ] axis, perpendicular to the broad face of the cable. 

The external field is related to the external vector potential through the following relation: 

 H[WH[W $% ×∇=

(3.32) 

Choosing a coordinate system as in Fig. 2.3, we can write the cartesian components of equation (3.32): 
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(3.33) 

A possible choice for the divergence of the vector potential is the Coulomb gauge: 

 0=
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The following expression of the vector potential of the external field satisfies both (3.33) and (3.34): 
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We can then write: 

 L$ [H[WH[W $=

(3.36) 

From the general definition (3.30), and considering that for the particular geometry of Rutherford cables 

cos (γK) = sin (α) (with α indicated in Fig. 2.3), we obtain: 
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(3.37) 

 

3.3 COMPARISON WITH THE NETWORK MODEL: RUTHERFORD CABLES 

�

We have applied the model to the evaluation of currents induced by longitudinal variations of the external 

field perpendicular to the broad face of the cable. A comparison between the results obtained with the continuum 



and the network model illustrated in [27] is shown in Fig. 3.2 in the case of a simple step variation of the magnetic 

field along the cable axis. As far as possible the same conditions as in [27] have been used for the simulations. 

 

The cable considered is a 16 strands cable, with 5F
K�N = 1 µΩ, 5D

K�N = 10 µΩ for every K and N and /3 = 100 

mm. The cable is exposed to a time dependent magnetic field perpendicular to its broad face. The field is equal to 0 

for [ �� //2 and increases with a rate of 0.01 T/s for [ !� /�2. It was assumed in [27] that the strand can be 

characterized by a constant and uniform longitudinal effective strand resistivity. For the sake of comparison, we 

have introduced a uniform and constant longitudinal resistance per unit length UK, and we have evaluated the strand 

currents at the final steady state for two different values of UK, equal to 1.54 10-8 Ω/m and 1.54 10-11 Ω/m. These 

values have been calculated according to equation (3.29). 

 

In the case reported in Fig. 3.2 the short range coupling currents due to the uniform field applied at the 

right of [ = //2 are superimposed to the main long range coupling currents due to the field variation at [ = //2. It 

can be noticed that the qualitative behaviour of the BICC’s obtained with the two models is very similar in both the 

current distribution regimes shown.  

 

Only a quantitative difference in the range 5-20% on the maximum amplitude of the BICC’s is found. This 

could be due to the slightly different description of the geometry of the cable made in the two models. The present 

model in fact is based on the simple geometry illustrated in Fig. 2.3, with a discontinuous jump of the strands from 

one layer to the other. In the model described in [27] instead, the strands go from one layer to the other via short 

side cylinders (see Fig. 2.4). 

 

In the evaluation of the short range coupling currents, instead, the two models strongly differ. In fact, the 

amplitude of these currents obtained with the continuum model is about half of that obtained through the network 

model. This is due to the smearing of the system parameters performed in the continuum model and can be 

confirmed by an analytical calculation of the short range coupling currents in the simple case of a two strand cable 

made of an integer number of pitches to which an uniform time dependent magnetic field is applied (see par. 3.6).
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Our aim in this comparison is to model correctly the behaviour of the long range coupling currents, 

neglecting the influence of the short range coupling currents. For this reason we have tried to find the minimum 

number of mesh points needed for a correct evaluation of the long range BICC’s. We have found that with 2 mesh 

points per pitch the main BICC’s can be very well approximated for the case-study previously described (see Fig. 

3.3). If the longitudinal variations of the time derivative of the field were less sharp, appropriate meshing strategies 

could lead to even larger meshes. 

Considering that in the network model there are (51-3) unknowns per calculation band [27], and 1 bands 

per pitch, we end up with a total of (51-3)⋅1 unknowns per pitch. In the actual implementation of the continuum 

model a point collocation method [70] has been used for the numerical solution of system (3.7), with two gaussian 

points per elemental mesh. This results in a total of 2031 unknowns per pitch, where 03 is the number�of mesh 

points per pitch. The ratio of the number of unknowns per pitch of cable in the two models is then equal to: 

30
1

2

)3(5 −=ℜ

(3.38) 

In the case reported in Fig. 3.4 ℜ is approximately equal to 16. This leads to a remarkable computational 

advantage, which allows the application of the distributed parameters model to the study of real long Rutherford 

cables operating in accelerator magnets, as shown in Section 5.3. 

 

3.4 COMPARISON WITH THE NETWORK MODEL: CIC CONDUCTORS 

We have implemented a network model for the study of current distribution in short samples of simple 

cable in conduit conductors, in order to evaluate the consistence of the distributed parameters model, and the 

equivalence of the two models in simple cases. 



In particular, we have simulated the current redistribution after quench of one strand in a short sample of a 

triplex cable (Fig. 3.4). The cable is 1m. long, and is composed of three strands wound helicoidally along a straight 

axis, with a twist pitch /S equal to 2.5 cm. The lumped parameters network model is illustrated schematically in Fig. 

3.5. The model is applicable to a generic number of strands and to a generic time varying operation current. The 

model has been implemented both in SPICE and with a Fortran programme obtaining a good agreement between the 

two codes. 

The network model has been implemented in two different ways. In a first implementation (N1) the cable is 

divided into 40 sectors having the same length as the cable twist pitch. In the second implementation (N2) the cable 

is divided into 80 sectors having the same length as half of the cable twist pitch. 

The mutual inductance between sector L of strand K and sector M of strand N is indicated with /K�� L�� N�� M�as 

shown in Fig. 3.5 for the first two sectors of two generic strands. The self inductance /K�� L of sector L of strand K is 

indicated with /K��L��K��L . Both self and mutual inductances have been calculated numerically as explained in Appendix 

B, eq. (B.2). The self inductance of the first sector of strand 1 and the mutual inductances between this sector and 

adjacent sectors of the same strand, (/���������L with L = 1, 20 in model (N1)), is plotted in Fig. 3.6a versus the distance 

G = (L-1) /3/2 of these sectors from sector 1. 
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� The mutual inductances among the first sector of strand 1 and different sectors of strand 2 (/���������L with L =

1, 40) are plotted in Fig. 3.6b versus the distance G of these sectors from sector 1 of strand 1. We can notice that the 

mutual inductance between different strand sectors obviously decreases with the distance, but in principle the mutual 

inductances between all the different strand sectors of the cable should be considered. For this reason we have 

performed simulations with the network model both keeping the mutual inductances among all the strand sectors 

(N1a-N2a), and neglecting the mutual inductances between strand sectors corresponding to different positions along 

the cable length, i.e. setting /K��L��N��M = 0 if L ≠ M (N1b-N2b). 

The effect of different joint resistances on the current distributions can be taken into account. However, the 

joint resistances have been taken all equal to zero, for a simple comparison with the distributed parameters model 

associated with the boundary conditions (3.15), which describe equipotential cable end surfaces. 

The distributed parameters circuit model has been implemented in two different ways (D1 and D2), 

distributing the contact resistances and the mutual inductances along two different smearing lengths, /3 and /3�/ 2. It 

is important, in order to show the consistence of the distributed parameters model, that the results of the current re-

distribution among the different strands are not influenced significantly by the choice of the smearing length. The 

values of mutual and self inductances for the distributed parameters model are reported in Table 3.1. 

 

Smearing length 
 

/3� /3���
Self inductances l11 = l22 = l33 (µH) 

 

0.79 0.67 

Mutual inductances l12 = l21 = l13 = l31 = l23 =l32 (µH) 
 

0.45 0.33 

Table 3.� 0XWXDO�LQGXFWLRQ�FRHIILFLHQWV�IRU�PDWUL[�O ZLWK�WZR�GLIIHUHQW�VPHDULQJ�OHQJWKV�
�

Strand diameter 
 

1 mm 

Cabling pitch 
 

25 mm 

Cable length 
 

1 m 

Initial time of the external disturbance 
 

T=1 ms 

Final time of the external disturbance 
 

T=2 ms 

Final resistance of the quenched strand 
 

0.5 10-3 /m 

Joint resistance 
 

0



Operation current 
 

1000 A 

Table 3.� 6LPXODWLRQ�RI�FXUUHQW�UHGLVWULEXWLRQ�LQ�D�WULSOH[�FDEOH�DIWHU�TXHQFK�LQ�RQH�VWUDQG��GDWD�
�

The parameters chosen for the simulations of redistribution after quench are shown in Table 3.2. The 

quenched zone is 5 cm. long and is placed in the middle of strand 1. The quench is simulated by means of a sudden 

increase of the strand longitudinal resistance in the quenched zone arising to the value of the normal matrix 

resistance which is in parallel to the superconducting filaments. The operation current is kept constant during the 

simulations at the value of 1000 A. 

 The space and time dependence of the current in the quenched strand calculated with the distributed 

parameters model (D1) is shown in Fig. 3.7. It can be noticed that the length of the region from which the strand 

curent is deviated to other strands increases in time. We have performed several simulations with different contact 

conductances, in the range 105 – 107 S/m, confirming that the typical redistribution times and the width of the 

quenched zone decrese with increasing the contact conductances, as shown in [62] with simplified analytical 

calculations. 

7KH�GDWD�UHSRUWHG�LQ�WKH�IROORZLQJ�KDYH�WR�EH�FRQVLGHUHG�DV�H[DPSOHV�RI�PDQ\�WHVWV�SHUIRUPHG�WR�
YHULI\�WKH�DJUHHPHQW�RI�WKH�GLIIHUHQW�PRGHOV��
�

3.4.1.Distributed parameters model (D1) versus distributed parameters model (D2) 

$ FRPSDULVRQ�EHWZHHQ�WKH�FXUUHQWV�LQ�WKH�VWUDQGV���DQG���FDOFXODWHG�ZLWK�WKH�GLVWULEXWHG�
SDUDPHWHUV�PRGHOV�'��DQG�'��LV�SUHVHQWHG�LQ�)LJ�������7KH�FXUYHV�DUH�YHU\�FORVH��$�YHU\�JRRG�
DJUHHPHQW�EHWZHHQ�WKH�WZR�PRGHOV�LV�IRXQG��ERWK�FRQVLGHULQJ�WLPH�DQG�VSDFH�GHSHQGHQFH�RI�WKH�
VWUDQG� FXUUHQWV��7KLV� UHVXOW� FRQILUPV� WKH� FRQVLVWHQFH�RI� WKH�GLVWULEXWHG�SDUDPHWHUV�PRGHO� DQG�
WKH�SRVVLELOLW\�WR�VPHDU�WKH�GLVWULEXWHG�SDUDPHWHUV�DORQJ�GLIIHUHQW�OHQJWKV.

3.4.2 Distributed parameters model ('�) versus lumped parameters (1�E)

The comparison between strand currents found with the distributed parameters model and the lumped 

parameters model are in good agreement for both space and time dependence, as shown in Fig. 3.9. 

 



The same type of agreement, in many different situations and between all the three strand currents in space 

and time, has been obtained between the lumped parameters model made of 40 sectors and the lumped parameters 

model made of 80 sectors, both considered in the version which does not include the mutual inductances between 

far strand sectors.  

As a conclusion, the two distributed parameters models behave identically to the two lumped parameters 

models which neglect inductances between far strand sectors. In addition we found that with these four models the 

two non quenched strands carried exactly the same currents in every situation. 

 

3.4.3 Distributed parameters model �'�� versus complete lumped parameters model �1�D)

Some small deviation from this agreement is found when considering lumped network models including all 

the mutual inductances between the strand sectors (N1a and N2a). A comparison between the complete network 

model (N2a) and the distributed parameters model D2 is shown in Fig. 3.10. The basic features and behaviour of the 

currents are identical. Only a small difference in the amplitude of the current in the non quenched strand is found. In 

particular, it is found that the current in the two non quenched strands calculated with model N2a is not exactly the 

same, due to a long range coupling current flowing all along the two strands and closing at the joint resistances. The 

currents in the two non quenched strands along the cable length are shown in Fig. 3.11, for the case of joint 

resistances all equal to zero. The amplitude of this long range current is strongly reduced with increasing the joint 

resistance. 

 

Beside this small difference (about 2% of the total strand current), the agreement between the distributed 

parameters models and the network models including all the mutual inductances is satisfactory, giving therefore 

confidence in the application of the distributed parameters model to more complex situations. 
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3.5 EQUIVALENT “SUPERSTRANDS” 

We have shown in Section 3.3 that the distributed parameters model allows a remarkable reduction of the 

number of unknowns of the problem of current distribution. A further reduction of the number of unknowns of the 

problem can be obtained by introducing equivalent “superstrands”. These “superstrands” are made assembling a 

certain number of strands of the cable and defining the appropriate parameters for the solution of the equations of 

current diffusion in these equivalent “superstrands”. 

Let the 1 strands of the cable be divided in JV groups of strands which we call “superstrands”. Each strand 

in the superstrand carries the same current, equal to the total current in the superstrand divided by the number of 

strands in the superstrand. Each group can be represented by means of a set *L of NL integer numbers representing the 

indexes of the strands owing to superstrand L��
In order to define the equivalent per unit length longitudinal resistances the value of the parallel resistance 

between the strands in each superstrand can be taken: 

 ∑
∈

=
L*K K

VXS
L

UU
11

(3.39) 

where 
VXSLU is the longitudinal resistance of the superstrand L. If all the strands in the superstrand have UK equal to 

zero also 
VXSLU must be taken equal to zero. 

 In order to define contact conductances between superstrands, all the possible transverse paths between two 

generic superstrands must be considered, summing up the corresponding conductances. The contact conductance 

VXSMLJ , between superstrand L and superstrand M can be calculated as follows: 

 ∑ ∑
∈ ∈

=
L M*K *O

OK
VXS
ML JJ ,, 2

1

(3.40) 

Considering for example superstrand 1 made of strands (1, 2), and superstrand 2 made of strands (3, 4), the 

contact conductance between superstrand 1 and superstrand 2 can be calculated as: 

 4,24,13,23,12,1 JJJJJ VXS +++= (3.41) 



A correct choice of the strands owing to a superstrand can be made taking strands which follow a close 

path along the cable length, so that the vector potential of the external field is approximately equal for all strands. 

The best way to build superstrands in the case of Rutherford cables is to take adjacent strands, so that if the strands 

are numbered as in Fig. 2.3, the strands in each superstrand have consecutive indexes. In this case a fast way to 

calculate an equivalent external voltage is to take the average external voltage of the strands in each superstrand.  

 The external voltage can be calculated as follows: 

 ∑
∈

=
L*K

H[W
K

L

VXSH[W
L YNY 1

(3.42) 

where 
VXSH[W

LY is the external voltage relative to superstrand L.
Finally, if the original matrix O for� the complete cable has been calculated or measured, the equivalent 

mutual inductances matrix relative to superstrands, OVXS, can be evaluated considering that the two cables, made of 

strands or superstrands, must have the same energy per unit length associated to the currents flowing in either 

strands or superstrands. In order to impose this condition, we can write the following equation: 

 LOLLOL 7VXSVXS7VXS

2

1

2

1 =

(3.43) 

where LVXS is the vector of the currents flowing in the equivalent superstrands. 

As an example we calculate the values of matrix OVXS�in the case of a cable made of four strands and divided 

into two superstrands of index 1 and 2 made of strands (1, 2) and (3, 4) respectively. The following conditions have 

to be imposed:�
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We obtain the following values for matrix OVXS:

( )

( )

( )

( )4443343322

4241323121

2423141312

2221121111

4

1
4

1
4

1
4

1

OOOOO
OOOOO
OOOOO
OOOOO

VXS

VXS

VXS

VXS

+++=

+++=

+++=

+++=

(3.45) 

All the new parameters can be directly inserted in the same equations used for the strands. We have applied 

this procedure in several cases obtaining a good approximation of the behaviour of the current distribution in the 

real cable. We report in Fig. 3.12 and 3.13 the description of the BICC’s in the same case study already reported in 

Fig. 3.2. The original cable is a Rutherford cable made of 16 strands, while the equivalent cable is made of 8 

superstrands defined as above. It can be noticed that the current in the superstrands (which has been divided by two 

for the sake of comparison) is included between the values of the currents of the two strands represented by the 

superstrand. This is true both in time (see Fig. 3.12a, 3.13a) and in space (see Fig. 3.12b, 3.13b). 

The possibility of analysis through superstrands offered by the distributed parameters model contributes to 

a further remarkable reduction of the number of unknowns when studying very long cables. 
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3.6 COMPARISON BETWEEN NETWORK AND DISTRIBUTED PARAMETERS MODEL: 

2-STRAND CABLE SUBJECT TO A UNIFORM FIELD RAMP 

�
In order to show the difference between the distributed parameters model with uniform J matrix and the 

network model in the evaluation of the short range coupling currents, we consider the simple case of a two strand-

cable subject to a uniform time dependent external field. In this situation an alternate flux, changing sign every half 

twist pitch, is applied along the cable length in the loops formed by the two strands. We indicate with $O the area of 

the loops formed between the two strands. 

We can write: 

 2/S$ δ=

(3.46) 

where δ is the width of the loop in the case of a loop of rectangular shape or another characteristic dimension. 

If the strands are in the perfectly superconducting state, and the regime condition is considered, equations (3.4.a) 

and (3.4.b) can be written as follows: 

 H[WY[
Y =

∂
∂

(3.47) 

 YJ[
L =

∂
∂

(3.48) 

which give: 

 H[WYJ[
L =

∂
∂

2

2

(3.49) 

For a simple, analytical solution we calculate the value of a uniform YH[W applied along half of a cable twist pitch: 

 δφ %/Y
3

H[W �
�

−=−=
2/

(3.50) 



The following boundary conditions can be associated to Eq. (3.50), due to the inversion of the current flowing in 

each strand in longitudinal direction every half twist pitch: 
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L

(3.51) 

The integration of Eq. (3.50) with the boundary conditions (3.51) gives: 

 





−=

24
)(

2[/[%J[L 3δ�

(3.52) 

Substituting in (3.52) the smeared value of J obtained by the knowledge of the cross contact resistance (see Eq. 

(3.26)): 

 
F3 5/J 2=

(3.53) 

we obtain: 

 





−=
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2
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2[/[%5/[L 3

F3

δ�

(3.54) 

which is a parabolic curve with a maximum in [  �S��� 
The value of this maximum is: 

 δ%/5
/L 3

F

3 �
16

1

4
=







(3.55) 

This current shape is the same along the whole cable length with an alternated sign due to the change of sign of the 

magnetic flux. 

 

Solving the same problem of current distribution in a 2-strand cable subject to a uniform field ramp by 

means of the network model, we obtain an uniform value of current in the strands, which changes sign every half 



twist pitch along the cable length. This value can be obtained considering that in a loop between two strands the 

time derivative of the flux must be equal to the sum of the voltage drops across the cross contact resistances. 

Indicating with , the absolute value of the current in each strand calculated with the network model, and 

imposing the boundary conditions L�  L�  ,� �� at the cable ends, we obtain the following solution: 

 

12

1

1

.....3,2,1,0)1(
2

1

2

1

LL
N/N[/N,L

/N[/N,L

33

33

−=

=+≤≤




 ++=






 +≤≤−=

(3.56) 

The absolute value of the current through the contact resistances is equal to the variation of the longitudinal current 

in any of the two strands crossing with the other strand: 

 ,LL 212 =∆=

(3.57) 

Applying the Faraday’s law to a generic loop, we obtain: 
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(3.58) 

We show in Fig. 3.14 a comparison between the strand currents calculated by means of the two network model and 

the distributed parameters model in this simple case. 
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The voltage difference between the two strands along the cable length can be obtained by means of Eq. (3.48): 

 


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4

1 δ
∂
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(3.59) 

The power dissipated in half pitch can be calculated with the distributed parameters model by means of the 

following integral: 
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(3.60) 

The power per twist pitch of cable calculated with the network model is equal to: 
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(3.61) 

The following ratio of the power dissipated per twist pitch of cable calculated with the two models can be found in 

this situation: 



3=
GGLVWULEXWH
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QHWZRUN
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3
3

(3.62) 

It appears clearly from these calculations that if the distributed parameters model in the form with uniform 

interstrand conductances (Equations 3.6) is used for the evaluation of long range strand currents, a suitable model 

for the evaluation of the power dissipated by the short range coupling currents must be introduced for a complete 

calculation of ac losses. 

However, as we will show in the next paragraph, the distributed parameters model can be generalized to the study of 

multistrand superconducting cables without any assumption on the interstrand conductances matrix. 

 

3.7 GENERALIZATION OF THE DISTRIBUTED PARAMETERS MODEL 

 

Interstrand conductances in mulstistrand superconducting cables depend on several factors, including the 

level of oxidation of bare strands, the size of the contact surfaces, the soldering of the cable, the presence of 

resistive barriers, the matrix material and the pressure applied transversely on the cable. 

If some of these factors vary along the cable length, the matrix of interstrand conductances J is not uniform along 

the cable length, and equations (3.6) cannot be applied. It is however possible to generalize the distributed 

parameters model to study cables with non uniform interstrand conductances along the cable length. 

In order to do this we consider the voltage differences of any strand from strand 1 defined in (3.12), and 

we rewrite system (3.13) in the following form: 

 [∂
∂= − *

*][* 1 LJH

(3.63) 

where we have defined the following vectors and matrices: 
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(3.64) 

It can be shown that matrix J* is always invertible, allowing to write system (3.63). 

Considering system (3.4.a) and subtracting the last equation to all the first 1-1 equations, we obtain: 
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where L was defined in (3.5.a) and we have introduced the following vectors and matrices: 
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Eliminating the last identity in (3.65), and introducing (3.63) in (3.65) we obtain the following system: 
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where matrix F̂ is obtained adding a column made of 0 to matrix [J*]-1 while matrices Û and Ô and vector H[WĤ are 

defined as follows: 
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Finally we need to add to system (3.67) the law of conservation of the total operation current at any time and 

position: 

 ∑
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1

(3.69) 

 

Equations (3.67) and (3.69) represent the extension of the distributed parameters model to the analysis of cables 

with variable tranverse conductances and are in a form that is well suited for the coupling with a complete thermal 

and fluid-dynamic description of the refrigeration system, as shown in [74]. 
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INTRODUCTION 
 $Q�LPSRUWDQW�DGYDQWDJH�RI�WKH�GHVFULSWLRQ�RI�FXUUHQW�GLVWULEXWLRQ�SKHQRPHQD�E\�PHDQV�
RI� SDUWLDO� GLIIHUHQWLDO� HTXDWLRQV� LV� WKH� SRVVLELOLW\� WR� GHWHUPLQH� DQ� DQDO\WLFDO� VROXWLRQ� RI� WKH�
SUREOHP�HTXDWLRQV� >��@��7KH�DQDO\WLFDO� VROXWLRQ�FDQ�EH�XVHIXO� IRU� WKH�YDOLGDWLRQ�RI�QXPHULFDO�
FRGHV��DQG�IRU�IDVW�SDUDPHWULF�VWXGLHV�RQ�FXUUHQW�GLVWULEXWLRQ�DQG�UHGLVWULEXWLRQ�SKHQRPHQD��

7KH� VWXG\� RI� FXUUHQW� GLVWULEXWLRQ� DQG� UHGLVWULEXWLRQ� SKHQRPHQD� E\� PHDQV� RI� WKH�
DQDO\WLFDO� VROXWLRQ� RI� WKH� HTXDWLRQV� RI� FXUUHQW� GLIIXVLRQ� LQ�D���VWUDQG� FDEOH�KDV�EHHQ�DOUHDG\�
FDUULHG� RQ� LQ� VHYHUDO�ZRUNV� >���� ���� ��@�� ,Q� SDUWLFXODU�� 7XUFN� >��@� DQDO\VHG� FXUUHQW� VKDULQJ�
EHWZHHQ�WZR�QRQ�LQVXODWHG�FRXSOHG�VXSHUFRQGXFWLQJ�ZLUHV�ZLWK�GLIIHUHQW�MRLQW�UHVLVWDQFHV��ZLWK�
DQG� ZLWKRXW� VXSHUILFLDO� R[LGHV�� 7KH� HTXLOLEULXP� FXUUHQW� VKDULQJ� LPSRVHG� DW� WKH� LQSXW� E\� WKH�
ERXQGDU\� FRQGLWLRQV� SURSDJDWHV� D[LDOO\� DORQJ� WKH� FRPSRVLWH� WR� SURGXFH� HTXDO� FXUUHQW�
UHGLVWULEXWLRQ�� 7KLV� SURSDJDWLRQ� LV� DFKLHYHG� ZLWK� D� PDJQHWLF� GLIIXVLYLW\� GHSHQGHQW� RQ� WKH�
LQWHUVWUDQG�FRQWDFW� UHVLVWDQFH�DQG�RQ� WKH�PXWXDO�FRXSOLQJ�EHWZHHQ� WKH�VWUDQGV��0RUHRYHU�� WKH�
DQDO\WLFDO� VROXWLRQ�ZDV� DSSOLHG� WR� VWXG\� WKH� FXUUHQW� UHGLVWULEXWLRQ� LQ� WKH� SUHVHQFH� RI� D� IDXOW\�
ZLUH�RU�RI�D�VKRUW�FLUFXLW�EHWZHHQ�VWUDQGV���

In [6] the analytical solution of the equation of current distribution in a 2-strand cable was used for the 

study of long range "supercurrents" induced by longitudinal variations of the time derivative of the magnetic field 

applied perpendicular to the cable face. The evaluation of the strand currents in the presence of a generic current 

cycle was obtained by considering two different analytical solutions of the equation of current diffusion in the 

presence of field ramps (forced diffusion), and during constant field phases (free diffusion). The final currents in the 

two strands were then evaluated by a superposition of the effects of different ramps and constant field phases. 

 In Chapter 4 the analytical solution of the equations of current diffusion for cables made of a generic 

number of strands is given and compared to the numerical solution in both transient conditions and steady state. It is 

also shown that the general solution reduces to the solution given in [10] when a two-strand cable is considered. 

4.1 THE ANALYTICAL SOLUTION FOR CABLES WITH SYMMETRIC STRANDS 

�



A necessary condition for the evaluation of the analytical solution is the determination of the eigenvalues 

and eigenvectors of matrices J and O appearing in system (3.6). 

In Appendix C it is shown that when Rutherford cables or simple cable in conduit conductors are 

considered, it is possible to determine in a simple way the eigenvalues and eigenvectors of matrices J and O. The 

equations of system (3.6) are reported in the following with a particular choice of the boundary conditions: 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )















==

====

=
∂
∂++

∂
∂

[W[
1
WLW/[LW[L

W[W[[W[W[W
RSLL

H[W

0

2

2

0,

,,0

,,,,

LL

JYLJULLJO

with L=1, 1

(4.1) 

We consider the simple case in which all the strand longitudinal resistances are equal to a given value U (if 

the strands are in the superconducting state U = 0) so that matrix U can be written as U , where , is the unit matrix. 

Matrices O and J are defined as in (3.5.b). The boundary conditions can be written as follows: 

 ( ) ( ) ( )
0,,0 ELL 1

WLW/[W[ RS====

(4.2) 

where E0 is one of the eigenvectors of both matrices J and O and is defined in Appendix C, eq. (C.11). 

We define the current variations from the uniform current distribution as: 
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(4.3) 

and rewrite system (4.1), considering that JO�E0 = J λ0 E0 = γ0 λ0 E0 = 0: 
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Using the trigonometric base, orthogonal in [0. L], {sin (nπ[�/)}n, with n∈1, the following series 

developments can be defined: 

 ( ) ( ) 




= ∑

∞

= /
[QWW[

Q Q π
sin,

1

)) ⇔ ( ) ( ) ξπξξ G/
QW/W

/
Q 





= ∫ sin,

2

0

))

(4.5) 

DQG�WKH�V\VWHP�������FDQ�EH�UHGHILQHG�DV�IROORZV��

� ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )[ ]








−−=−==

=




−+

Q
QQ

Q
H[W

QQ
Q

Q1
W,W

WW/
QWWGW

G

11
20

0 0
0

2

π
δ

δπδδ

ELL
JYLLJULJO

(4.6) 

Using the base Ek, with N = S, S−1, …, 1, 0, −1, … −(S−1), defined in (C.11) we can write: 
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and the problem (4.6) can be redefined in the following way: 
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It is worth remarking that N ≠ 0, because ηQ,0 = 0 as a consequence of ( ) 0,0 =W[7 LE δ . Problem (4.7) can 

be solved directly: 
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The solution can then be written as follows: 
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Considering that ( ) ( ) ( ) ( )[ ]212121 coscos
2

1
sinsin ω+ω−ω−ω=ωω and the definition of the 

elliptic function ϑ3 [52]: ( ) ∑
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=
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1
3 2cos21,

2

Q
Q QXTTXϑ , the Green functions ΓN can be written as:  
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with N = S��S−1, …, 1, −1, … −(S−1). The Green matrices are then expressed by: 
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(4.11) and the final solution of problem (4.1) can be written as: 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )τξτξτξξξξ ,,,
2

,,
2

,
00

00

0
0

H[WW//RS W[GG/W[G/1
WLW[ Y.L.EL −++= ∫∫∫

(4.12) 

It is worth noting that solution (4.12) is invariant to the addition of terms proportional to E0 to the source 

terms L(0)([) and Yext([��W). We can write, in fact: 
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This means that the solution does not change if we substitute δL(0)([) to L(0)([) in the first integral of (4.12) 

or changing the voltage reference. 

 

The integration of the kernels .(0) and . can cause convergence problems, as the function Γk tends to the 

Dirac δ distribution, when W tends to zero: 
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It is therefore advantageous, if L(0)([) and Yext([��W) are derivable with respect to [, to refer to the following 

equivalent form of the solution, obtained by means of an integration per parts. Let’s define function Γk as follows: 
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with N = S��S−1, …, 1, −1, … −(S−1); and new integration kernels .(0) e . as:  
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The solution of problem (4.1) can then be written as: 
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and finally: 
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The calculation of .(0) and . does not give convergence problems, as function Γk tends to the step-like 

Heaviside function, when W tends a zero: 
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In the case study reported in Fig. 3.2 and 3.3, the components of vector L(0)([) are all equal and Yext([��W) is 

independent of time, so that the solution (4.19) can be further simplified. In fact defining: 
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with N  �S��S−1, …, 1, −1, … −(S−1), and the integration kernel: 
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the solution of problem (4.1) can be written in the following form:  
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We have tested the numerical simulations of Boundary Induced Coupling Currents generated in a 16 strand 

Rutherford cable by a step-like time varying magnetic field reported in Fig. 3.2 and 3.3 comparing them with the 

analytical solution of the same problem given by (4.22). The comparison between numerical and analytical solution 

is reported in Fig. 4.1 and 4.2. A very good agreement is obtained between the numerical and analytical solution of 

the problem. The integral in eq. (4.22) has been performed numerically, with an adaptive gaussian integration. The 

times required for the integration of (4.21) can in some cases be remarkable due to the space oscillations of vector 

Yext in Rutherford cables. 
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4.2 COMPARISON WITH THE ANALYTICAL SOLUTION OF THE 2-STRAND MODEL 

 
It has been shown in Section 3.1.4 that the equations of free current diffusion in a two strand cable derived 

in [10] can be obtained from equations (4.1) given the appropriate relation between the parameters of the two 

models.  

In this section the analytical solution given in [10] for the 2-strand model is derived from the analytical 

solution of the general system 4.12. In order to compare the two solutions we introduce the same assumptions 

assumed in [10]: 

• LRS�W� = 0;  

• U = 0 

• The cable length is multiple of an even number of twist pitches 

• L(0)([) = 0 

• The external field excitation is independent of time and is limited to a short interval of length δ in the 

middle of the cable. 

Under these assumptions we can write: 
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where 8 is the Heaviside function, and � the time derivative of the magnetic flux linked to the two strands along 

the length δ. In the case considered, 1=2, S=1; so that matrices O and J can be written as follows: 
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(4.24) 

The eigenvalues of O are positive and given by:  

 12110 OO +=λ 12111 OO −=λ

(4.25) 

The eigenvalues of J are negative (except for 0γ which is nil) and can be written as: 



00 =γ and 121 2J−=γ

(4.26) 

The base Ek, with N = 1, 0, is common to both matrices: 
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(4.27) 

As shown in Section 3.1.4 the following relations hold for the main parameters of the two models: 

 /1 = 2 (O11 − O12), *1 = J12 (4.28) 
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�πδ � �L� ��α  π � �� � � π � L  α � w

�������
We can then write: 
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Applying equation (4.20) we obtain: 
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The following equation holds for the integration kernel : 
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The solution can be written as follows: 
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In this case LRS = 0, so that L1 = -L2; considering only L1([, W), we get: 
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(4.36) 

In order to further simplify the solution, we can write: 
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As sin (Qπ/2) = 0 for Q even, we can calculate the sum in (4.36) with only uneven values of Q. We can also note that: 
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Assuming δ << L, we get: 
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This is equivalent to directly approximate the integral in (4.37): 
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Defining τQ = τ / Q2, we finally obtain the analytical solution for current L1 which is identical to that reported in [10], 

eq. (29): 
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If the external field ramp is stopped at time W� and the field is kept constant, the supercurrents start decaying. Each 

component under the sum in (4.41) decays with its correspondent time constant [10]: 
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4.3 THE REGIME SOLUTION 

Due to its definition, Γk can cause convergence problems, because the series is made of oscillating terms: 
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It can be shown [63] that the elliptic function ϑ3 admits the following representation, with non oscillating 

terms:
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The function Γk admits the following alternative representation: 
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Finally, defining 
τ
τθτθ GG =⇒= 2 , we obtain for 

*NΓ the following expression:          
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Defining Q/[4 −−=
2

ξ
, the single term of the series can be written as: 
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We obtain: 
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Defining the error function ( ) G\H[HUI
[ \∫ −=
0

22

π
and erfc ([) = 1 − erf ([), we get: 
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Setting \G\ZGZU4\Z N =⇒−+= γ422 we obtain: 







 


 −−


 −+=

==
−+

∫∫
−+

−

−−
−

NN

U4;

U4
ZU4;

N

\

U4HUIU4;HUI

GZHHG\U4\
\H N

N

N

γγπ

γ

γ

γ

γ

44
2

4

2

4

4

4

0
2

2

2

2

(4.50) 

and finally: 

The first two terms in the sum are independent of time and represent the regime solution. We can write: 
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Considering that DV
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As we have 0 < [ < / and 0 < ξ < /, decomposing the series in positive and negative values, we get: 
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where we have used the formula: 
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These regime values (4.56) can be directly inserted into eq.(4.21) obtaining: 
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The regime solution is finally given by (4.22), with the appropriate kernel .
:
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We have checked the regime solution for the evaluation of BICC’s in a 16 strand Rutherford cable, for the 

same case study reported in Figs. 4.1. The comparison bewteen analytical and numerical results is shown in Fig. 4.2. 

The two curves are not distinguishable in both the regimes studied, due to a very good agreement with the numerical 

results relative to the steady state currents obtained at the end of the long transients. 

Fig. 4.2 Comparison between analytical and numerical solution: regime solution of Boundary Induced Coupling 

Currents in a 16 strands Rutherford cable exposed to a step-like spatial distribution of the magnetic flux density 

perpendicular to the broad face of the cable. a) rh = 1.54 10 -8 Ω/m b) rh = 1.54 10 -11 Ω/m. Data for the simulations 

are reported in Section 3 
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