CHAPTER 5

THE EXPERIMENTAL VERIFICATION

INTRODUCTION



In Chapter 5 the distributed parameters model is validated applying it to the study of current distribution in
different experimental situations. In Section 5.1 the simple case of current distribution in a 2-strand cable is analysed,
studying current distribution in the presence of ramps or cycles of the external field applied to aloop formed between
the two cable strands. The influence of different choices of the boundary conditions on the final resultsis shown.

In Section 5.2 an extensive measurement of the magnetic field in the bore of a short LHC dipole magnet is
presented and analysed. A very similar behaviour is found between the amplitude of the modulation of the magnetic
field along the magnet axis and the amplitude of supercurrents in the much simpler situation found in the two strand
cable reported in Section 5.1. Moreover, the dependence of the amplitude of the magnetic field oscillations on the
parameters of the current cycleis found to be qualitatively identical to that shown by the average value of the field. This
correlation confirms the present understanding of the interaction between current distribution, filament magnetization
and field decay in superconducting accelerator magnets.

The current distribution in the Rutherford cable of the magnet is finally simulated by means of the distributed
parameters model. The use of appropriate meshing strategies leads to a very high reduction of the number of unknowns
of the problem, up to afactor of about 60-70 with respect to the lumped parameters network model, when equivalent
superstrands are considered.

A qualitative agreement between the behaviour of the calculated current distribution in the magnet cable and

the amplitude of the masured field oscillations in the magnet bore has been found.

5.1 THE 2-STRAND CABLE EXPERIMENT

The experiment described in Section 2.4.1 and in detail in [12] was aimed to an experimental verification of the
theory of “supercurrents’. The strand diameter of the NbTi/Cu multifilamentary conductor is equal to 0.3 mm, the
cabling pitch and the transverse conductance are respectively equal to 10 mm and 0.5 10° Q*m™. Current loops are

induced by an external field in atest loop in the middle of the cable, when no transport current is present.

We have applied the electromagnetic model described in Chapter 3 to the evaluation of the amplitude of the
supercurrents in the presence of field ramps. We have calculated magnetic parameters as explained in Appendix B with

reference to a cable pitch length sector and helicoidal trajectories of the strand axis.



In our model the parameter L, reported by Krempasky and Schmidt is equivalent to /;,+/,,—2/,,. In order to take
into account the mutual induction coupling of strand sectors which are in different coil layers, the distance/radius ratio
of the two strands is used as a fitting parameter. In our model this corresponds to an arbitrary variation of the mutual

inductance /,,, while /;; and /,, are nearly constant.

A value of d/r equal to 3.1, with g, = 0.52 10° Q*m™ has been taken. In this case we obtain /1 = /», = 8.36 10"
H/m, /,,=5.57 10" H/mand L, = 5.58 107 H/m.

Following our calculations the inductance of the test loop is not large enough to explain the difference of this
ratio from the cabling theoretical one (d/+=2, with which we obtain /;; = I, = 8.33 107 H/m, my, = 6.44 10" H/m,
L,=3.78 10" H/m).

The additional contribution to the effective inductance L, should be due to geometric imperfections increasing
this distance and to the inductance of the coil formed by the two strands. We have evaluated the influence of this last
term by means of a calculation of magnetic parameters made taking into account the coil geometry, which gives for L,
the value of 3.94 10" H/m.

In Fig. 5.1 we report the comparison between the experimental and numerical results, during a magnetic field
ramp, with reference to the current in the middle of the cable. A good agreement is obtained.

The numerical results reported in Fig. 5.1 were obtained by imposing the boundary conditions (3.16), with strand
currents equal to zero at the cable ends. This condition reproduces exactly the experimental conditions. In fact the cable

ends were cut before the experiments impeding the current circulation between the two strands at the cable ends.

Figure 5.2 reports a comparison with the results obtained if the equipotential condition (cable ends in short
circuit) is used. The two solutions coincide till current diffusion reaches the end surfaces of the cable, then significantly
differ because, in the equipotential surface case, a supercurrent loop is formed and current can flow continuously from

one strand to the other through the end surfaces.

Figure 5.3 reports a comparison between the experimental results and the numerical results obtained when
exciting the cable with a different field cycle, made of aramp up, aflat top with constant current, and a ramp down. The

agreement with experimental results is satisfactory.



CONCLUSIONS

A current distribution imbalance in multistrand superconducting cables can decrease the cable performancesin
transient conditions, with a remarkable limitation of the maximum current carried by the cable. Moreover, a non
uniform current distribution can affect the field quality in accelerator magnets. A correct modeling of these phenomena
can be useful for their understanding, for the improvement of the cable design, and for the compensation of their effects.

An electromagnetic model for the analysis of current distribution in multistrand superconducting cables has
been developed.

The model is suitable for the analysis of large systems and is flexible enough to be applied to
different geometric configurations of multistrand cables. This can be achieved by means of an
appropriate evaluation of the model parameters.

The model is based on a set of partial differential equations, which makes it suitable for the
coupling to a thermal-hydraulic description of the refrigerating system.

This work starts from the theoretical and experimental results on current distribution
obtained by several researchers. In particular, the model extends the theory of “supercurrents”
developed by Krempasky and Schmidt [10] for a 2-strand model to a more complete study of the
time dependent coupling currents in a generic N strand cable. Another basic fundament of the work
are the network models for current distribution in flat Rutherford cables developed by Akhmetov
and Verweij [19-27]. This approach overcomes the main limitation of network models for the
application to long cables, which is the very large number of unknowns.

This has been demonstrated comparing the two models in the evaluation of long range
coupling currents, and obtaining a good quantitative agreement with a very remarkable reduction

of the number of unknowns, ranging from ratios of ten to one hundred in different situations.

The model aso overcomes the strong dependence on cable configuration implicit in network models. In order
to show this we have compared it with alumped parameters network model of cable in conduit conductors, obtaining a
good agreement in the study of current redistribution after quench of one strand in a short triplex cable.

An important advantage of this formulation is the possibility to determine the analytical solution of the model
equations in particular conditions of symmetry of the electrical parameters of the cable. A very good agreement has
been obtained between the numerical and analytical solutions.

A validation of the model has been also performed against experimental results on the development of long
range “supercurrents’ in atwo-strand cable, obtaining a good quantitative agreement.

Moreover, an extensive measurement of the magnetic field periodic modulation along the length of a LHC

dipole has been presented and analysed. It has been shown that the amplitude of the modulation is strongly dependent



on the powering history of the magnet and that the features of this dependence are very similar to those found in a 2

strand cable in a much simpler situation. The scaling of the amplitude of the field modulation with powering history is

essentially the same as the decay observed on average harmonics. This result confirms the idea that current distribution

and field decay are intimately correlated.

The possibility to apply the distributed parameters model to the study of a real long cable has been finally

demonstrated, obtaining a good qualitative agreement with the experimental data on the measured periodic pattern.
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consider a segment of cable of length Ax and let i), (x,7) be the current carried by strand / at time ¢ at the first extreme of

the segment. Let J,,(x, 7) be the current flowing from strand / to strand %, in correspondence to coordinate x, per unit

length of cable. The following equation is derived from conservation of charge:



%(xt)I%J (x,7) (A.1)
AP ACES :

The electromagnetic field is described by means of the Maxwell equations in the magneto

quasi-static formulation, in the absence of magnetization:

UxB=pu,J
Om=0 (A.2)
DXE:—a_B

ot

From equations (A.2), the following expression of the electric field by means of the scalar electric potential 7

and the magnetic vector potential A isderived:

E=-0p-94 A3)
ot

Let’s suppose that the magnetic vector potential A has no component parallel to the cross section of the cable:
A(g‘,l],x)xtc(x)zo (A.4)
where t. is the unit vector tangent to the cable axis at position x and £ and 7 are the local coordinates in the cross section
of the cable.

The following equation is then derived from eg. (A.3):
R/( (X)
IE(P) P =v,(x,0)- v, (x.1) (A5)
Ry (x)
where Ry, (X) is the generic point of the axis line of strand h (see Fig. A.1).
Let the transversal per unit length conductance Qnx between strand h and strand K be defined by the
following relation:

S (x,t)= ik (x,t) [Vh (x,t)— Vy (x,t)] (A.6)

From equation (A.1) the following equation is obtained:

%(x,t): égh,k R ABAT) A7



Let a sector of cable of length Ax be considered.
By neglecting the variation of the electric potential in the cross section of the strand, the following equation is

obtained for a sector of strand /4, with reference to a point P, with coordinates & and 77 in the cross section of the strand

(seefigure A.1):
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Fig. A.1. Scheme of a sector of strand h

Making use of the generalized Biot-Savart law the magnetic vector potential can be

expressed as follows:
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where:

- Ty 1S the volume of the i" externa coil, Jexti IS the current density vector in that coil and N, is the

number of external coails,
- J, isthe current density vector in strand 4,
- 1,1 (x) isthe volume of strand / from the inlet section to the section at coordinate x,
- 1,2 (x) isthe volume of strand / from the section at coordinate x to the outlet section,

- A 1, (x, Ax) isthe volume of strand h included between section at coordinate x and x +Ax.



The vector potential can be divided into two parts, corresponding to the sector considered

and to the rest of the magnetic structure:

A(P’t)zAl()cal +Aext (AlO)
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From Equations (A.10) and (A.9) we obtain:
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The operation current of the cable is a known variable given by:

N
i, )= Z i, (x,1) (A.13)

The longitudinal resistance per unit length along the strand axis of strand 4, ry;, is defined by the following

relation:
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Integrating equation (A.12) on the cross-section of strand h, in the hypothesis of an uniform

external potential on the strand cross-section, by means of (A.14) we obtain:
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which can be written in the following form dividing by AX:
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Equation (A.16) is a difference equation which depends on the amplitude DMX of the cable

sector considered. In order to obtain a differential equation, a process of limit must be performed

on equation (A.16).
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In equations (A.19 - A.21) r, is the longitudinal resistance of strand /_per unit length of cable, and y, the angle

between the direction of the strand axis and the direction of the cable at coordinate x along the cable length.

Equation (A.18) is equal to equation (3.2), so that all parameters appearing in the model

have been identified.

APPENDIX B
NUMERICAL CALCULATION OF SELF AND MUTUAL INDUCTANCES

Generic strand geometry

The calculation of mutual inductances between sectors of different strands is necessary to
develop the electromagnetic model of multistrand superconducting cables.

Several computer codes have been developed in order to calculate the induction coefficients for the case of a

generic geometric disposition of the strands.

The induction coefficients are calculated making the following assumptions. It is assumed
that the geometry of the wire is generated by a continuous motion of a flat surface in space. The
surface moves perpendicular to the trajectory of the surface center of mass, which is the wire axis.

The current density is considered to be homogenous in every wire cross-section, with the direction



of the tangent to the wire axis in the center of mass of the cross section considered. In the case
considered here all wires are assumed to have a circular cross section, so that the center of mass
simply corresponds to the center of the section.

The current density J(P) in a generic point P of the wire can be then expressed as follows:
J(P) = é t (P) (B.1)

where t is the unit vector normal to the cross section of the wire which includes P (and obviously tangent to the wire
axis), S the area of the cross section and i the current flowing in the wire.
Under these hypotheses the mutual inductance between a generic sector i of strand /# and a generic sector j of

strand k with volumes 7,; and 7;; can be obtained by means of the following expression:

f (P)Ef (Q)
Lyik, = 4nr_[r_[ T ERES dr g (B.2)
where:
t, (P
f,(P) = (P)
h
(B.3.3
t, (P
£, (0) = &) (B:3h)
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Mo is the permeability of vacuum, rp, is the distance between two generic points 2 and Q “moving” in volume 7,; and
T, respectively.

The self inductance of a generic sector i of strand 4 with volume 7;, calculated in the same hypothesisis given
by:

£, (P) O, ()

Fpp

Lo
Ly =Lpipn; = ym I _[ dt pdr p (B.4)
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where the meanings of symbols are analogous to those defined for equation (B.2).

The approximation introduced considering a uniform current density in the strand cross section is equivalent to
neglect the non uniformities of current distribution inside each strand due to the presence of different materials
(superconducting filaments and copper matrix) and to the coupling currents flowing among the filaments through the

copper matrix.



Equations (B.2) and (B.4) can be integrated numerically by means of a recursive adaptive integration based on
Gauss formula. Most problems arise when integrating equation (B.4) for the calculation of mutual inductances, because
of the singularity obtained when P coincides with P .

The numerical integration of equation (B.4) can be performed using the following numerical artefact:

Ho f,(P)d,(P)
L, .. = ) B.5
hie = 4 I I Fop +E dtpdrp (B.5)

Th,x T/’I,I

where ¢ is a distance which should be taken as small as possibile, verifying the convergence of the integral. It can be
shown that the values of L, ;. calculated with definition (B.5) converge to the definition (B.4) when etends to zero. In

fact it is possible to demonstrate the following relation [71]:

lim Lhi£ =Lhi (B.6)
-0 '

It isuseful for the following calculations to introduce two different coordinate systems defined in the following
way. The first system isarectangular cartesian coordinate system with originin point O and axisa, b and c.

The second coordinate system is a curvilinear coordinates system defined as follows:
x = parametric coordinate which follows the trajectory of the strand axis

r =radial polar coordinate varying in the strand cross section

o = azimuth angle (in the range 0, 27J.
A generic cross section of strand # is defined by means of two unit vectors u, (x) and v;,(x) orthogonal to
vector t;, (x) . The generic point P, (x) in the cross section of the strand / at coordinate x can be expressed as follows:
P, (x) = R, (x)+rcos(a)u,(x)+rsin(a) v,(x) (B.7)

where R;(x) is the point of the strand axis corresponding to the same cross section as point P.

The three unit vectors of the local reference frame can be found as follows:
dR), (x)

__ dx
t = .
h (x) ‘dRh (x) (B 8)

dx
d®Ry, (x)
_d®
d°Ry, (x)

dxz

u,(x) = (B.9)

Vi (x) = £, (x) xuy, (x) (8.10)



If the trajectory of each strand axis is analytically known, i.e. if R, (x) is anaytically known, all the terms of
equations (B.8) through (B.10) can be the easily evaluated by means of direct derivation. If the line of the strand axisis

defined by the position of a sufficient number of points along the strand axis, the termsin equations (B.8)-(B.10) can be

calculated via spline interpolation.

In order to evaluate the volume integral of eq. (B.2) and (B.4), it is necessary to calculate the Jacobian of the

coordinates transformation from the coordinates a,b, ¢ to the coordintaes x, », a. The Jacobian is the determinant of the

transformation matrix J,:

da da Oa
ox  dr Ja
_|db db ab
“lox  ar da
dc dc dc
dx dr  da
All the terms comparing in the Jacobian matrix can be easily determined given the strand geometry. Defining with x;,

(B.11)

m

r,, and ay, the mixed coordinates referred to strand /# and with x, 7, and a;, the mixed coordinates referred to strand k,

the evaluation of the integral in eq. (B.2) is straightforward:

My, ;= J- da,db, dc I t, (P, (©) —————"da,db, dc, =
srr T rPO
T (B.12)

—4ﬁS2 jda J’drh !dx !da !d J'dx HOEQ)y iy |

str PQ

mh

where R, is the radius of all strands, J,,,, and J,,, are the Jacobian matrices relative to strand # and strand £ and L, and

Ly, the developed lengths of the strand sectors considered.

Inasimilar way theintegral in eq. (B.5) can be calculated asfollows:

Se Ida Idrh ‘[dx Ida ‘!'d Idx (P)D (P)|Jmh| (B.13)

Example of application: a triplex cable

In the case of a triplex cable with straight axis along z, the cartesian components of the
helicoidal lines describing the strands axes can be defined analytically in the following way:
c,(x)=Dcos(d,, +tx x)
¢, (x) =D sin (8, +@ x) (B.14)

c.(x)=x



where:
21 . - : o 27 . L
w :L_ is the winding velocity, Lp the cable twist pitch, 3¢, = (h—l)?, h=1,3 is the initial
P
angle of the h™™ helix and D is the distance between the axes of the helices.

The unit vectors of the local reference frame can be found from equations (B.8)-(B.10), obtaining:

t,, =—Dxsin(d,, +xx)
t,, =Dwcos (J,, +w x)
t,.=1
(B.15)
u,, =—cos(d,, +w x)
u,, =-sin(d,, +wx)
uhc = 0
sin(8,, +ax)
vha = 2 o
1+ D@
cos(d,, +wx)
Vip =7
J1+ D’w’
_  Dw
v, =

© 1+ D’

The elements of the Jacobian matrix result in:

where Jj is the element 1, | of matrix Jyn.

(B.16)



sin(a) sin (6 o, + @ x)
J1+ D’@?

sin (ar) cos(8,,, + wx)
J1+ D’a?

J,, =-cos(a)cos(8,, +wx) +

J,, = —cos(a) sin (8, +wx) —

Dw

J,, = rsin(a)cos(8,, +wx) +rcos(a)

Jy = sin(a)

sin (6, + Wx)

\J1+ D*w?

cos(6,, +wx)

\J1+ D*w?

J,y = rsin(a)sin(8,, +wx) —rcos(q)

atlo
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J3 = —Dasin (8, + wx) + rawcos(a)sin (6, +ax) +

Jy, = recos(a)

cos(8,, +wx)

J1+ D*w?

J,3 = Dwcos (8, + wx) —rwcos(a)cos(8,, +wx) +

+rwsin(Q)

sin(8,, + ax)

J1+ D*w?
Ju =1

The scalar product th(S) [#(S) is given by:

+ rawin(a)

t,(s,) &, (s,)= “;Z(Dzwzsin 8., +wx,) sin(8,, +wx,)

D*w
+ D?w’ cos(8,, +wx,) cos(8,, +wx,) +1)
(B.17)

The mutual inductances between any two sectors of two generic strands h and K can be then

determined with an appropriate choice of the integration extremes in eq. (B.12).

Example of application: Rutherford cable

The strands in a flat cable are assumed to be made of straight cylinders layered alternatively in
the upper and lower face of the cable. Starting from a generic position along the cable axis we
consider all the cylinders of each strand within a certain number of cable pitches, in order to smear

the periodic variations of the inductances matrix along the cable axis.



If we consider p pitches of cable the total number of cylinders for each strand introduced in the calculationsis equal
to 2p or 2p + 1, depending on the strand chosen. As an example, the cylinders considered for the calculation of the
mutual inductances matrix for strand 1 (2 cylinders) and strand 3 (3 cylinders) in the case of a calculation for 1 pitch are
showninFig. 2.3.

The mutual inductance between a generic cylinder i of strand 4 and a generic cylinder j of strand « is calculated by

means of an adaptive recursive numerical integration of formula (B.2):

Lo t; (P) . ; (O)
— ! = dr pdt (B.18)
4r S2 Pre

strot,

My =
I"PQ

T/(,/

T, i, T ; are the volumes of the strands segments. Once the mutual inductances between all the strand sectors are

known, the elements of the matrix of the self and mutual inductances per unit length (see section can be calculated as
follows:

C(h)C (k)

Z Z M/a,i,k,j
===
hk
pL,

where C () isthe number of cylinders owing to strand / along the p pitches considered.

/ (B.19)

It is worth remarking that the absolute values of the mutual induction coefficients change with the number of
cable pitches chosen for the smearing. However, only differences between these coefficients appear in the final
equations in the matrix gl of equation (3.7). We have verified that the elements of matrix gl are quickly convergent with
the number of pitches, obtaining a constant value within 6 - 7% after 10 twist pitches. As we are interested to study
effects that involve many twist pitches (up to the whole cable length), we believe that in general these variations do not

affect substantially the final current distribution, and we have verified it in the test cases reported in thisthesis.

As an example, the mutual inductances matrix per unit length I calculated for a 16 strand
cable used for the simulations reported in Section 3.3 is reported in (B.20). The matrix was
calculated using eq. (B.19) where p was taken equal to 1.

It can be noticed that the values of mutual inductances per unit length are equal for all
strands having the same distance between their axes along the cable length. As an example,
considering strand 1 and strand 16 their distance is equal to that between strand 1 and 2 or strand

2 and 3 and so on. The same happens for strand 2 and 4, or 3 and 5. This property makes the matrix



of mutual inductances circulant (see [63] and Appendix C). This property is very useful for a
straightforward evaluation of the eigenvectors and eigenvalues of matrix l that are needed for the

analytical solution of the problem equations (see Chapter 4).
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APPENDIX B
NUMERICAL CALCULATION OF SELF AND MUTUAL INDUCTANCES

Generic strand geometry

The calculation of mutual inductances between sectors of different strands is necessary to
develop the electromagnetic model of multistrand superconducting cables.
Several computer codes have been developed in order to calculate the induction coefficients for the case of a

generic geometric disposition of the strands.

The induction coefficients are calculated making the following assumptions. It is assumed
that the geometry of the wire is generated by a continuous motion of a flat surface in space. The
surface moves perpendicular to the trajectory of the surface center of mass, which is the wire axis.
The current density is considered to be homogenous in every wire cross-section, with the direction
of the tangent to the wire axis in the center of mass of the cross section considered. In the case
considered here all wires are assumed to have a circular cross section, so that the center of mass
simply corresponds to the center of the section.

The current density J(P) in a generic point P of the wire can be then expressed as follows:



J(P) = é ¢ (P) (B.1)

where t is the unit vector normal to the cross section of the wire which includes P (and obviously tangent to the wire
axis), S the area of the cross section and i the current flowing in the wire.
Under these hypotheses the mutual inductance between a generic sector i of strand /# and a generic sector j of

strand k with volumes 7,; and 7;; can be obtained by means of the following expression:

f,(P)I
thilk,j = 4n II h( ) k(Q) Pd (BZ)
where:
t, (P
f,(P) = (P)
h
(B.3.3
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k

Mo is the permeability of vacuum, rp, is the distance between two generic points 2 and Q “moving” in volume 7,; and
T, respectively.

The self inductance of a generic sector i of strand 4 with volume 7;, calculated in the same hypothesisis given
by:

£ (P) th ),

PdTP' (84)
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where the meanings of symbols are analogous to those defined for equation (B.2).

The approximation introduced considering a uniform current density in the strand cross section is equivalent to
neglect the non uniformities of current distribution inside each strand due to the presence of different materials
(superconducting filaments and copper matrix) and to the coupling currents flowing among the filaments through the
copper matrix.

Equations (B.2) and (B.4) can be integrated numerically by means of a recursive adaptive integration based on
Gauss formula. Most problems arise when integrating equation (B.4) for the calculation of mutual inductances, because
of the singularity obtained when P coincides with P’

The numerical integration of equation (B.4) can be performed using the following numerical artefact:



_Ho f,(P)d,(P)
Lh,i,f - 471: IJTI rPP’ e dTPdTP' (BS)

where ¢ is a distance which should be taken as small as possibile, verifying the convergence of the integral. It can be
shown that the values of L,;. calculated with definition (B.5) converge to the definition (B.4) when stends to zero. In

fact it is possible to demonstrate the following relation [71]:

l[im LhiE:Lhi (BG)
-0 " '

It isuseful for the following calculations to introduce two different coordinate systems defined in the following
way. The first system isarectangular cartesian coordinate system with originin point O and axisa, b and c.

The second coordinate system is a curvilinear coordinates system defined as follows:
x = parametric coordinate which follows the trajectory of the strand axis

r =radial polar coordinate varying in the strand cross section

o = azimuth angle (in the range 0, 277.
A generic cross section of strand / is defined by means of two unit vectors u, (x) and v, (x) orthogonal to
vector t, (x) . The generic point P, (x) in the cross section of the strand / at coordinate x can be expressed as follows:

P, (x) =R, (x)+rcos(a) u,(x)+rsin(a) v,(x) (B.7)
where R;(x) is the point of the strand axis corresponding to the same cross section as point P.
The three unit vectors of the local reference frame can be found as follows:
R, (x)

_dx
t = .
h (x) ‘dRh (x) (B 8)

u,(x) =—"—— (B.9)

Vi, (%) = £, (x) xu,, (x) (B.10)
If the trajectory of each strand axis is analytically known, i.e. if R, (x) is anaytically known, all the terms of
equations (B.8) through (B.10) can be the easily evaluated by means of direct derivation. If the line of the strand axisis

defined by the position of a sufficient number of points along the strand axis, the terms in equations (B.8)-(B.10) can be

calculated via spline interpolation.



In order to evaluate the volume integral of eq. (B.2) and (B.4), it is necessary to calculate the Jacobian of the

coordinates transformation from the coordinates a,b,c to the coordintaes x, », a. The Jacobian is the determinant of the

transformation matrix J,:

da da Oa
ox  dr Ja
_|gb 95 db (B.11)
Jx ar da
dc dc dc
dx dr  da
All the terms comparing in the Jacobian matrix can be easily determined given the strand geometry. Defining with x;,

m

r, and ay, the mixed coordinates referred to strand /# and with x;, r, and a;, the mixed coordinates referred to strand £,
the evaluation of the integral in eg. (B.2) is straightforward:

P) [
Mh,i,k,j = Idahdb dc I t,(P) (Q)d a,db,dc, =
str .

rPQ
(B.12)

J mk

—4nS2 jdah [ ‘[dx ‘!’dak ‘[d J'dx £ ("1, (©Q) )E‘ @y

str

where R; is the radius of al strands, J,,, and J,,;, are the Jacobian matrices relative to strand 4 and strand & and L, ; and

Ly, the developed lengths of the strand sectors considered.

Inasimilar way theintegral in eq. (B.5) can be calculated as follows:

2

J mh

(B.13)

Ly = J’dahj’drh _!dxhj’dah -!d h Idx’ (P) 1, ()

Example of application: a triplex cable

In the case of a triplex cable with straight axis along z, the cartesian components of the

helicoidal lines describing the strands axes can be defined analytically in the following way:
c,(x)=Dcos(d,, +tx x)
¢, (x) =D sin (8, +@ x) (B.14)
¢ (x)=x

where:

@ =% is the winding velocity, Lp the cable twist pitch, 3y, = (h—l)%, h=1,3 is the initial

P

angle of the h™™ helix and D is the distance between the axes of the helices.



The unit vectors of the local reference frame can be found from equations (B.8)-(B.10), obtaining:

t,, =—Dxsin(d,, +xx)
t,, =Dwcos (J,, +w x)
t,.=1
(B.15)
u,, =—cos(d,, +w x)
u,, =-sin(d,, +wx)
uhc = 0
sin(J,, +ax)
vha = 2 o
1+ Dw
cos(d,, +wx)
Vip =~
J1+ D’w’
_  Dw

e T J1+ D*w?

The elements of the Jacobian matrix result in:

where Jj is the element 1, | of matrix Jun.

(B.16)



sin(a) sin (6 o, + @ x)
J1+ D’@?

sin (ar) cos(8,,, + wx)
J1+ D’a?

J,, =-cos(a)cos(8,, +wx) +

J,, = —cos(a) sin (8, +wx) —

Dw

J,, = rsin(a)cos(8,, +wx) +rcos(a)

Jy = sin(a)

sin (6, + Wx)

\J1+ D*w?

cos(6,, +wx)

\J1+ D*w?

J,y = rsin(a)sin(8,, +wx) —rcos(q)

atlo

{1+ D?w?

J3 = —Dasin (8, + wx) + rawcos(a)sin (6, +ax) +

Jy, = recos(a)

cos(8,, +wx)

J1+ D*w?

J,3 = Dwcos (8, + wx) —rwcos(a)cos(8,, +wx) +

+rwsin(Q)

sin(8,, + ax)

J1+ D*w?
Ju =1

The scalar product th(S) [#(S) is given by:

+ rawin(a)

t,(s,) &, (s,)= “;Z(Dzwzsin 8., +wx,) sin(8,, +wx,)

D*w
+ D?w’ cos(8,, +wx,) cos(8,, +wx,) +1)
(B.17)

The mutual inductances between any two sectors of two generic strands h and K can be then

determined with an appropriate choice of the integration extremes in eq. (B.12).

Example of application: Rutherford cable

The strands in a flat cable are assumed to be made of straight cylinders layered alternatively in
the upper and lower face of the cable. Starting from a generic position along the cable axis we
consider all the cylinders of each strand within a certain number of cable pitches, in order to smear

the periodic variations of the inductances matrix along the cable axis.



If we consider p pitches of cable the total number of cylinders for each strand introduced in the calculationsis equal
to 2p or 2p + 1, depending on the strand chosen. As an example, the cylinders considered for the calculation of the
mutual inductances matrix for strand 1 (2 cylinders) and strand 3 (3 cylinders) in the case of a calculation for 1 pitch are
showninFig. 2.3.

The mutual inductance between a generic cylinder i of strand 4 and a generic cylinder j of strand « is calculated by

means of an adaptive recursive numerical integration of formula (B.2):

Lo t; (P) . ; (O)
— ! = dr pdt (B.18)
4r S2 Pre

strot,

My =
I"PQ

T/(,/

T, i, T ; are the volumes of the strands segments. Once the mutual inductances between all the strand sectors are

known, the elements of the matrix of the self and mutual inductances per unit length (see section can be calculated as
follows:

C(h)C (k)

Z Z M/a,i,k,j
===
hk
pL,

where C () isthe number of cylinders owing to strand / along the p pitches considered.

/ (B.19)

It is worth remarking that the absolute values of the mutual induction coefficients change with the number of
cable pitches chosen for the smearing. However, only differences between these coefficients appear in the final
equations in the matrix gl of equation (3.7). We have verified that the elements of matrix gl are quickly convergent with
the number of pitches, obtaining a constant value within 6 - 7% after 10 twist pitches. As we are interested to study
effects that involve many twist pitches (up to the whole cable length), we believe that in general these variations do not

affect substantially the final current distribution, and we have verified it in the test cases reported in thisthesis.

As an example, the mutual inductances matrix per unit length I calculated for a 16 strand
cable used for the simulations reported in Section 3.3 is reported in (B.20). The matrix was
calculated using eq. (B.19) where p was taken equal to 1.

It can be noticed that the values of mutual inductances per unit length are equal for all
strands having the same distance between their axes along the cable length. As an example,
considering strand 1 and strand 16 their distance is equal to that between strand 1 and 2 or strand

2 and 3 and so on. The same happens for strand 2 and 4, or 3 and 5. This property makes the matrix



of mutual inductances circulant (see [63] and Appendix C). This property is very useful for a

straightforward evaluation of the eigenvectors and eigenvalues of matrix l that are needed for the

analytical solution of the problem equations (see Chapter 4).
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Fig. 5.3 Currents induced in a two strand cable a) Field sweep b) Comparison between experimental data and

simulations with the distributed parameters model.
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5.2 MEASUREMENTS OF MAGNETIC FIELD PATTERN IN A SHORT LHC DIPOLE MODEL

5.2.1 Introduction

As anticipated in Section 2.2.2, local field measurements in superconducting accelerator
magnets have revealed a modulation with longitudinal periodicity on all harmonic components.
Such periodicity has been measured on long models of the Large Hadron Collider (LHC) dipoles
[33, 66]. In particular, systematic measurements have been performed in two 10-m long LHC
model dipoles to explore the dependence of the periodicity on longitudinal position and time [33].

The main motivation for the experimental work in this field is the idea that the strand
magnetization can be affected by internal field changes in the cable associated with the current
redistribution, a phenomenon visible when the transport current is held constant [34, 68]. This
effect causes a drifi of the field in the magnet at constant operating current, and must be known and
corrected for accelerator operation especially during the particle injection phases and the initial
stage of the energy ramp. As anticipated in Section 2.2.2, the internal field changes causing the
field drifi at injection can be explained in terms of a diffusion of a current difference among strands
in a cable. A current difference among strands in the cable in turn generates spatial variations of
the field in the magnet bore, with a periodicity equal to the cable twist pitch. Given the relation
between cable current distribution, field periodicity and field drifi, it should be possible in last
analysis to establish a correlation between the measured periodic pattern and the measured field
decay.

In order to examine this possibility, we have measured extensively a short LHC model,
MBSMTI, using an array of short rotating coils. We give in the following the detail on the
measurement procedure and main results of this measurement. We concentrate on the results
relative to the normal sextupole and normal decapole components of the multipole expansion of the
magnetic field (see Equation 1.4), as they are the first allowed harmonics in the geometric

configuration of the dipole [6].



5.2.2  Experimental set up

The measurements of the dipole model magnet MBSMT1 have been performed in a vertical test set-up, shown
in Fig. 5.4. The magnet is suspended inside the cryostat. A A-plate separates the pool boiling helium bath from the
superfluid bath, both at atmospheric pressure (Claudet bath). The subcooled superfluid state in the lower portion of the
cryostat is achieved by means of a heat exchanger, where saturated superfluid helium conditions are obtained via Joule-
Thomson expansion of liquid helium from 1 bar down to approximately 15 mbar. The A-plate has a number of leak-
tight feed-throughs for superconducting bus-bars, instrumentation wires and a sliding bearing for the rotating shaft used

for the magnetic measurements described below.

5.2.3 Measurements of the magnetic flux density

The measurement of the field and its harmonic components has been performed using radia coil arrays
mounted on a glass-fibre shaft rotating in the bore of the magnet (see Fig. 5.5). Three arrays of coils, each composed of
five adjacent coils sections, are installed to measure the field dependence along the magnet bore. Each coil is 25 mm
long, so that each coil group covers approximately 125 mm. The top group is placed with the topmost coil at the
beginning of the straight region at the layer jump, (connection end). The center group is placed with its topmost coil in
the center of the magnet. The bottom group is placed with the bottom coil at the end of the straight part in the opposite-
connection end. The coils rotate in the superfluid helium bath. The shaft axisis held at four places: by bearings at both
ends of the magnet, a sliding bearing to intercept heat conduction across the A-plate, and a pressure-tight bearing in the

cryostat top flange.
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The transitions from the magnet to the A-plate and from cold to warm temperature are equipped with bellows,
which are designed to be stiff with respect to torsion but allow axial misalignments. A DC motor mounted on the top
flange of the cryostat drives the shaft via a belt transmission, while an encoder, rigidly mounted on the top end of the
shaft, determines the angular position of the shaft. The rotation frequency is tipically in the range of 1 Hz. Because of

dead times between rotations, the time interval between two measurements is of the order of 20 s.

5.2.4 Acquisition system

Figure 5.6 shows a schematic of the acquisition system. The voltage signals from the five
rotating coils sections are read-out simultaneously by precision integrators triggered by the
angular encoder. The integrated voltages are thus equal to the flux changes through the measuring
coil for all angular steps, and rotation velocity variations during the measurements are
compensated up to the first order. A real-time processor configures the integrators and reads the
integrated voltages. Integrators and processor are mounted on a VME-bus (Versa Module Europa,
IEEE 1014-1987 standard). Overall control of the power supply, of the precision current reading,
of the motor driving the shaft rotation and of the integrators is achieved using LabVIEW software

running on a SUN Ultra-2 workstation.

5.2.5 Measurement cycles

Different kinds of measurement cycles were performed in order to obtain detailed
information on the parameters influencing the generation and the development of the magnetic field
pattern. The magnet was quenched before every cycle in order to erase the ‘memory’ of all induced
currents.

In a first series of tests the magnet was ramped up in a single step from a small current to a
flat top current, designated as |1, at varying ramp-rates RR. The analysis of simple step responses

can provide useful qualitative and quantitative information about the magnetic pattern, and can be



directly compared with the measurements performed with the two strand cable. A characteristic

current step is shown in Fig. 5.7a.

Several measurements were also performed following the proposed operating current cycle
for LHC dipole magnets. The measurement cycles are shown in Fig. 5.7b. The measurements
started after a pre-cycle consisting of a linear current increase up to a maximum value (flat top
current), a constant current period (flat top), and a linear decrease of the current to 50 A. Both the
current ramp-up and ramp-down rates were set to 50 A/s. The flat top current and the flat top time
were separately varied throughout the experiments in order to explore their influence on the pattern
generated. The measurement phase consisted of a linear increase of the operation current up to 810
A with a ramp rate of 1 A/s, a long constant current period (injection phase) and a final current

ramp up to about 1500 A.

5.2.6 Data analysis

We will refer in the discussion to the harmonic components of the following complex expansion of the

magnetic field in the magnet bore:

o -1
B, +iB, = Z[Bn +i4)] Efj—é (5.1)
n= 0

wheres = x + iy isthe complex co-ordinate in the (x, y) coil cross sectional plane, R, is the reference radius for LHC (17
mm) and B,, and 4,, are the multipol e coefficients.

There are five working coails in the bottom and top coils array while only four are correctly working in the
middle coils array. We indicate with N, the total number of coils of a generic coils array. Each array provides a set of
N,, values for every field harmonic up to the 15" component for every measurement. Each value is referred to a
different position along the magnet bore axis, we indicate with z, (i=1, N,,) the positions along the magnet axis, and
with A,; the measured val ues of the harmonic #,, at position z;.

The following expression is used to fit the experimental data and to find characteristic

quantities describing the longitudinal field variations:



h, = Fy+Fyz+ Asin RaLP (52)

it

where z is the abscissa running along the magnet axisand F, F';, A and ¢ are the fitting parameters. In particular Fjisa
constant offset, F'; the slope of a linear term taking into account field gradients along the magnet axis, 4 the amplitude
of the sinusoidal variation and ¢ itsinitial phase.

Finally, in order to evaluate the drift of the field harmonics during the constant current phases, we consider the

arithmetic average of the measured values:

M=
=

|
1l

(5.3)

5.2.7  Step response measurements

Several step response measurements have been

Amplitude of the magnetic field

performed with different ramp rates (ranging from 50 A/sto

200 A/s) and final flat top pattem currents (ranging from 2000
A to 8000 A). A longitudinal variation of the field
harmonicsisfound in every step response measurement.

These longitudinal variations have different features for the three positions along the magnet. At the top part of
the magnet we observe a strong longitudinal gradient of the field harmonics, so that it is not possible to recognize a

precise and repeatable pattern (see Fig. 5.8). This could be due to the end field deformation at the connection end.

In the middle and bottom parts of the magnet, however, the field harmonics exhibit an oscillation characterized by a period equal to the
inner cable twist pitch, so that we can consider them as part of a periodic pattern. The measured values of the normal sextupole and normal decapole
components are shown in Figs. 5.9 and 5.10 for the middle and the bottom part of the magnet respectively, after 100 s from the beginning of the flat

top in the step response measurement with 2000 A of final current and 450 A/s of ramp rate.
The experimental data can be well fitted by equation (5.2).

Figure 5.11 shows the temporal evolution of the amplitude of the sextupole pattern calculated by means of the fitting function (5.2) in the
case of a 450 A/s ramp rate and a 2000 A fina current. The step response to a ramp with the same ramp rate (450 A/s), but higher final current
(8000A) isshown in Fig. 5.12, while the responses to ramps with low ramp rate (50 A/s) are reported in Figs. 5.13 and 5.14 for afinal current of 2000

A and 5000 A respectively.

A typical feature is always exhibited by the pattern amplitude of the sextupole component: it is about null before the current ramp, then

quickly increases during the ramping up, and finally decays when the flat top is reached. We observe that this behavior is very similar to that shown



by the amplitude of the “supercurrents’ induced by a flux density variation in aloop between two strands measured in the experiments performed by
Krempasky and Schmidt (see Fig. 5.1). In [12] the experimental results were compared with the analytic solution of the equation of diffusion of the
supercurrents (4.41). From (4.42) it can be shown that the following eguation holds locally for the diffusion of the supercurrent during its decay after

the field ramp:

(54)

o _iH (t-t,)
ll(t) = Zln —-e i i

e
n uneven

for ¢ > 1, where ¢, is the time at which the flat top is reached, 7, isthe decay time constant of each component of the infinite sum and /7, its amplitude.
In particular /, is a function of the driving voltage of the loop, the transverse conductance between the two strands and the length of the cable (see

442).

Given the relation between the amplitude of the supercurrents flowing in the cable and the sinusoidal oscillations of the field harmonics,
we plot in Figs. 8c-11c the logarithm of the amplitude of these oscillations, in order to explore the nature of their decay. After an initial phase where
we can suppose the superposition of different time constants, the logarithmic plot can be approximated through a straight line with the slope of the
longest time constant. Fitting the logarithmic plot with a straight line, we have found the slope of the linear fit to be dependent on the initial time
chosen for fitting, obtaining higher time constants with a higher initial time. Thisis due to the relatively short measurement time (1000 s), after which
the system has not yet reached its final exponential decay with the longest time constant. An underestimate of this time constant leads to a range of

3000 to 4500 s.
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In all measurements, the amplitude in correspondence of the middle coils islower than that in the bottom part. This may be due
to the greater distance of the central coils from the origin of the BICCs, which are one of the sources of the development of the field harmonics
periodic pattern. The BICCs are mainly generated by longitudinal variations of the time derivative of the magnetic flux density perpendicular to the

broad face of the cable, which are more pronounced at the magnet ends due to the cable bending over the magnet bore.

The step responses of the pattern amplitude of the normal decapole component are reported in Figs. 5.11d-5.14d. The amplitude of the
normal decapole pattern at the central position of the magnet shows a variation in time similar to that of the amplitude of the normal sextupole pattern,
while a different kind of decay is sometimes shown by the measurements at the bottom position of the magnet (see for example the case of bottom
coilsin Figs. 5.11d and 5.12d). The absolute values of the amplitude of the decapole component are about one order of magnitude lower than the

corresponding values of the sextupole component.

Comparing Figs. 5.11b and 5.12b we note that the amplitude of the sextupole pattern at the beginning of the constant current phase is
higher in the case of higher flat top current. The same observation can be made for the decapole component comparing Fig. 5.11d to Fig. 5.12d. In
order to investigate better this dependence, we plot in Fig. 5.15 the sextupole pattern amplitude at the beginning of the current flat top as a function of
the flat top current for different values of the ramp rate. The same plot in the case of the decapole pattern is shown in Fig. 5.16. We observe a linear
dependence of theinitial amplitude on the final current in the case of high ramp rates (450 A/s and 200 A/s). Thelinear fit isvery good in particular in

the case of mid coil measurements.

The dependence of the amplitude at the beginning of the constant current phase on the ramp rate is shown in Figs. 5.17 and 5.18 for the
sextupole and the decapole pattern respectively. The amplitude is independent of the ramp rate at low flat top current (Figs. 5.17a and 5.18a), while it

dightly increases with the ramp rate for high flat top currents (Figs. 5.17c and 5.18c).

In order to compare the size of the amplitude decay of the sextupole pattern in different measurements, we
consider the pattern amplitude variation after 1000 s from the beginning of the decay:
A=A (1,+1000s) - 4 (¢,) (5.5)
where ¢, isthe time at which the current plateau is reached.
This parameter depends linearly on the final current for all ramp rates, while it is approximately independent of
the current ramp rate. This is expected, as the maximum amplitude reached after the ramp is linearly dependent on the

final current and independent of the ramp rate and the decay time constants in different measurements are very similar.
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The temporal Average value of thefield harmonics evolution of the average

harmonics over the two coil groups mid and
bottom [see definition (5.3)] is shown in Fig.
5.19 for the step response measurement  with a

2000 A flat top current and a 450 A/s ramp rate and in Fig. 5.20 for the step response measurement
with 8000 A flat top current and 450 A/s ramp rate. The variation in time is different for the two
positions in the magnet, but each kind of pattern is repeated in different experiments.

The average in the mid coil measurements always decreases during the constant current
phase, while in the bottom coil measurements it always increases. The variation of the average
value after 1000 s from the beginning of the flat top phase has been taken as a parameter to
compare different experiments. The plot of this parameter versus the flat top current and the ramp
rate is shown in Figs. 5.21 and 5.22 respectively.

In the case of the mid coil measurements we can observe that the variation of the average is

approximately linear with the final current, and constant with the ramp rate.

Phase of the modulation

The variation in time of the phase § of the normal sextupole pattern is shown in Figs. 5.23
and 5.24 for the same measurements reported in Figs. 5.19 and 5.20. We have found the same kind
of phase variation in every measurement. We observe that the maximum change of the phase of the
sinusoidal fit of the measured data is approximately equal to 0.1 radians during a total time of 1000
s. The phase shifi of the sinusoidal pattern is equivalent to a translational movement of the pattern

along the magnet axis. The average linear velocity of this translation can be calculated as follows:
A9 o (5.6
v, = —— :
‘T Ar 2m

where Vi is the translational velocity and A ¢ the total phase variation.



We obtain an average velocity of about 1.8 1 0° m/s, equivalent to 6.6 mm/h. This value is
negligible, also considering that in the final part of the decay the phase variation in time is slower

than in the initial part.

Comparison between average and amplitude variations

Considering the measurements referred to the middle part of the magnet, we note that the
same dependence on the final current and on the ramp rate is shown by the variation of the
amplitude of the sextupole pattern after 1000 s of decay and by the variation of the average over the
mid coil group in the same time interval. These variations are in fact linearly dependent on the final
current and independent of the ramp rate. The variation of the average is in all cases in the range

from 10 to 15% of the variation of the amplitude of the periodic pattern (see Fig. 5.25).

The variation of the average could be due to the mismatch between the total length covered
by the measurement coils and the inner cable twist pitch. The integral of the sinusoidal variation
over this region contributes to the determination of the average value and depends linearly on the
value of the amplitude of the sinusoidal curve. The highest possible variation of the average value is
found when one border of the region covered by the coils happens to be aligned with a zero of the
sinusoidal variation. In this case the measured average (indicated as hmeas) can be expressed by
the following equation:

Zmeas = Zreal +Zerr (5 7)
where hya is the real value of the average and he is the error due to the misalignment. The error

is given by the following expression:

Log=1

- o (L, —L
Oher = J’ Asin P2 Hdz = 43 - cos (L, = L,) (5.8)
0 LP Lp



where Lo is the length of the region covered by the coils array. The variations in time of the

measured values of the average are given by:

Jzea = 5zreal + 5zerr (5 9)

In the case of the mid coils array the relation between the variations in time of the average

and of the amplitude due to the quoted misalignment is given by:

0h,=0325 4 (5.10)

The average delta is always lower than 30% of the amplitude delta, so that the measured

drifi could be due to this effect.
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Real operation cycles measurements



In every real operation cycle  measurement  we

Amplitude of the magnetic field

observe longitudinal variations of the field harmonics. As in
the case of the step response pattem measurements, only in the
bottom and middle part of the magnet these variations have
the snusoidal shape of a periodic pattern.

The evolution in time of the sextupole pattern amplitude for the case of a flat top time 7= 30 min and a flat
top current Ir»= 11750 A (nominal current of this dipole model) is shown in Fig. 5.26b for the bottom and middle part
of the magnet. The pattern amplitude decreases during the initial ramp until the injection phase starts, in contrast to

what observed during the step response runs.

As the injection phase starts, we observe a slope variation in the amplitude curve and the
beginning of a slower decay of the pattern amplitude. Figure 5.26¢ reports a logarithmic plot of the
decay phase for the longest measurement performed. This plot shows that the decay curve does not
approach a straight line as in the case of the step response measurements. It seems that there is a
superposition of different time constants and that the highest are so large that even with this very
long measurement (12000 s of injection phase) it is not possible to reach a simple exponential
regime. In shorter measurements (1000 s) the decay phase can be well fitted with an exponential
curve. The time constants of these fitting curves range from 2000 to 5000 s. These time constants
are larger than the measurement time and have to be considered only as characteristic times of the

initial phase of the decay.

During the final ramping up, there are evident variations of the amplitude of the sextupole pattern. The
variation in time of the pattern amplitude is shown in Fig. 5.27 for measurements with different pre-cycle flat top times.

Fig. 5.26 Amplitude variation in time after a pre-cycle with Ty = 30 min, Ly = 11750A4. @) Current sweep during
measurement. b) Comparison between different positions. C) Logarithmic plot of the decay phase
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The pattern amplitude behaves essentially in the same way in the two locations at the bottom and center of the
magnet, and is strongly dependent on the current cycle.

the final ramp.

With very short flat top times the pattern has a decreasing amplitude during the initial ramp, until it disappears
during the injection phase (see the curves for a 1 minute flat top time in Fig. 5.27). The periodic pattern restores during

from the beginning of the decay:

In analogy to the study of the step response measurements we have estimated the pattern amplitude decay
during the injection phase measured with different pre-cycles, considering the pattern amplitude variation after 1000 s

O0A=A (l‘g+1000 S) -A (tg)
where ¢, is the time at which injection begins.

(5.11)

Fig 5.27 Variation in time of the amplitude of the normal sextupole pattern after pre-cycles with different flat top times.
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The results show that there is a clear correlation between & A(B3) and both the flat top
current and the flat top time. The change of sextupole pattern scales approximately linearly with the
flat top current reached in the pre-cycle (see Fig. 5.28).

The scaling with the flat top time (see Fig. 5.29) in the pre-cycle can be well approximated

by the following exponential function

_@H
r

OA=K+BlEl-e E (5.12)

where K, B, and 1 are fitting parameters and - is the flat top time. The values of the fitting parameters are reported in

Table 5.1 for different measurements.

| Bottom coils \ 1.82 | -2.87 10" | +610°
B3 T(* 10°9)
\ Mid coils \ 1.95 | -2.36 10" | -1.09 10° |

Table 5.1 Fitting parameters for the dependence of the sextupole pattern amplitude variation after
1000 s from the beginning of the injection phase on the pre-cycle flat top time. The parameters are

calculated by means of the fitting function (5.12).

As reported in [34], the decay of the average multipoles during injection follows the same scaling with the pre-

cycle flat top time and flat top current.

Average value of the field harmonics

The normal sextupole always exhibits the same kind of variation in time, as shown in Fig. 5.30 for
measurements after pre-cycles with different flat top times in the same cases reported in Fig. 5.27. At the end of the
decay we observe the characteristic ‘snapback’ [34], and the following enhancement of the average value during the

final ramp.
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Fig 5.30 Variation in time of the average value of the normal sextupole pattern afier pre-cycles with different flat top

times. The time reference is set to zero at the beginning of the injection phase.

It is interesting to note that the variation of the average value of the sextupole with very
short flat top times is not negligible.

This variation is not due to the relation of the current distribution with the superconductor
magnetization because in this case the amplitude of the pattern is negligible. The variation may be
due to the thermally activated “flux creep” occurring in the superconducting material of the cable,

as already observed in [34, 68].

Phase of the modulation of the field harmonics

The variation of the initial phase of the field modulation during the operation cycle measurements is always
very small. The phase variation during the injection phase of the longest measurement performed is reported in Fig.
5.31 in the bottom position of the magnet. The average translation velocity in this case is of about 9 10 m/s, equivalent

to 0.3 mnvh. The longitudinal displacement of the pattern is negligible.
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Fig 5.31 Initial phase of the sextupole pattern during the injection of the longest measurement performed (pre-cycle

with Trp = 30 min and Iy = 11750 A).

Comparison between average and amplitude variations

The amplitude variation and the field drift exhibit a similar dependence on the pre-cycle flat

top time at both positions of the magnet.

The variation of the average value is plotted in Fig. 5.32 as a function of the amplitude
variation for every real operation cycle measurement.

The apparent correlation between the variation of the amplitude and the variation of the
average in correspondence of the middle part of the magnet indicates that the two phenomena are

indeed dependent on each other, as hypothesized in [28].

In the case of real operation cycles measurements we can exclude that the average value
variation is only due to the effect of misalignment between the coil group and the sinusoidal
oscillation explained in Section. 5.2.8 for the step response measurements. If that were the case,
due to the linear dependence shown in eq. 5.5, we would expect the same kind of temporal evolution

for the amplitude of the periodic pattern and the average value of the harmonic considered. Instead,



we note in Fig. 5.30 the characteristic snap-back of the average value, which has not any

corresponding feature in the amplitude variation in the same measurements (see Fig. 5.27).

8.0E-05 I I
o bottom coils

— o mid coils o
= 6.0E-05 E
)
o o
o 4.0E-05 8
(@)]
(TS m]
o o
>
f(g 2.0E-05

0.0E+00 :

-5.0E-05 5.0E-05 1.5E-04 2.5E-04
- 0A (B3) (T)

Fig. 5.32 Average delta variation versus amplitude variation (changed of sign) for all operation cycles measurements.



5.3 MODEL VALIDATION

Upper pole
inner cable

Fig. 5.33 Cross section of one aperture of the double aperture dipole model MBSMT1 used for the
measurements of magnetic field pattern.
This section is dedicated to the analysis of the experimental findings described in Section
5.2. In this analysis we use both the network and the distributed parameters circuit model. The first
one is based on a network approach which approximates the cable as a lumped parameters circuit.
The network model (see Section 2.3.2) used in this study isthat described in detail in[19].

The distributed parameters circuit model is described in Section 3.1.

5.3.1 Basic assumptions for the simulations

We postulate that the periodic magnetic field pattern is due to the long current loops
circulating in the cable. In this study we consider a single cable subjected to both a current increase
and, proportional to it, a non uniform time dependent magnetic field. The iron saturation at high
magnetic fields is neglected. The strands of the cable are assumed to be identical, ideally

transposed, and soldered to current leads via electrical resistances which are much lower than the



contact resistances of the cable. Finally, the latter are assumed to be equal, and uniform along the
cable length.

Therefore, among the possible sources of non uniform current distribution listed in Section
2.1 the only source of long range current loops that we consider here is the field variation along the

cable length.

A schematic view of the coil cross section of one aperture of the LHC dipole model
MBSMTL1 isshown in Fig. 5.33. The coil has two poles (upper and lower) assembled from an inner
and an outer layer. The inner layer of a single pole is wound from 15 turns arranged into 3 blocks,
while the outer layer has 26 turns arranged in 2 blocks corresponding to different angular positions.

We have numbered turns and blocks as shown in Fig. 5.33.

The layers in a pole are wound individually, and the cable ends are either soldered together
a the interconnection between layers and poles or connected through splices to the current leads.
Because of the assumption of low splice resistance compared to the interstrand resistance in the
cable, we can identify a cable unit length in a single layer (i.e. between two splices) as the shortest

length to be used for analysis purposes.

In order to simulate the experimental results on the amplitude of the magnetic field pattern
reported in Section 5.2, we assume that the longitudinal oscillations of the secondary field are only
due to the current distribution in the inner cable of the magnet. This assumption is motivated by the
fact that the periodicity of the measured oscillations of the secondary magnetic field is equal to the

inner cable twist pitch.
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Fig. 5.34 Magnetic flux density perpendicular to the broad face of the inner cable of the 1m long
LHC dipole magnet MBSMT 1. The reported field is the average field across the cable width

calculated with ROXIE, at a total current of 11500 A.

A unit length of the inner layer cable is made of 28 strands, with atotal length L of 27.8 m, a
twist pitch of 115 mm., and athickness of 1.88 mm.

Aswe stated previously, we take spatial variations of the magnetic flux as the only source of
long range current loops. The distribution of the magnetic flux density perpendicular to the broad
face of the cable calculated with the computer program ROXIE [69] is shown in Fig. 5.34. We

recognize two types of variations of the perpendicular field along the cable length.

Sharp, short range variations of the field are due to the cable bending over the magnet bore,
while step changes in the value of the field along the straight part of the cable correspond to the
transitions from block to block.

We have performed two sets of simulations using either the network or the continuum
model, in order to imitate the cable excitation with current cycles made of alinear ramp up followed

by a current plateau as were performed in the experiments reported in the previous section.



Simulations with the network model are aimed to look at the fine details of the origination of
the short and long range eddy currents. The size of the network model grows quickly with the
length of cable analyzed. For this reason we limited the ssmulations to a short length of cable to
explore genera features of the transient response of the long range current loops to field changes.

We have then performed simulations of the whole cable response to current steps with the
distributed parameters model. This model does not reproduce accurately the details, but is suitable
for the smulation of afull cable length in a magnet.

In both sets of simulations we have varied parametrically the flat top current and the ramp rate in

order to study their influence on the current distribution.

5.3.2 Network model

The simulations using the network model have been focussed at an ideal cable close to the
coil midplane. In order to minimize the computation time, a four strand cable has been considered.
The cable length L is equal to approximately 23 twist pitches. We have assumed a symmetric
magnetic field distribution along half of the cable length, shown in Fig. 5.35. The magnetic field is
zero at the cable ends and at its center. In between, there are regions of uniform magnetic field. The
magnetic field is twice as high at the inner edge of the cable as at the outer one.

This geometry imitates a complete turn in a dipole magnet, where the uniform field regions
represent the straight length of the magnet included between the low field regions at the magnet
ends.

Let us consider elemental current cycles made of a ramp up followed by a current plateau.
Let aso the plateau current be much less than the critical current. The results of simulations show

that soon after the beginning of the cycle eddy currents associated with the local value of dB/dt
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Fig. 5.37 Dependence of the amplitude of the magnetic field pattern on the flat top current at the

end of the ramp.

These eddy currents produce a uniform field in the neighborhood of the cable, without any
periodic oscillation. Gradually, however, the strand currents become different in the ends of the
cable, where the magnetic field has alongitudinal gradient, thus originating current loops.

As time advances, the current in these loops diffuses from the cable end regions into the
center. The time ty needed to complete this process is much higher than the time of development of

uniform, short range eddy currents.

The buildup and following decay of a periodic magnetic field pattern is shown in Fig. 5.36. The
amplitude of the pattern increases at t < tp and decreases afierwards.

Calculations show that if the time of the ramp is short compared to #,, the amplitude of the
periodic magnetic field pattern on the plateau at a certain moment, />, does not depend on the

ramp rate, whileit is linearly dependent on the flat top current (see Fig. 5.37).

5.3.3 Distributed parameters model



We have performed calculations with the continuum model for a cable made of 28 strands, asin

reality, and with a cable composed of 8 equivalent superstrands.

In accordance with measured value in the dipole model MBSMT1, we have taken a contact
resistance between strands in the range 10 to 20 uQ per contact.

We have used the magnetic field map shown in Fig. 5.34 as an input for the calculation,
scaling the field proportionally to the current in the magnet. In the ssimulations performed with the
continuum model we have neglected the field variations across the cable width. This, as
demonstrated in the detailed analysis discussed in the previous section, is inessential for the

development of long range current loops.

The results of simulations are reported in Fig. 5.38 for a current step with a ramp rate of 50 A/s and a final
current of 2000 A. It can be noticed that soon after the beginning of the ramp sharp current spikes appear in these
regions of high field gradient (Fig. 5.38a). At the end of the field ramp the correspondence between the field profile and
the current pattern is less evident (Fig. 5.38b). After 1000 s from the beginning of the current flat top, we note a
remarkable current difference between the strand currents, but the correspondence with the field profile is lost (Fig.

5.38c).

As we have postulated that the magnetic field pattern is due to long current loops circulating
in the cable, it is reasonable to assume that its amplitude is proportional to the difference between
the currents flowing in the strands. In particular we have taken the values of the maximum
difference between the strand currents in the middle of the uniform field regions, Al,.., as the
reference quantity for a qualitative comparison with the amplitude of the magnetic field pattern

measured outside the cable and next to these positions.

As an example we compare in Fig. 5.39 the amplitude of the total magnetic field pattern at
position 4 (» = 17 mm and 6 = 35°) to the parameter Al,,, calculated for turn 7-a which faces the

point selected. The amplitude of the total field pattern has been reconstructed at point 4 from the



data presented in Section 5.2, obtained with the rotating coils placed in the middle of the straight
length of the magnet. The comparison is shown for a step response measurement with 7 = 2000A
and RR = 50 A/s. We have performed the simulations with the complete 28 strands cable, for

different values of the cross contact resistances (10 and 20 pQ).

The value of 41, a the end of the ramp calculated in four consecutive straight parts of the
cable (turns 7-8, see Fig. 5.33) is shown in Fig. 5.40 for the case of RR = 450 A/s. These
simulations have been performed with the equivalent, 8 superstrands cable for the whole set of ramp
rates and flat top currents considered in the experiments, and the results confirm that the amplitude
of Al a the end of the ramp is proportional to the flat top current and approximately independent

on the ramp rate, as obtained in the experiments and with the network model.
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Fig 5.40 Dependence of parameter Al on the final flat top current in different cable turns (RR=450 A/s).
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The temporal evolution of the average harmonics over the two coil groups mid and bottom

[see definition (5.3)] is shown in Fig. 5.19 for the step response measurement with a 2000 A flat top

current and a 450 A/s ramp rate and in Fig. 5.20 for the step response measurement with 8000 A



flat top current and 450 A/s ramp rate. The variation in time is different for the two positions in the
magnet, but each kind of pattern is repeated in different experiments.

The average in the mid coil measurements always decreases during the constant current
phase, while in the bottom coil measurements it always increases. The variation of the average
value after 1000 s from the beginning of the flat top phase has been taken as a parameter to
compare different experiments. The plot of this parameter versus the flat top current and the ramp
rate is shown in Figs. 5.21 and 5.22 respectively.

In the case of the mid coil measurements we can observe that the variation of the average is

approximately linear with the final current, and constant with the ramp rate.

Phase of the modulation

The variation in time of the phase § of the normal sextupole pattern is shown in Figs. 5.23
and 5.24 for the same measurements reported in Figs. 5.19 and 5.20. We have found the same kind
of phase variation in every measurement. We observe that the maximum change of the phase of the
sinusoidal fit of the measured data is approximately equal to 0.1 radians during a total time of 1000
s. The phase shifi of the sinusoidal pattern is equivalent to a translational movement of the pattern

along the magnet axis. The average linear velocity of this translation can be calculated as follows:

L
v, = A—¢D—” (5.6)
At 2T

where Vi is the translational velocity and A ¢ the total phase variation.

We obtain an average velocity of about 1.8 1 0° m/s, equivalent to 6.6 mm/h. This value is
negligible, also considering that in the final part of the decay the phase variation in time is slower

than in the initial part.

Comparison between average and amplitude variations



Considering the measurements referred to the middle part of the magnet, we note that the
same dependence on the final current and on the ramp rate is shown by the variation of the
amplitude of the sextupole pattern after 1000 s of decay and by the variation of the average over the
mid coil group in the same time interval. These variations are in fact linearly dependent on the final
current and independent of the ramp rate. The variation of the average is in all cases in the range

from 10 to 15% of the variation of the amplitude of the periodic pattern (see Fig. 5.25).

The variation of the average could be due to the mismatch between the total length covered
by the measurement coils and the inner cable twist pitch. The integral of the sinusoidal variation
over this region contributes to the determination of the average value and depends linearly on the
value of the amplitude of the sinusoidal curve. The highest possible variation of the average value is

found when one border of the region covered by the coils happens to be aligned with a zero of the

sinusoidal variation. In this case the measured average (indicated as hmey) can be expressed by

the following equation:
Zmeas = Zreal +Zerr (5 7)
where hya is the real value of the average and he is the error due to the misalignment. The error

is given by the following expression:

Log=1

- cr (L, —L
Oher = J’ Asin P iz = 43 - cos (L, = L,) (5.8)
0 LP Lp

where Lo is the length of the region covered by the coils array. The variations in time of the

measured values of the average are given by:

JZm = 52}’601 + 5Zerr (5 9)



In the case of the mid coils array the relation between the variations in time of the average

and of the amplitude due to the quoted misalignment is given by:

dh,,=0325 4 (5.10)

The average delta is always lower than 30% of the amplitude delta, so that the measured

drift could be due to this effect.
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Real operation cycles measurements



In every real operation cycle  measurement  we

Amplitude of the magnetic field

observe longitudinal variations of the field harmonics. As in
the case of the step response pattem measurements, only in the
bottom and middle part of the magnet these variations have
the snusoidal shape of a periodic pattern.

The evolution in time of the sextupole pattern amplitude for the case of a flat top time 7= 30 min and a flat
top current Ir»= 11750 A (nominal current of this dipole model) is shown in Fig. 5.26b for the bottom and middle part
of the magnet. The pattern amplitude decreases during the initial ramp until the injection phase starts, in contrast to

what observed during the step response runs.

As the injection phase starts, we observe a slope variation in the amplitude curve and the
beginning of a slower decay of the pattern amplitude. Figure 5.26¢ reports a logarithmic plot of the
decay phase for the longest measurement performed. This plot shows that the decay curve does not
approach a straight line as in the case of the step response measurements. It seems that there is a
superposition of different time constants and that the highest are so large that even with this very
long measurement (12000 s of injection phase) it is not possible to reach a simple exponential
regime. In shorter measurements (1000 s) the decay phase can be well fitted with an exponential
curve. The time constants of these fitting curves range from 2000 to 5000 s. These time constants
are larger than the measurement time and have to be considered only as characteristic times of the

initial phase of the decay.

During the final ramping up, there are evident variations of the amplitude of the sextupole pattern. The
variation in time of the pattern amplitude is shown in Fig. 5.27 for measurements with different pre-cycle flat top times.

Fig. 5.26 Amplitude variation in time after a pre-cycle with Ty = 30 min, Ly = 11750A4. @) Current sweep during
measurement. b) Comparison between different positions. C) Logarithmic plot of the decay phase
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The pattern amplitude behaves essentially in the same way in the two locations at the bottom and center of the
magnet, and is strongly dependent on the current cycle.

the final ramp.

With very short flat top times the pattern has a decreasing amplitude during the initial ramp, until it disappears
during the injection phase (see the curves for a 1 minute flat top time in Fig. 5.27). The periodic pattern restores during

from the beginning of the decay:

In analogy to the study of the step response measurements we have estimated the pattern amplitude decay
during the injection phase measured with different pre-cycles, considering the pattern amplitude variation after 1000 s

O0A=A (l‘g+1000 S) -A (tg)
where ¢, is the time at which injection begins.

(5.11)

Fig 5.27 Variation in time of the amplitude of the normal sextupole pattern after pre-cycles with different flat top times.
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The results show that there is a clear correlation between & A(B3) and both the flat top
current and the flat top time. The change of sextupole pattern scales approximately linearly with the
flat top current reached in the pre-cycle (see Fig. 5.28).

The scaling with the flat top time (see Fig. 5.29) in the pre-cycle can be well approximated

by the following exponential function

_@H
r

OA=K+BlEl-e E (5.12)

where K, B, and 1 are fitting parameters and - is the flat top time. The values of the fitting parameters are reported in

Table 5.1 for different measurements.

| Bottom coils \ 1.82 | -2.87 10" | +610°
B3 T(* 10°9)
\ Mid coils \ 1.95 | -2.36 10" | -1.09 10° |

Table 5.1 Fitting parameters for the dependence of the sextupole pattern amplitude variation after
1000 s from the beginning of the injection phase on the pre-cycle flat top time. The parameters are

calculated by means of the fitting function (5.12).

As reported in [34], the decay of the average multipoles during injection follows the same scaling with the pre-

cycle flat top time and flat top current.

Average value of the field harmonics

The normal sextupole always exhibits the same kind of variation in time, as shown in Fig. 5.30 for
measurements after pre-cycles with different flat top times in the same cases reported in Fig. 5.27. At the end of the
decay we observe the characteristic ‘snapback’ [34], and the following enhancement of the average value during the

final ramp.
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times. The time reference is set to zero at the beginning of the injection phase.

It is interesting to note that the variation of the average value of the sextupole with very
short flat top times is not negligible.

This variation is not due to the relation of the current distribution with the superconductor
magnetization because in this case the amplitude of the pattern is negligible. The variation may be
due to the thermally activated “flux creep” occurring in the superconducting material of the cable,

as already observed in [34, 68].

Phase of the modulation of the field harmonics

The variation of the initial phase of the field modulation during the operation cycle measurements is always
very small. The phase variation during the injection phase of the longest measurement performed is reported in Fig.
5.31 in the bottom position of the magnet. The average translation velocity in this case is of about 9 10 m/s, equivalent

to 0.3 mnvh. The longitudinal displacement of the pattern is negligible.



0.43

> 0.42 \  bottom coilsi
C
Soe| Mm.
o 52%
8 0.40 | e
o e
£ 0.39 o
= Xy
S 0.38 e
o™ qy%&é’w 3
m 0.37 %0&2 T
S WQ@&Z:%% 0o o
0.36 AN
0.35 ‘ ‘
0 2000 4000 6000 8000 10000 12000
time (s)
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Comparison between average and amplitude variations

The amplitude variation and the field drift exhibit a similar dependence on the pre-cycle flat

top time at both positions of the magnet.

The variation of the average value is plotted in Fig. 5.32 as a function of the amplitude
variation for every real operation cycle measurement.

The apparent correlation between the variation of the amplitude and the variation of the
average in correspondence of the middle part of the magnet indicates that the two phenomena are

indeed dependent on each other, as hypothesized in [28].

In the case of real operation cycles measurements we can exclude that the average value
variation is only due to the effect of misalignment between the coil group and the sinusoidal
oscillation explained in Section. 5.2.8 for the step response measurements. If that were the case,
due to the linear dependence shown in eq. 5.5, we would expect the same kind of temporal evolution

for the amplitude of the periodic pattern and the average value of the harmonic considered. Instead,



we note in Fig. 5.30 the characteristic snap-back of the average value, which has not any

corresponding feature in the amplitude variation in the same measurements (see Fig. 5.27).
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5.3 MODEL VALIDATION

Upper pole
inner cable

Fig. 5.33 Cross section of one aperture of the double aperture dipole model MBSMT1 used for the
measurements of magnetic field pattern.
This section is dedicated to the analysis of the experimental findings described in Section
5.2. In this analysis we use both the network and the distributed parameters circuit model. The first
one is based on a network approach which approximates the cable as a lumped parameters circuit.
The network model (see Section 2.3.2) used in this study isthat described in detail in[19].

The distributed parameters circuit model is described in Section 3.1.

5.3.1 Basic assumptions for the simulations

We postulate that the periodic magnetic field pattern is due to the long current loops
circulating in the cable. In this study we consider a single cable subjected to both a current increase
and, proportional to it, a non uniform time dependent magnetic field. The iron saturation at high
magnetic fields is neglected. The strands of the cable are assumed to be identical, ideally

transposed, and soldered to current leads via electrical resistances which are much lower than the



contact resistances of the cable. Finally, the latter are assumed to be equal, and uniform along the
cable length.

Therefore, among the possible sources of non uniform current distribution listed in Section
2.1 the only source of long range current loops that we consider here is the field variation along the

cable length.

A schematic view of the coil cross section of one aperture of the LHC dipole model
MBSMTL1 isshown in Fig. 5.33. The coil has two poles (upper and lower) assembled from an inner
and an outer layer. The inner layer of a single pole is wound from 15 turns arranged into 3 blocks,
while the outer layer has 26 turns arranged in 2 blocks corresponding to different angular positions.

We have numbered turns and blocks as shown in Fig. 5.33.

The layers in a pole are wound individually, and the cable ends are either soldered together
a the interconnection between layers and poles or connected through splices to the current leads.
Because of the assumption of low splice resistance compared to the interstrand resistance in the
cable, we can identify a cable unit length in a single layer (i.e. between two splices) as the shortest

length to be used for analysis purposes.

In order to simulate the experimental results on the amplitude of the magnetic field pattern
reported in Section 5.2, we assume that the longitudinal oscillations of the secondary field are only
due to the current distribution in the inner cable of the magnet. This assumption is motivated by the
fact that the periodicity of the measured oscillations of the secondary magnetic field is equal to the

inner cable twist pitch.
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Fig. 5.34 Magnetic flux density perpendicular to the broad face of the inner cable of the 1m long
LHC dipole magnet MBSMT 1. The reported field is the average field across the cable width

calculated with ROXIE, at a total current of 11500 A.

A unit length of the inner layer cable is made of 28 strands, with atotal length L of 27.8 m, a
twist pitch of 115 mm., and athickness of 1.88 mm.

Aswe stated previously, we take spatial variations of the magnetic flux as the only source of
long range current loops. The distribution of the magnetic flux density perpendicular to the broad
face of the cable calculated with the computer program ROXIE [69] is shown in Fig. 5.34. We

recognize two types of variations of the perpendicular field along the cable length.

Sharp, short range variations of the field are due to the cable bending over the magnet bore,
while step changes in the value of the field along the straight part of the cable correspond to the
transitions from block to block.

We have performed two sets of simulations using either the network or the continuum
model, in order to imitate the cable excitation with current cycles made of alinear ramp up followed

by a current plateau as were performed in the experiments reported in the previous section.



Simulations with the network model are aimed to look at the fine details of the origination of
the short and long range eddy currents. The size of the network model grows quickly with the
length of cable analyzed. For this reason we limited the ssmulations to a short length of cable to
explore genera features of the transient response of the long range current loops to field changes.

We have then performed simulations of the whole cable response to current steps with the
distributed parameters model. This model does not reproduce accurately the details, but is suitable
for the smulation of afull cable length in a magnet.

In both sets of simulations we have varied parametrically the flat top current and the ramp rate in

order to study their influence on the current distribution.

5.3.2 Network model

The simulations using the network model have been focussed at an ideal cable close to the
coil midplane. In order to minimize the computation time, a four strand cable has been considered.
The cable length L is equal to approximately 23 twist pitches. We have assumed a symmetric
magnetic field distribution along half of the cable length, shown in Fig. 5.35. The magnetic field is
zero at the cable ends and at its center. In between, there are regions of uniform magnetic field. The
magnetic field is twice as high at the inner edge of the cable as at the outer one.

This geometry imitates a complete turn in a dipole magnet, where the uniform field regions
represent the straight length of the magnet included between the low field regions at the magnet
ends.

Let us consider elemental current cycles made of a ramp up followed by a current plateau.
Let aso the plateau current be much less than the critical current. The results of simulations show

that soon after the beginning of the cycle eddy currents associated with the local value of dB/dt



Background
magnetic flux
density (a.u.)

2

o=
Magnetic field
sensors

Fig 5.35 Magnetic flux density perpendicular to the broad face of the ideal cable considered for

1,368

—~

B (au.
L
w w
(o)) (o))
(@] ~

1,363
1,362

agnetic Flux Density

M
P
w
(o))
=

1,36

the ssimulations performed with the network model.

1,365
1,364 -

A f—
N

N7

N

Iy ~- t=40 \
-& =140
— =640
-o-1=2020
1 2 3 4 5 6

Sensor number

Fig. 5.36 Development of magnetic field pattern in the uniform field region



0,014

S i
\C_d/ 0,012 /
c
E 0,01
g
o 0,008 -
=
5 0,006 /
(<}
o
2 0,004 -
g
< 0,002
0 T T T T T
0,2 0,3 04 05 0,6 0,7 0,8

Flat top current (a.u.)

Fig. 5.37 Dependence of the amplitude of the magnetic field pattern on the flat top current at the

end of the ramp.

These eddy currents produce a uniform field in the neighborhood of the cable, without any
periodic oscillation. Gradually, however, the strand currents become different in the ends of the
cable, where the magnetic field has alongitudinal gradient, thus originating current loops.

As time advances, the current in these loops diffuses from the cable end regions into the
center. The time ty needed to complete this process is much higher than the time of development of

uniform, short range eddy currents.

The buildup and following decay of a periodic magnetic field pattern is shown in Fig. 5.36. The
amplitude of the pattern increases at t < tp and decreases afierwards.

Calculations show that if the time of the ramp is short compared to #,, the amplitude of the
periodic magnetic field pattern on the plateau at a certain moment, />, does not depend on the

ramp rate, whileit is linearly dependent on the flat top current (see Fig. 5.37).

5.3.3 Distributed parameters model



We have performed calculations with the continuum model for a cable made of 28 strands, asin

reality, and with a cable composed of 8 equivalent superstrands.

In accordance with measured value in the dipole model MBSMT1, we have taken a contact
resistance between strands in the range 10 to 20 uQ per contact.

We have used the magnetic field map shown in Fig. 5.34 as an input for the calculation,
scaling the field proportionally to the current in the magnet. In the ssimulations performed with the
continuum model we have neglected the field variations across the cable width. This, as
demonstrated in the detailed analysis discussed in the previous section, is inessential for the

development of long range current loops.

The results of simulations are reported in Fig. 5.38 for a current step with a ramp rate of 50 A/s and a final
current of 2000 A. It can be noticed that soon after the beginning of the ramp sharp current spikes appear in these
regions of high field gradient (Fig. 5.38a). At the end of the field ramp the correspondence between the field profile and
the current pattern is less evident (Fig. 5.38b). After 1000 s from the beginning of the current flat top, we note a
remarkable current difference between the strand currents, but the correspondence with the field profile is lost (Fig.

5.38c).

As we have postulated that the magnetic field pattern is due to long current loops circulating
in the cable, it is reasonable to assume that its amplitude is proportional to the difference between
the currents flowing in the strands. In particular we have taken the values of the maximum
difference between the strand currents in the middle of the uniform field regions, Al,.., as the
reference quantity for a qualitative comparison with the amplitude of the magnetic field pattern

measured outside the cable and next to these positions.

As an example we compare in Fig. 5.39 the amplitude of the total magnetic field pattern at
position 4 (» = 17 mm and 6 = 35°) to the parameter Al,,, calculated for turn 7-a which faces the

point selected. The amplitude of the total field pattern has been reconstructed at point 4 from the



data presented in Section 5.2, obtained with the rotating coils placed in the middle of the straight
length of the magnet. The comparison is shown for a step response measurement with 7 = 2000A
and RR = 50 A/s. We have performed the simulations with the complete 28 strands cable, for

different values of the cross contact resistances (10 and 20 pQ).

The value of 41, a the end of the ramp calculated in four consecutive straight parts of the
cable (turns 7-8, see Fig. 5.33) is shown in Fig. 5.40 for the case of RR = 450 A/s. These
simulations have been performed with the equivalent, 8 superstrands cable for the whole set of ramp
rates and flat top currents considered in the experiments, and the results confirm that the amplitude
of Al a the end of the ramp is proportional to the flat top current and approximately independent

on the ramp rate, as obtained in the experiments and with the network model.
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The temporal Average value of thefield harmonics evolution of the average

harmonics over the two coil groups mid and
bottom [see definition (5.3)] is shown in Fig.
5.19 for the step response measurement  with a

2000 A flat top current and a 450 A/s ramp rate and in Fig. 5.20 for the step response measurement
with 8000 A flat top current and 450 A/s ramp rate. The variation in time is different for the two
positions in the magnet, but each kind of pattern is repeated in different experiments.

The average in the mid coil measurements always decreases during the constant current
phase, while in the bottom coil measurements it always increases. The variation of the average
value after 1000 s from the beginning of the flat top phase has been taken as a parameter to
compare different experiments. The plot of this parameter versus the flat top current and the ramp
rate is shown in Figs. 5.21 and 5.22 respectively.

In the case of the mid coil measurements we can observe that the variation of the average is

approximately linear with the final current, and constant with the ramp rate.

Phase of the modulation

The variation in time of the phase § of the normal sextupole pattern is shown in Figs. 5.23
and 5.24 for the same measurements reported in Figs. 5.19 and 5.20. We have found the same kind
of phase variation in every measurement. We observe that the maximum change of the phase of the
sinusoidal fit of the measured data is approximately equal to 0.1 radians during a total time of 1000
s. The phase shifi of the sinusoidal pattern is equivalent to a translational movement of the pattern

along the magnet axis. The average linear velocity of this translation can be calculated as follows:
A9 o (5.6
v, = —— :
‘T Ar 2m

where Vi is the translational velocity and A ¢ the total phase variation.



We obtain an average velocity of about 1.8 1 0° m/s, equivalent to 6.6 mm/h. This value is
negligible, also considering that in the final part of the decay the phase variation in time is slower

than in the initial part.

Comparison between average and amplitude variations

Considering the measurements referred to the middle part of the magnet, we note that the
same dependence on the final current and on the ramp rate is shown by the variation of the
amplitude of the sextupole pattern after 1000 s of decay and by the variation of the average over the
mid coil group in the same time interval. These variations are in fact linearly dependent on the final
current and independent of the ramp rate. The variation of the average is in all cases in the range

from 10 to 15% of the variation of the amplitude of the periodic pattern (see Fig. 5.25).

The variation of the average could be due to the mismatch between the total length covered
by the measurement coils and the inner cable twist pitch. The integral of the sinusoidal variation
over this region contributes to the determination of the average value and depends linearly on the
value of the amplitude of the sinusoidal curve. The highest possible variation of the average value is
found when one border of the region covered by the coils happens to be aligned with a zero of the
sinusoidal variation. In this case the measured average (indicated as hmeas) can be expressed by
the following equation:

Zmeas = Zreal +Zerr (5 7)
where hya is the real value of the average and he is the error due to the misalignment. The error

is given by the following expression:

Log=1

- o (L, —L
Oher = J’ Asin P2 Hdz = 43 - cos (L, = L,) (5.8)
0 LP Lp



where Lo is the length of the region covered by the coils array. The variations in time of the

measured values of the average are given by:

Jzea = 5zreal + 5zerr (5 9)

In the case of the mid coils array the relation between the variations in time of the average

and of the amplitude due to the quoted misalignment is given by:

0h,=0325 4 (5.10)

The average delta is always lower than 30% of the amplitude delta, so that the measured

drifi could be due to this effect.
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5.2.10

Real operation cycles measurements



In every real operation cycle  measurement  we

Amplitude of the magnetic field

observe longitudinal variations of the field harmonics. As in
the case of the step response pattem measurements, only in the
bottom and middle part of the magnet these variations have
the snusoidal shape of a periodic pattern.

The evolution in time of the sextupole pattern amplitude for the case of a flat top time 7= 30 min and a flat
top current Ir»= 11750 A (nominal current of this dipole model) is shown in Fig. 5.26b for the bottom and middle part
of the magnet. The pattern amplitude decreases during the initial ramp until the injection phase starts, in contrast to

what observed during the step response runs.

As the injection phase starts, we observe a slope variation in the amplitude curve and the
beginning of a slower decay of the pattern amplitude. Figure 5.26¢ reports a logarithmic plot of the
decay phase for the longest measurement performed. This plot shows that the decay curve does not
approach a straight line as in the case of the step response measurements. It seems that there is a
superposition of different time constants and that the highest are so large that even with this very
long measurement (12000 s of injection phase) it is not possible to reach a simple exponential
regime. In shorter measurements (1000 s) the decay phase can be well fitted with an exponential
curve. The time constants of these fitting curves range from 2000 to 5000 s. These time constants
are larger than the measurement time and have to be considered only as characteristic times of the

initial phase of the decay.

During the final ramping up, there are evident variations of the amplitude of the sextupole pattern. The
variation in time of the pattern amplitude is shown in Fig. 5.27 for measurements with different pre-cycle flat top times.

Fig. 5.26 Amplitude variation in time after a pre-cycle with Ty = 30 min, Ly = 11750A4. @) Current sweep during
measurement. b) Comparison between different positions. C) Logarithmic plot of the decay phase
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The pattern amplitude behaves essentially in the same way in the two locations at the bottom and center of the
magnet, and is strongly dependent on the current cycle.

the final ramp.

With very short flat top times the pattern has a decreasing amplitude during the initial ramp, until it disappears
during the injection phase (see the curves for a 1 minute flat top time in Fig. 5.27). The periodic pattern restores during

from the beginning of the decay:

In analogy to the study of the step response measurements we have estimated the pattern amplitude decay
during the injection phase measured with different pre-cycles, considering the pattern amplitude variation after 1000 s

O0A=A (l‘g+1000 S) -A (tg)
where ¢, is the time at which injection begins.

(5.11)

Fig 5.27 Variation in time of the amplitude of the normal sextupole pattern after pre-cycles with different flat top times.
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The results show that there is a clear correlation between & A(B3) and both the flat top
current and the flat top time. The change of sextupole pattern scales approximately linearly with the
flat top current reached in the pre-cycle (see Fig. 5.28).

The scaling with the flat top time (see Fig. 5.29) in the pre-cycle can be well approximated

by the following exponential function

_@H
r

OA=K+BlEl-e E (5.12)

where K, B, and 1 are fitting parameters and - is the flat top time. The values of the fitting parameters are reported in

Table 5.1 for different measurements.

| Bottom coils \ 1.82 | -2.87 10" | +610°
B3 T(* 10°9)
\ Mid coils \ 1.95 | -2.36 10" | -1.09 10° |

Table 5.1 Fitting parameters for the dependence of the sextupole pattern amplitude variation after
1000 s from the beginning of the injection phase on the pre-cycle flat top time. The parameters are

calculated by means of the fitting function (5.12).

As reported in [34], the decay of the average multipoles during injection follows the same scaling with the pre-

cycle flat top time and flat top current.

Average value of the field harmonics

The normal sextupole always exhibits the same kind of variation in time, as shown in Fig. 5.30 for
measurements after pre-cycles with different flat top times in the same cases reported in Fig. 5.27. At the end of the
decay we observe the characteristic ‘snapback’ [34], and the following enhancement of the average value during the

final ramp.
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It is interesting to note that the variation of the average value of the sextupole with very
short flat top times is not negligible.

This variation is not due to the relation of the current distribution with the superconductor
magnetization because in this case the amplitude of the pattern is negligible. The variation may be
due to the thermally activated “flux creep” occurring in the superconducting material of the cable,

as already observed in [34, 68].

Phase of the modulation of the field harmonics

The variation of the initial phase of the field modulation during the operation cycle measurements is always
very small. The phase variation during the injection phase of the longest measurement performed is reported in Fig.
5.31 in the bottom position of the magnet. The average translation velocity in this case is of about 9 10 m/s, equivalent

to 0.3 mnvh. The longitudinal displacement of the pattern is negligible.
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Comparison between average and amplitude variations

The amplitude variation and the field drift exhibit a similar dependence on the pre-cycle flat

top time at both positions of the magnet.

The variation of the average value is plotted in Fig. 5.32 as a function of the amplitude
variation for every real operation cycle measurement.

The apparent correlation between the variation of the amplitude and the variation of the
average in correspondence of the middle part of the magnet indicates that the two phenomena are

indeed dependent on each other, as hypothesized in [28].

In the case of real operation cycles measurements we can exclude that the average value
variation is only due to the effect of misalignment between the coil group and the sinusoidal
oscillation explained in Section. 5.2.8 for the step response measurements. If that were the case,
due to the linear dependence shown in eq. 5.5, we would expect the same kind of temporal evolution

for the amplitude of the periodic pattern and the average value of the harmonic considered. Instead,



we note in Fig. 5.30 the characteristic snap-back of the average value, which has not any

corresponding feature in the amplitude variation in the same measurements (see Fig. 5.27).
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