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Plasmas are nowadays widely applied in the research domain and in 

industrial exploitation. Since plasma parameters are quantities that can be easily 

influenced by the measurement set-up, particular attention should be paid in the 

plasma experiment phase, during the development and application of the 

diagnostic techniques.  

 

As regards the diagnostic techniques, two different classes can be 

distinguished: passive and active. 

In the former case, the radiation from the plasma is studied. From the 

technical point of view it is a relatively simple application even if the phase of 

the result interpretation can be relatively complicated. In the latter case, an 

interaction with the plasma takes place. For example, a microwave beam can be 

directed to the plasma. This can offer much more information about the plasma 

itself, but is both more demanding on the experimental setup and can interfere 

with the object of study. 

 The main aim of this thesis was the development of different plasma 

diagnostic techniques, both active and passive. Those techniques were applied 

in different plasmas. Even if this work is split in two parts, each referring to a 

different experiment, the common basis still exists and has to be searched in the 

study and in the integration of those plasma measurements methods.  

 

The first part of this work concerns a magneto hydrodynamic (MHD) power 

extraction experiment (Chapter 1), where electrical characterization was 

performed (Chapter 3 and 4). The more difficult task that had to be considered 

in this kind of plasma was the non-equilibrium technique used for ionization. In 

order to gain information on its parameters a, microwave measurement set-up 

was firstly studied (Chapter 2) and later realized (Chapter 4). 

 Plasma measurements with an active technique such as a microwave beam, 

allows. With a microwave measurement set-up it is possible to time resolve the 

electron number density by means of wave absorption and phase shifting. 

However this kind of technique has a lot of disadvantages: firstly the beam 

itself cannot be managed easily. A lot of equipment is necessary; for example a 

wave guide, emitting horns, a receiver, three stab tuners, crystal diodes and 

mixers. Besides this, if microwave power and frequency are not chosen 

carefully, the beam could affect the plasma with an energy deposition on it. 

 

The second part of this thesis is still related to magneto hydrodynamics. The 

experiment described aims to demonstrate the feasibility to influence fluid-
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dynamic parameters on a hypersonic flow by means of the MHD interaction 

(Chapter 5 and 8). At this stage, conjointly with electrical measurements and 

fast gating imaging (Chapter 9), a broad application of emission spectroscopy 

was chosen as a diagnostic technique (Chapter 10). Unfortunately, this type of 

hypersonic plasma had been proven to lie far beyond equilibrium, so several 

assumptions were necessary for the relative interpretation of the spectroscopic 

results (Chapter 6 and 7). 

Emission spectroscopy can be used to measure the Atomic State Distribution 

Function (ASDF). In general, the occupation of excited levels depends on their 

energies, the electron density and the electron temperature. Therefore, from the 

ASDF the electron density and temperature can in principle be derived. This 

can work only in plasmas which are not too far from (Boltzmann and Saha) 

equilibrium. The need for assumptions on equilibrium departure is always a 

serious limitation in the measurement of electron density and temperature, if 

plasmas have a small scale and a low pressure as in the cases analyzed.  

 

 

 

 

 

 



Diagnostic Techniques for MHD Interacting Plasmas 

 

 5 

 

 

 

 

PART I 



Diagnostic Techniques for MHD Interacting Plasmas 

 

 6 



Diagnostic Techniques for MHD Interacting Plasmas 

 

 7 

1. The MHD Power Extraction Experiment 

 

 

1.1 Introduction 

With increasing demands for high altitude, high velocity flight together with 

the associated flow control and power requirements, the theoretical 

applicability of MHD interaction becomes increasingly evident.  Using 

efficient, non-equilibrium ionization methods, it has been shown that the 

amount of power that can be coupled out of such a flow can be significantly 

higher than the theoretical power requirements of ionization.
i,ii,iii 

Magnetohydrodynamic (MHD) generators have been the focus of research for 

several decades.  These devices have several attractive features in that no 

moving parts are involved in the process of power extraction, and their 

performance increases with the increasingly high velocity and rarified flow 

encountered in such cases as high altitude flight and reentry vehicles.  In 

ground based generation, MHD generators have the potential advantage of 

using the direct exhaust from a combustion process as a working fluid.  

Because the exhaust is at a higher temperature than the steam which involve 

through turbines in conventional power plants, the potential entropy losses are 

lower.  The first recorded attempt to develop an MHD generator was conducted 

at the Westinghouse Research Laboratories around the Second World War.
iv
  

Since then, many research organizations around the world have been involved 

in developing new approaches to design efficient generators. 

The basic principle for MHD power extraction is simple. The generator 

produces power by passing a high-velocity, conducting fluid through a strong 

magnetic field.  In most cases, ionized gas is used as a conducting fluid.  Some 

other examples include liquid metal as a working fluid
v
. As the ionized gas 

passes through a magnetic field, an EMF is produced, resulting in a current that 

is drawn off to an external load.  To achieve high power extraction and 

efficiency in an MHD generator, the conductivity of the working fluid is 

critical.  This poses the single greatest challenge in gas flow MHD generators.  

Thermal ionization of most gasses, certainly those encountered in flight and 

standard combustion, is not significant below temperatures of around 4000 

Kelvin.  This places severe limitations on the range of materials that can be 

used in such a generator.  Of particular concern is the electrode material which 

is necessarily in contact with the ionized flow.  While it is possible to add seed 

materials to the flow to reduce the effective ionization potential, the requisite 

low ionization energy in such a material ensures that it will be highly reactive.  

Addition of alkali metals such as Cesium or Potassium can reduce necessary 

ionization temperatures to the range of 1800 to 3000 K.  Sodium, Barium, and 
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Strontium have also been explored to this end.
vi
  Technical problems involved 

in obtaining thermal ionization have been detailed by Muntenburch.
vii
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Fig. 1.1: Basic MHD Generator Configurations: a) Faraday Generator b) 

Faraday Segmented Generator c) Hall Generator d) Segmented Cross-linked 

Generator. 

 

The collisionality of electrons in the flow has two principle effects: collisions 

decrease the conductivity of the flow, thereby hampering power extraction, but 

collisionality is also necessary to keep the charge carriers moving along with 

the flow.  This latter condition is critical because, for nearly all MHD 

generators, the vast majority of the enthalpy of the flow is contained in the 

neutral species.  This energy is transferred to the electrons via collisions and 

coupled out via Lorentz forces as the electrons travel through an applied 

magnetic field. 

As it turns out, the collisionality, and its resultant effect on the conductivity 

of the flow, can have a complicated effect on the nature of the MHD interaction 

with the flow.  The two most relevant parameters in assessing the effects of 

collisionality in an MHD generator are the electron Hall parameter (
e

Ω ) and 

the loading factor (k). The Hall parameter is defined as the ratio of the electron-

cyclotron frequency ( /eB m ) to the electron collision frequency (νe).  The 

load factor is defined as the ratio of the voltage across the generator to the 

theoretical EMF generated across the flow through the magnetic field.  It 

should be pointed out that issues such as non-uniform flow and conductivities, 

cases where electrons are not the chief current carriers, and cases where the 
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magnetic field generated by the MHD current is large, will complicate the 

above arguments significantly. 

Stated differently, the load factor may be viewed as the ratio of the current 

drawn to the maximum short circuit current.  For high Hall parameters, the 

electrons tend to spiral around magnetic field lines rather than convect with the 

flow.  This results in an upstream buildup of negative charge causing what is 

referred to as the Hall field.  High Hall parameters also result in the 

conductivity becoming a tensor with relatively low conductivity across the 

magnetic field and higher conductivity along the magnetic field. 

There are four main classes of MHD generators referred to as Hall and Faraday 

generators.  These are diagrammed in figure 1.1.  Faraday generators are ideal 

for low Hall parameters.  Hall generators are suitable for high Hall parameters. 

 

 

1.2  Ionization 

MHD power extraction onboard a hypersonic vehicle can offer high levels of 

power generation for use by advanced payloads or engine bypass 

architectures
viii

.  However, the requisite power necessary to maintain ionization 

(and conductivity) is of critical importance to any realistic vehicle.  The power 

required to maintain a given electron number density is a function of two 

quantities: energy cost per electron, and rate of electron loss.  There are several 

parameters of interest in hypersonic flow which scale favorably for MHD 

applications including: 

Low density flow- increases conductivity for a given electron number density 

while also decreasing the power required to sustain a given electron number 

density by decreasing the rate of electron attachment.   

High velocity flow- provides attractive scaling of MHD effects primarily by 

increasing the voltages associated with an MHD generator.  Interestingly, 

because the flow time through an MHD channel is typically much greater than 

the lifetime of an ionized electron in the flow, the increased mass flow rate 

associated with increasing velocity will, in most cases, incur no penalty with 

regard to the power requirements necessary to maintain ionization (as opposed 

to seeding methods). 

High temperature- associated with any hypersonic vehicle can often be used 

as a source of ionization – or to reduce the cost of ionization. 

Because thermal ionization at the static temperatures in Mach < 12 flow is 

not possible without prohibitive levels of seeding (considering the high mass 

flow), non-equilibrium ionization methods must be employed.  From a practical 

point of view, these non-equilibrium methods of ionization must be able to 

generate and sustain the ionization with the lowest power input.  As stated 

previously, the power budget of sustaining a non-equilibrium plasma with a 
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prescribed number density is proportional to the energy cost of creating a new 

electron in the plasma. When a non-equilibrium plasma is sustained by a DC or 

oscillating electric field, the electron energy balance is determined by the 

electron energy gain from the field and energy losses in various inelastic and 

elastic processes. Thus the electron temperature for a given set of gas 

parameters is defined by the ratio of electric field strength to the gas number 

density (E/N), or at low densities, by the ratio of electric field strength to the 

field oscillation frequency, E/ω.
ix

 Typical values of E/N in non-equilibirium 

discharges in molecular gases lie in the range (1-6)×10
-16

 V cm
2
.  The 

corresponding electron temperatures defined by the electron distribution 

function’s (typically non-Maxwellian) slope at low energy are in the range 1-3 

eV
ix

.  Under these conditions, only a small fraction of the plasma electrons are 

capable of ionization requiring 10-15 eV energy.  The vast majority of electron 

collisions result in electron energy loss, but produce no ionization.  This energy 

loss is significant because high energy electrons are necessary to produce 

ionization.  Therefore, only a very small fraction of the power (less than 0.1%) 

is actually spent on ionization, the corresponding energy cost being several tens 

of keV per electron
x
.  

In order to achieve high ionization efficiency, it would be desirable to have 

electrons of very high energy (hundreds of thousands of electron volts).  In this 

regard, high energy electron beams are a natural choice.  Injection of electrons 

accelerated to keV and higher energies into a gas results in ionization cascades 

as the beam propagates and loses its energy.  The resulting energy cost per 

electron is around 34 eV for air, which is only a few times greater than the 

ionization energy of air molecules.
i,ii,iii

   Models for analyzing the plasmas 

generated by high energy electron beams have already been applied to 

supersonic MHD power generation and flow controls.
x,xi,xii

  Although electron 

beams are one of the most efficient way known of creating non-equilibrium 

plasmas, some inherent practical difficulties cannot be ignored.  Problems 

related to mechanical and thermal strengths of injection foil are the main 

concern, and beam scattering in high-density gases can pose significant 

constraints on gas penetration. 

Problems related to electron-beam based ionization have given way to 

alternative techniques for producing high-energy electrons.  Plasma generation 

by high-voltage DC pulses has been recently explored
i
.  It has been argued that 

high-energy electrons can be produced by applying a strong electric field which 

should be strong enough to sustain a steady plasma with a given electron 

number density, and at the same time must be able to generate electrical 

breakdown of the gas.  To maintain a prescribed level of ionization, a strong 

electric field should be applied for only a short time. Well before the plasma 

completely decays the next pulse is applied to generate new electrons.  In this 
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way a desired average electron number density can be sustained by matching 

pulse duration with the rate of recombination or attachment.  An important 

factor in assessing the performance of the repetitive-pulse approach is that the 

reduced energy cost due to the strong electric field in the pulse is offset 

somewhat by the need to produce more electrons in the pulse than the required 

average electron number density in the flow.  

Modeling results clearly indicate that the increased electric field in a high 

intensity electrical pulse, will lead to formation of a large group of high-energy 

electrons in a high-voltage, nanosecond pulse: this would cause a dramatic 

increase in ionization.
i,x

  Results also reveal that very short, high-voltage pulses 

at very high repetition rates could sustain a prescribed average ionization level 

in air with the required power input significantly lower than that in a DC 

discharge.  

In experimental work object of this thesis, a source of multi-kilovolt (2 ns, 

100 kHz,∼ 30 KV), nanosecond pulses with high repetition rate was used to 

ionize the flow through a Mach 3, continuous electrode Faraday MHD channel.  

Current/voltage characteristics of the channel are presented.  Microwave 

absorption technique was fully developed and tuned on a static cell, as it 

produces a plasma with the same characteristics of the flowing experiment. 

Details on the experimental hardware, theory, and results have been included in 

chapter following. 

 

 

1.3 Microwave as a Diagnostic System 

For plasma with such a low degree of ionization, it was necessary to develop a 

suitable diagnostic system for a better comprehension of the phenomena 

involved in the discharge. 

Microwave and infra-red diagnostic techniques that measure electron number 

density and collision frequency are essential for characterization of the 

phenomenon.   For small scale, cold plasmas however, to observe a measurable 

effect, standard phase shift and transmission methods require a diagnostic 

frequency close to the plasma frequency.  This result in a refractive index far 

from unity, which, in turn, causes significant reflection at the boundaries along 

with refraction, diffraction, and other three dimensional effects that are difficult 

to quantify or compensate for.  It was developed a simple, non-intrusive 

microwave transmission diagnostic method applicable to small-scale plasmas 

and capable of measuring both electron number density and collision frequency 

was developed.  To accomplish this, a magnetic field is applied across the 

plasma.  By varying the intensity of the applied magnetic field, the frequency of 

the upper hybrid resonance for transmission of extraordinary waves, as 

predicted by the Asher-Appleton-Hartree dispersion relation, is scanned 



Diagnostic Techniques for MHD Interacting Plasmas 

 

 12 

through the microwave diagnostic frequency.  Qualitatively, the location of the 

absorption band depends on the electron number density, and the width of the 

band depends on the collision frequency.  Because there is essentially zero 

transmission through the absorption band, the measurement relies on 

determination of the microwave frequency and the magnetic field intensity 

corresponding to zero transmission.  This method has a considerable advantage 

over traditional microwave transmission methods, in which reflections at the 

edges of the plasma along with refraction, diffraction and impedance matching 

among the microwave antennas and the plasma can have a strong impact on the 

measurement
xiii

. 
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2. Microwave Propagation Theory 
 

 

2.1 Microwave Propagation 

For a better comprehension about how microwaves can be usefully utilized in 

plasmas, it is necessary to give a better insight to their nature. 

As with all electromagnetic waves, microwaves can be described by electric 

and magnetic fields, E and H, which are functions of space and time.  The 

electric and magnetic fluxes, D and B, at any point are related to the field 

intensities by 

 

 ε=D E        (2.1)  

 µ=B H       (2.2)  

  

The electric permittivity, ε, and the magnetic permeability, µ, are scalar 

numbers in isotropic materials.  These vector fields are all related by Maxwell’s 

equations: 

 

 ρ∇ =D�       (2.3) 

 0∇ =B�       (2.4) 

 
t

∂
∇× = +

∂

D
H i       (2.5) 

 
t

∂
∇× = −

∂

B
E       (2.6) 

 

In a dielectric material, for which no free charges or currents exist, ρ = 0 and 

i = 0. Maxwell’s equations may be rearranged by taking the curl of both sides 

of equation (2.6): 

 

 
t

∂
∇×∇ × = −∇ ×

∂

B
E .     (2.7) 

 

Using the vector relation 2( )∇×∇× = ∇ ∇ − ∇A A A� , this becomes 

 

 ( ) 2

t

∂
∇ ∇ − ∇ = −∇×

∂

B
E E�      

 ( ) [ ]21

t
µ

ε

∂
∇ ∇ − ∇ = − ∇ ×

∂
D E H�      
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2

t t
µ

∂ ∂ 
−∇ = −  ∂ ∂ 

D
E       

 
2

2

2t
µε

∂
∇ =

∂

E
E        

 
2

2

2
0

t
µε

∂
∇ − =

∂

E
E      (2.8) 

 

Under the same assumptions it may be shown in a from equation 2.5 that 

 

2
2

2
0.

t
µε

∂
∇ − =

∂

H
H      (2.9) 

 

Equations 2.8 and 2.9 are wave equations with general solutions of the form 

 

            ( ) ( ) ( )( )ˆ ˆ ˆf g h ,
x y z x y z

t k x t k y t k z k k kω ω ω+ + + + +i j k  

    (2.10) 

 

where 
2 2 2 2 2

x y z
k k k k ω µε+ + = =  and the functional dependencies f, g, and h are 

determined by imposed boundary conditions.  Any function may be treated as 

the sum of its fourier components, so that without loss of generality all 

solutions may be considered to be of the form 

 

 
( ) ( )

( )( )

cos cos

ˆ ˆ ˆcos

x x y y

z z x y z

A t k x t k y

t k z k k k

ω φ ω φ

ω φ

+ + + + ⋅

⋅ + + + +i j k
   (2.11) 

 or   
( )j t kz

e
ω ±

          (2.12) 

 

The most basic microwave circuit element is the transmission line, or 

waveguide.  The microwave field is contained within conducting waveguide 

walls, and in the ideal case is propagated without reflection or loss.  This ideal 

case is achieved for a waveguide of uniform cross section in the limit of 

infinitely conductive walls.  The wave equations are solved by applying 

boundary conditions for the electric and magnetic fields along the perimeter of 

the wall.  These boundary conditions are best described by first considering 

Maxwell s’ equations in their integral form: 

 

 
A

d q⋅ =∫ D s�  (2.13) 
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 0
A

d⋅ =∫ B s�  (2.14) 

 
C A A

d d d
t

∂
= +

∂∫ ∫ ∫H l i S D S� � ��  (2.15) 

 
C A

d d
t

∂
= −

∂∫ ∫E l B S� ��  (2.16) 

 

These equations are equivalent to the differential form given by equations 2.3 

to 2.6. 

At the surface of an infinitely conductive waveguide wall, the tangential 

component of electric field, Et, must equal zero.  This can be illustrated by 

considering a small rectangle enclosing a segment of the surface. 

 

 
Fig. 2.1: Rectangular enclosure around the surface. 

 

As the length ∆n approaches zero, the area enclosed by the rectangle also 

approaches zero.  In the limit of zero area, the integral 
A

d∫B S�  equals zero, and 

so by equation (2.15) the line integral 
C

d∫ E l��  must also equal zero.  This line 

integral can be written as the sum of the integrals along the normal and 

tangential sides: 

 

( )

( ) ( ) ( )

,

, , ,

n n

n
C

t t n t

t n n t t

d t n dn

t n n dt t t n dn t n dt

+∆

+∆

+∆ +∆

= +

+ + ∆ + + ∆ +

∫ ∫

∫ ∫ ∫

n

t n t

E l E

E E E

��
. 

   

As the length ∆n approaches zero, the integral of dn∫ nE  must also approach 

zero.  Thus the total contribution to the integral around the rectangle depends 

only on Et.  The tangential electric fields on each side of the surface, Et(t,n) and 

Et(t,n+∆n), must therefore be equal.  Because the wall is assumed to be 

infinitely conductive, Et must be zero as an infinitely conductive surface will 

not support a tangential electric field. 
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The second boundary condition, 0
n

∂
=

∂
nB

at the wall, is proved using a 

volume element enclosing a portion of the surface. 

 

 

Fig. 2.2: Volume element enclosing the surface. 

 

Applying the divergence theorem to equation 2.14 yields 

 

 0
A

d =∫ B S�� .  (2.17) 

 

As the length ∆n approaches zero, the contribution to this integral from the 

sides vanishes, so the magnetic field normal to the upper and lower surfaces, 

Bn(t,n+∆n) and Bn(t,n), must be equal.  As was shown earlier, the tangential 

electric field is zero at the surface, so by equation 2.6 there can be no time 

dependent component of Bn.  If there is no initial magnetic field, Bn and Hn 

must remain zero at all later times. 

The electric and magnetic fields inside the waveguide are more conveniently 

expressed in terms of their transverse and axial components.  If the coordinates 

are chosen such that the axis of the waveguide lies in the z direction, the fields 

may be written as 

 

 = +
t z

E E E   (2.18) 

 = +
t z

H H H   (2.19) 

 

The electric and magnetic fields in a waveguide are found by solving the 

wave equation and then applying the appropriate boundary conditions.  A 

solution need only be found at one frequency, since any arbitrary solution may 

be formed from a linear combination of solutions at single frequencies.  Also, 

the equations may be simplified by choosing the coordinate axes such that the 

propagation vector lies along the z axis.  This will generate solutions of the 

form 

 

 ( ) ( )j t z
e

ω β−
= +

t z
E e e   (2.20) 

 ( ) ( )j t z
e

ω β−
= +

t z
H h h   (2.21) 



Diagnostic Techniques for MHD Interacting Plasmas 

 

 17 

 

where e and h are functions of x and y only, and β is a propagation constant.  

Substituting this form for the fields into Maxwell s’ equations yields the 

reduced form 

 

 jωµ∇ × = −
t t z

e h   (2.22) 

 
t z

ˆ ˆ ˆej j jβ β ωµ∇ × − × = − ×∇ − × = −
t z t z t

e k e k k e h  

   (2.23) 

 jωε∇ × =
t t z

h e   (2.24) 

 
t z

ˆ ˆh j jβ ωε×∇ + × = −
t t

k k h e   (2.25) 

 jβ∇ =
t t z

h h�   (2.36) 

 jβ∇ =
t t z

e e� .  (2.37) 

 

Equations 2.5 and 2.6 have been split into axial and transverse components, 

resulting in six equations.  Solutions may be decomposed into three separate 

cases: transverse electric, referred to as TE or H modes, for which ez = 0, hz ≠ 

0; transverse magnetic, referred to as TM or E modes, for which hz = 0, ez ≠ 0; 

and transverse electromagnetic, or TEM waves, for which ez = hz = 0.  The 

transverse electric case is considered first. 

Splitting equation 2.9 into transverse and axial components, it is clear that 

both Ht and Hz must satisfy the wave equation separately.  A solution for Hz 

will be found first.  It will then be possible to determine the full field solution in 

terms of Hz.  Dividing the wave equation for Hz by the exponential term e
j(ωt-βz)

 

and dotting with the unit vector in the z direction yields the following scalar 

equation for hz: 

 

 2 2

t z z
h h 0

c
k∇ + =   (2.28) 

 

where the substitution 2 2 2

c
k k β= −  has been made.  By separation of variables, 

 

 ( ) ( )zh cos sin cos sinx x y yA k x B k x C k y D k y= + ∗ + . 

   (2.29) 

 

The boundary conditions are determined by the geometry of the waveguide.  

For a hollow rectangular guide of the type used in the experiments, let the 

interior dimensions be a×b. 
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Fig. 2.3: Hollow rectangular waveguide. 

 

Setting ze  and the tangential electric field to zero at the boundaries, the 

magnetic boundary conditions are found from equations 2.23 and 2.25 as 

 

 zh
0@ 0,x a

x

∂
= =

∂
  (2.30) 

 zh
0@ 0,y b

y

∂
= =

∂
  (2.31) 

 

Applying these conditions to equation 2.29, 

 

 
z

h cos cos
nm

n x m y
A

a b

π π   
=    

   
  (2.32) 

 

for integer values of n and m.  The new coefficients for x and y are the 

eigenvalues of the propagation constants kx and ky.  The remaining magnetic 

field components and the electric field components are found by substitution of 

this result into equations 2.22 to 2.27.  A solution with particular values for n 

and m is referred to as the TEnm mode. 

Solutions to TM modes are found similarly from the wave equation for the 

axial electric field, analogous to equation 2.28: 

 

 2 2

t z z
e e 0

c
k∇ + = .  (2.33) 

 

The boundary condition that the tangential component of electric field must 

go to zero at the wall is imposed: 
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 0@ 0, , 0,
z

e x a y b= = = ,  (2.34) 

 

which leads to a solution of the form 

 

 
z

e sin sin
nm

n x m y
A

a b

π π   
=    

   
.   (2.35) 

 

The remaining electric field components and the magnetic field components 

arefound from equations 2.22 through 2.27 using this result for ez. 

Note that in the solutions to the TE and TM waves, each mode corresponds 

to a different eigenvalue, kc, determined by the relationship 

 

 

2 2

2

,c nm

n m
k

a b

π π   
= +   
   

.  (2.36) 

 

Recall that the constant kc is defined by ( )2 2 2

ck k β= − . Using the above 

relation for kc and the definition 2 2
k

π
ω µε

λ
= =  allows the propagation 

constant to be determined as 

 

 

2 2 2

2 2 2
c

n m
j j k k j

a b

π π π
γ β

λ

     
≡ = − = − −     

     
. 

   (2.37) 

 

This quantity can be either real or imaginary, depending on the sign of the 

quantity 
2 2

ck k− .  The cutoff wavelength, where γ is equal to zero, is given by 

 

 
2 2 2 2 2 2

2 2
c

ab

n b m an m

a b

π
λ

π π
= =

+   
+   

   

.  (2.38) 

 

At wavelengths less than λc, γ is imaginary and microwaves propagate with a 

sinusoidal variation in the z direction of e
-γz

.  However, at wavelengths greater 

than λc, γ is real and the factor e
-γz

 corresponds to an exponentially decaying 

wave.  This is what is meant by cutoff.  Tables 2.1a and 2.1b on the following 

pages list the transverse variation in electric and magnetic field components for 

TM and TE modes.  The full field components are obtained by multiplying by 
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the factor 
( )j t z

e
ω β−

.  Also given in the tables is the impedance Znm of each 

mode.  From the relationship 0 ck k>  for propagating waves, the impedance of 

TM modes can be seen to be less than the free space impedance Z0, and the 

impedance of TE modes to be greater than Z0. 

 

Table 2.1a: Electric and magnetic field components of TM modes. 

 TM modes 

hz 0 

hx 

0, 0

2 2
0

E
sin cosnm jk m n x m y

Z a bn m
b

a b

π π π

π π

   
   

        
+    

     

 

hy 

0, 0

2 2
0

E
cos sinnm jk n n x m y

Z a bn m
a

a b

π π π

π π

   
−    

        
+    

     

 

ez 0,E sin sinnm

n x m y

a b

π π   
   
   

 

ex 

0, 2 2
E cos sinnm

nm

j n n x m y

a bn m
a

a b

β π π π

π π

   
−    

        
+    

     

 

ey 

0, 2 2
E sin cosnm

nm

j m n x m y

a bn m
b

a b

β π π π

π π

   
−    

        
+    

     
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Znm 0

0

nmZ
k

β
 

 

Table 2.1b: Electric and magnetic field components of TE modes. 

 TE modes 

hz 

0,

0

E
cos cosnm n x m y

Z a b

π π   
   
   

 

hx 

0,

2 2
0

E
sin cosnm nmj n n x m y

Z a bn m
a

a b

β π π π

π π

   
   

        
+    

     

 

hy 

0,

2 2
0

E
cos sinnm nmj m n x m y

Z a bn m
b

a b

β π π π

π π

   
   

        
+    

     

 

ez 0 

ex 

0
0, 2 2

E cos sinnm

jk m n x m y

a bn m
b

a b

π π π

π π

   
   

        
+    

     

 

ey 

0
0, 2 2

E sin cosnm

jk n n x m y

a bn m
a

a b

π π π

π π

   
−    

        
+    

     
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Znm 
0

0

nm

k
Z

β
 

 

Because the propagation constants are different for each mode, some modes 

may be propagating while others are not. A standard rectangular waveguide 

typically has one dimension twice the length of the other, a = 2b.  For this type 

of waveguide, the cutoff wavelengths for the first three modes are listed in 

Table 2.2 below. 

 

Table 2.2: Cutoff wavelengths for cavity modes. 

nm λc 

10 2a  

01 a  

11 2a 5  

 

Comparing equations 2.35 and 2.32 for TE and TM modes, it can be seen 

that the lowest order TM mode is the TM11 mode, since the trivial solution is 

obtained by setting n and m to zero.  However, nontrivial TE modes exist for 

either n or m equal to zero.  Between wavelengths of a and 2a only the TE10 

mode propagates and all other modes are cut off.  For this reason, the TE10 

mode is known as the dominant mode, and it is in this single mode condition 

that microwave waveguides are typically operated. 

The TE10 mode is sketched in figures 2.4a and 2.4b, showing the electric and 

magnetic field lines.  Physically, the mode number for TE modes corresponds 

to the number of half wave oscillations of the electric field in the perpendicular 

and parallel directions, respectively.  So for a TE10 mode, the electric field has a 

one half period sinusoidal oscillation perpendicular to the polarization vector, 

and is constant in the parallel direction.  The waveguide sketches depicted in 

figures 2.4a and 2.4b below, are oriented such that the propagation vector is in 

the horizontal direction. 
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Fig 2.4a: E-plane field lines (electric field in red, magnetic field in blue). 

 

 

Fig 2.4b: H-plane field lines (electric field in red, magnetic field in blue). 

 

A brief discussion of the third class of propagating wave solutions, the 

transverse electromagnetic wave, is in order.  Following the form of equations 

2.22 through 2.27 and setting the axial components of the electric and magnetic 

fields equal to zero. The Maxwell’s equations may be written as 

 

 0∇ × =
t t

e   (2.39) 

 ˆβ ωµ× =
t t

k e h   (2.40) 

 0∇ × =
t t

h   (2.41) 

 ˆβ ωε× = −
t t

k h e   (2.42) 

 0∇ =
t t

h�   (2.43) 

 0∇ =
t t

e� .  (2.44) 
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Equation 2.39 shows that e must be the gradient of a scalar potential 

function.  In order for equation 2.44 to also be satisfied, the scalar function 

must be a solution to Laplace’s equation: 

 

 2 0∇ Φ =
t

.  (2.45) 

 

The boundary condition 0=
t

E  implies that the gradient of Φ  in the 

tangential direction, 
s

∂Φ

∂
, must be zero along the boundary.  The unique 

solution to Laplace’s equation is then Φ  equal to a constant.  Physically, this is 

a statement that the voltage is uniform along the boundary, which clearly must 

be true for the infinitely conductive walls assumed in the problem.  In this case 

0= ∇Φ =E  everywhere inside the perimeter of the waveguide, and the only 

solution is the trivial one.  Therefore, TEM modes cannot be sustained by 

hollow conducting waveguides. 

In a rectangular waveguide the propagation constant may be determined from 

equation 2.37, and is seen to depend upon the waveguide dimensions.  A guide 

wavelength may be defined as 

 

 
2 2 2

2 2

2
g

n m

a b

π π
λ

β π π π

λ

≡ =
     

− −     
     

.  (2.46) 

 

In the case of a single propagating TE10 mode, this expression becomes 

 

 
2 2

2

2
g

a

π
λ

π π

λ

=
   

−   
   

  (2.47) 

 

and depends only on the larger dimension, a, of the rectangular guide.  The 

guide wavelength is always greater than the free space wavelength, λ. It may 

vary between λ as a → ∞ , and infinity at 
2

a
λ

= .  A guide which has a varying 

cross section along its length will allow propagation with a similarly varying 

guide wavelength.  If the guide should become smaller than the cutoff 

dimension, corresponding to 
2

a
λ

< , then the wave will cease to propagate and 
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instead will decay exponentially as an evanescent wave over a characteristic 

length scale 
1

γ
, where 

 

 

2 2
2

a

π π
γ

λ

   
= −   

   
.  (2.48) 

 

As shown on Tables 2.1a and 2.1b, the wave impedance is also a function of 

both the mode number and the guide dimensions. 

 

 

2.2 Microwave Behavior in Plasmas 

The preceding section describes microwave propagation through a linear 

medium, for which µ and ε are constant.  The free charges present in a plasma 

give rise to dispersion and attenuation. 

Consider the displacement of electrons by an amount ξ due to an applied 

electric field E = E0e
jωt

.  The electrons will be accelerated by this field as 

 

 
2

02

j td
m eE e

dt

ωξ
= −   (2.49) 

 

which, solving for ξ, becomes 

 

 
02 2

j te e
E e E

m m

ωξ
ω ω

= =   (2.50) 

 

The current resulting from this electron motion will be 

 

 
2

d ne
i ne j E

dt m

δ

ω
= − = − .  (2.51) 

 

This expression can be rewritten in terms of a conductivity, σ, equal to 

2

2

ne
j

mω
− .  This conductivity may also be expressed as a complex permittivity.  

Rewriting equation 2.5 in terms of the conductivity yields 

 

 ( )0
jσ ωε∇× = +H E .  (2.52) 
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The two terms on the right hand side may be combined in a complex 

permittivity as 

 

 
0

j
σ

ε ε
ω

= − .  (2.53) 

 

Using this definition, the propagation constant is 

 

 
2

2

0 0

1
ne

c cm

ε ω ω
β

ε ε ω
= = − ,  (2.54) 

 

where the quantity 
2

0

ne

mε
 is the plasma frequency, 

p
ω .  Equation 2.54 can be 

expressed in terms of this frequency as 

 

 

2

2
1

p

c

ω ω
β

ω
= − .  (2.55) 

 

Note that this propagation constant is real only if the frequency of the 

incident wave is greater than the plasma frequency, and pure imaginary when 

the incident wave is at a lower frequency. 

The preceding analysis neglects the effects of collisions.  To first order, an 

average collision removes the directed velocity of an electron.  This can be 

accounted for by adding another term to equation 2.49: 

 

 
2

02

j td d
m eE e m

dtdt

ωδ δ
ν= − − ,  (2.56) 

 

where ν represents the collision frequency.  The solution for δ then becomes 

 

 
( ) 0

j te
E e

m j

ωδ
ω ω ν

=
−

.  (2.57) 

 

Substituting this result into equation 2.51 yields the current 

 

 
( ) ( )

2 2

0 0

j t j tne j jne
i E e E e

m j m j

ω ωω

ω ω ν ω ν

− −
= =

− −
 (2.58) 
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and the conductivity 

 

 
( )

22
0 p

jjne

m j j

ε ω
σ

ω ν ω ν

−−
= =

− −
.  (2.59) 

 

The electric permittivity defined by equation 2.53 is found to be 

 

 
( ) ( )

2 2

0

0 0
1

p p
j

j
j j

ε ω ω
ε ε ε

ω ω ν ω ω ν

   −
= − = −    − −    

, 

   (2.60) 

 

which may be expanded into its real and imaginary parts to yield 

 

 

2 2

0 02 2 2 2
1

p p
j

ω ων
ε ε ε

ωω ν ω ν

   
= − −      + +   

.  (2.61) 

 

In contrast to the collisionless case, the permittivity in the collisional plasma 

is complex, resulting in phase shift and attenuation of an incident 

electromagnetic wave.  Recalling the relation 

 

 
0

c

ε ω
β

ε
=   

 

and substituting the value of permittivity from equation 2.61 allows a complex 

propagation constant to be defined.  This may be written in terms of real and 

imaginary dielectric constants: 

 

 
0

Re
ε

µ
ε

 
=   

 
  (2.62) 

 
0

Im
ε

χ
ε

 
=   

 
  (2.63) 

 

where the values of χ and µ are found from equation 2.61 as 
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1
1 2

2 2 22 2 2

2 2 2 2 2 2

1 1
1 1

2 2

p p pω ω ων
µ

ωω ν ω ν ω ν

         = − + − +           + + +         

 

   (2.64) 

 

 

1
1 2

2 2 22 2 2

2 2 2 2 2 2

1 1
1 1

2 2

p p pω ω ων
χ

ωω ν ω ν ω ν

         = − − + − +           + + +         

 

   (2.65) 

 

There is no longer an abrupt change in transmission for frequencies greater 

than or less than the plasma frequency as with the collisionless case.  Figures 

2.5  and 2.6 show the refractive and attenuation indices for several different 

cases using equations 2.64 and 2.65.  In the particular case of ν ω>  and 

p
ω ω> , note that the refractive index can be greater than one.  Also note the 

more gradual change in attenuation near 
p

1
ω

ω
=  for the more highly collisional 

plasma.  This differs markedly from the form given by equation 2.55 for the 

collisionless case.   

For bounded plasmas, or any other conductive medium, microwave 

attenuation leads to a finite penetration depth.  Following the derivation of 

equation 2.8, it can be seen that finite conductivity adds another term, resulting 

in the new form 

 

 
2

2

2
0

tt
µε µσ

∂ ∂
∇ − − =

∂∂

E E
E .  (2.66) 

 

Considering only a wave of a single frequency, ω, and assuming a plane 

wave of amplitude A propagating along the z axis, the following simplified 

form is realized: 

 

 2 2A A A 0jβ ω µε ωµσ− + − = . (2.67) 

 

This can be solved for the new propagation constant 

 

 2 2 1j j
σ

β ω µε ωµσ ω µε
ωε

 
= − = − 

 
.  (2.68) 
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Equation 2.68 can be separated into real and imaginary parts.  The imaginary 

part, which arises due to the finite conductivity, implies an exponential decay 

of the incident wave.  For a good conductor, this may be defined as a conductor 

with conductivity satisfying the relation 

 

 1,
σ

ωε
�   (2.69) 

 

equation 2.68 can be simplified as 

 

 
2 2

j j
ωµσ ωµσ

β ωµσ= − = − .  (2.70) 

 

Refractive Index

0
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0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5 3 3.5 4

ωωωωp/ωωωω
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Fig. 2.5: Refractive index for various collision frequencies. 

 

Because the propagation constant has units of inverse length, a skin depth 

may be defined as 

 

 
s

2
,δ

ωµσ
≡   (2.71) 

 

where one skin depth corresponds to the penetration depth at which the field 

amplitude falls to e
-1

 of its original value.  Since the real and imaginary parts 
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have equal magnitude, this distance also corresponds to one wavelength in the 

conducting medium. 

 

Fig. 2.6: Attenuation index for various collision frequencies. 

 

Most metals behave as good conductors at microwave frequencies.  For 

microwaves at 2.45 GHz, the frequency used in most of the experiments, the 

skin depth of copper and aluminum is less than 2 µm.  The conductivity of 

plasmas, however, may vary over a wide range depending on the density and 

collision frequency.  In plasmas for which inequality 2.69 is not satisfied, the 

above simplification is not possible.  The conductivity, given by 2.59, is also 

complex.  The propagation constant derived from equation 2.68 then becomes 

 

 

2 2

p 0 0 p2

0 0 2 2 2 2
1 j

ω ωµ ε νω
β ω µ ε

ω ν ω ν

 
= − −  + + 

, (2.72) 

 

and can be separated into its real and imaginary components to yield the spatial 

frequency and attenuation constant, respectively: 

 

( )

1
2

2 2
2 2 2

p p p2

2 2 2 2 2 2

1
Re 1 1

2

ω ω ων
β ω µε

ωω ν ω ν ω ν

         = − + − +            + + +         

 

   (2.73) 
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( )

1
2

2 2
2 2 2

p p p2

2 2 2 2 2 2

1
Im 1 1

2

ω ω ων
β ω µε

ωω ν ω ν ω ν

         = − − + − +            + + +         

 

   (2.74) 

 

These are equivalent to equations 2.64 and 2.65, showing the equivalence of 

complex permittivity and complex conductivity.  As in the case of a conductor 

with a real conductivity, the skin depth of a plasma is the reciprocal of Im(β). 

 

 

2.3 Microwave Propagation in Plasmas 

Ideally, microwave transmission through a plasma may be expressed as a 

function of the microwave frequency, the path length through the plasma, and 

the permittivity of the plasma.  First two quantities are easily determined.  After 

making a few general assumptions as to the nature of the plasma, a dispersion 

relation between the permittivity and the relevant plasma parameters may then 

be decided upon.  The Asher-Appleton-Hartree dispersion relation for 

extraordinary waves propagating across a magnetic field
xiv

 was chosen. This 

relation is the following: 

 

 

( )
2

2

2

2

1

1
1

p

b
e

e p

i

w

w
iv

iv w

ε η χ= −

= −

− −
− −

 (2.75) 

 

where wp, wb, and ve are the electron plasma, cyclotron, and collision frequency 

respectively, all non-dimensionalized (divided) by the angular frequency of the 

diagnostic microwave signal. During experiment it was found that explicit 

expressions for the refractive index, η, and attenuation constant, χ, are too 

unwieldy to be of use here  Values of η and χ are readily obtainable from given 

values of wp, wb, and ve.  The attenuation constant, χ, may then be used to 

calculate the attenuation of a wave propagating through the plasma as follows 

(transmission factor): 

 

 2 1
2

1

2
ω
χ (x x )

P ce
P

 
− − 

=  
 
 

 (2.76) 
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where P refers to microwave power, x refers to distance the signal has 

propagated, c is the vacuum speed of light, and ω is the angular frequency of 

the propagating wave.  The quantity is squared to convert from attenuation of 

the electric field to attenuation of signal power. 

 

In this framework, attenuation is due to an imaginary component to the 

square root of the permittivity as seen in equation 2.75 (χ).  This imaginary 

component can arise from two separate sources.  For a collisionless plasma 

with positive permittivity, the introduction of collisionality results in 

attenuation through absorption.  On the other hand, the permittivity in 

collisionless plasma (at low frequencies) can also be negative, resulting again 

in an imaginary square root.  Attenuation in this case corresponds to reflection.  

Increasing collisionality tends to blur the distinctions between these cases.  

 

 

2.4 Sources of Error in Transmission Measurements 

Even if the absorption per unit length of plasma is completely understood, 

there are other factors that can significantly influence actual measurements.  

These will be briefly discussed here: 

 

Reflected microwaves from the plasma and the microwave horns can 

interfere with each other during the measurements.  It is important to 

note that transmission measurements, as interpreted by the bulk 

absorption of the plasma, do not take into account reflection of 

microwaves due to abrupt changes in the permittivity at plasma 

boundary.  Furthermore, in a manner similar to an optical etalon, 

standing waves can build up between the abrupt changes in 

refractive index encountered at the microwave horns, at the plasma 

edges, and at the walls of the discharge cell.  The fraction of 

microwave energy coupled out of the system will be affected by both 

changes in the attenuation index, and the refractive index.  In our 

case, this effect is increased by the fact that the microwave horns are 

connected to the plasma via the stainless steel magnet bore.  A large 

fraction of the microwave power reflected from the plasma will then 

reach the launching horn, and likewise, microwave power reflected 

from a microwave horn will propagate back to the plasma.  

 

Refraction and diffraction of the diagnostic wave front across the 

plasma can contribute to the focusing of the microwaves and can 

interfere with measurements of both microwave transmission and 
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path length.  In this investigation, a 0.5” orifice plate was placed just 

past the plasma in an attempt to select out only the portion of the 

wavefront that passed through the plasma.  However, the intensity 

and relative phase of the microwaves impinging upon this hole will 

still affect the amount of microwave energy that gets through the 

hole. 

 

While the previous two arguments are qualitative, it was observed 

changes of the order of 80% in measured transmission corresponding 

to relatively small changes in the placement of the microwave horns.  

Similar effects have been observed
xv

 and explained in other 

microwave transmission setups. 

 

These effects are typically avoided by selecting a diagnostic frequency with a 

wavelength much less than the plasma length scale, and far from any resonance 

or absorption.  This results in a refractive index close to unity.  Using such a 

method requires a long path length over which a measurable effect may be 

integrated.  In our case, the path length through the plasma will be shown to be 

on the order of one vacuum wavelength of the plasma frequency.  To obtain a 

measurable effect, therefore, our diagnostic frequency must be close enough to 

the plasma frequency such that the above sources of error can no longer be 

neglected. 

 

 

2.5  Non-Transmission 

While measurements of a particular transmission fraction are prone to 

uncertainty, we claim that the measurement of zero transmission is quite 

reliable and particularly useful in a finite plasma.  In our system, we can 

confidently claim that for a non-transmitting plasma, we will not observe 

transmission through our system.  Such a measurement is not changed by the 

various wave effects, reflections, and impedance issues that strongly influence 

a measurement of transmission fraction through a small, three dimensional 

plasma.  This is complemented by the fact that significant changes in the 

refractive index that could also eliminate transmission via reflection are 

concurrent with a significant decay of a propagating signal.   

 

Zero transmission refers to either a resonance, at µ =0, or a cutoff, at µ=∞.  In 

the case of a collisionless plasma, these conditions both correspond to complete 

reflection and are easily solved for from equation 2.75, 
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Cutoff        

 b

2

p w1w ±=  (2.77)  

 

Resonance 

 
2

b

2

p w1w −=  (2.78)   

 

Fig. 1.7 shows the resultant Clemmow-Murray-Allais, or CMA diagram, 

depicting zones of transmission and the lack of a mode of extraordinary 

microwave transmission.   

 

 

Fig. 1.7:  CMA diagram for extraordinary waves through a magnetized plasma. 

 
Although this plot assumes a collisionless plasma, it does give insight as to 

where regions of interest might be located, in particular the zone of zero 

transmission to the left of Fig. 1.7.  This band is referred to as the upper hybrid 
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resonance, so called because its frequency corresponds to the sum, in 

quadrature, of the plasma frequency and the cyclotron frequency. 

Collisionality affects transmission through the plasma in several ways.  Most 

significantly in our case, collisionality reduces the depth of upper hybrid 

resonance band when scanned far from the plasma frequency (ωp/ω < 1).  This 

is unfortunate, because taking Fig. 1.7 at face value, one could, in theory, use 

an arbitrarily high diagnostic frequency (ωp/ω ~ 0) and perform measurements 

near ωb/ω = 1.  Using such a high frequency (short wavelength) diagnostic 

would, in turn, make our plasma relatively large and mitigate many of the 

problems associated with measurements of the transmission fraction. 
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3. Experimental Accessories 

 

 

3.1 Magnet 

The magnet used was an Oxford Instruments NiTi, split pair system with 

three optical axes (bores).  A maximum field of 6.5 Tesla is attainable with the 

system.  The field is designed to be uniform over a 7.62 cm
3
 at the center of the 

three bores which are 7.62 x 8.89 cm parallel to the field, 7.62 x 7.62 cm 

perpendicular to the field and horizontal (the wind-tunnel bore), and 3.81 cm 

diameter vertical (the microwave diagnostic bore). 

 

 

3.2 High Voltage Pulser 

The non-equilibrium plasma is sustained via a custom Russian made high 

repetition rate, high voltage, short pulse duration electrical pulser.  The device 

uses an L-R-C circuit along with the switching characteristics of a diode to 

create 2 ns, high-voltage, 25 Ω, pulses at a maximum repetition rate of 

100 kHz.  Using a 3 x 75Ω cable transformer with an effective output 

impedance of 225 Ω, the pulser is then capable of generating a 30 kV pulse 

across a 400 Ω load. 

 

1.20"

0.125" radius
Pulser Electrode

6 degree half angle

0.063"
3.00" radius

0.003" radius tip

1.00"

MHD Electrode

1.00"

a) b)
 

Fig. 3.1: Schematic of MHD electrodes for power addition/extraction (a), and 

pulser electrodes for sustaining conductivity (b). 

 

 
3.3 Mach 3 Flow 

Mach 3 flow is achieved through a converging/diverging nozzle, the contour 

of which was taken from an existing wind-tunnel at the Princeton University 
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Gas Dynamics Laboratory operating at a similar Reynolds number.  The test 

cross-section measures 3 cm x 5 cm.  Because of its optical clarity, resistance to 

abrasion, electrical insulation, and mechanical properties at high temperatures, 

polycarbonate was used for the tunnel construction. 

The tunnel is run in an in-draft setup using an air ejector pump to maintain the 

low back pressure.  The plenum pressure is throttled down to 450 Torr resulting 

in laminar flow through the test section with static conditions of 10 Torr and 

106 Kelvin at a velocity of620 m/sec. 

 

3.4 The Static Cell 

The static discharge cell was a rectangular box constructed from 9.52 mm 

polycarbonate sheet.  The cell measured 20.32 cm in length with a 3.05x5.08 

cm interior cross-section.  One end of the cell was sealed to a vacuum system, 

and the other end was connected to an air intake with a needle valve.  The 

desired pressures of 1, 5, 10, and 20 Torr were then obtained by throttling the 

intake with the needle valve.  This also provided for a throughput of air to 

sweep out impurities.  The discharge was drawn along the magnetic field lines 

between two flat, 7.62x3.05 cm aluminum electrodes on the sidewalls. 

Because the discharge is drawn along the magnetic field, the magnetic field 

intensity has very little effect on the discharge parameters.  This is verified 

visually, and electronically by monitoring the voltage and current levels of the 

discharge.  Furthermore, due to the pulsed nature of the discharge, when it is 

‘on’ the current density is several orders of magnitude beyond the normal 

current density.  This causes the discharge to use the entire cathode, essentially 

fixing the current density.  

 

 

3.5 Microwave System 

To ensure repeatability, experiments were performed using two microwave 

diagnostic frequencies.  The first frequency of 12.6 GHz was chosen based on 

the geometry of the setup and preliminary estimations of the plasma properties.  

The 2
nd

 frequency of 18.5 GHz was chosen based on results using the first 

frequency.  Both sources had a maximum power around several milliwatts 

which is well below the power required to perturb our plasma significantly.  To 

remove any possible influence of the magnetic field on the microwave 

oscillators, the oscillators were placed three meters from the magnet in a 

ferromagnetic steel box.  The microwave signals were transmitted to and from 

the experiment using low-loss LMR-240 coaxial cable.  As shown in figure 3.2, 

the microwave signal was then broadcast from a WR-112 horn into the  vertical 

bore of the magnet.  A 12.7 mm aluminum orifice plate was placed after the 

discharge cell to select out only the portion of the wave front that passed 
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through the discharge.  Following the path of the microwaves shown in Fig. 

3.2, the transmitted signal then passed through the rest of the magnet bore, into 

the WR-112 receiving horn, into a 27 dB amplifier, into a HP crystal detector, 

and finally into a 50 Ω terminated 400 MHz digital oscilloscope. 

 

 

 

Fig. 3.2 : Schematic of the experimental layout.t 

 

Polarization was observed to be maintained through our system.  Rotating the 

WR-112 horns perpendicular to one another caused the signal to drop to less 

than 2% of its maximum (horns parallel) value.  This in spite of the fact that our 

diagnostic frequencies of 12.6 and 18.5 GHz are well outside of the 7 to 

10 GHz range for which such horns are designed.  Because the polarization will 

be shown to be critical to this experiment, we take the uncertainty in the 

measured transmission fraction to be 2%. 



Diagnostic Techniques for MHD Interacting Plasmas 

 

 40 

To verify that microwave energy would not be conducted around a non-

transmitting plasma, two test pieces were constructed, one from aluminum and 

the other from graphite.  The test pieces were fabricated to the same dimensions 

as the plasma.  Inserting either of these test pieces to the same location as the 

plasma caused the measured microwave transmission to vanish. 

 

 
Fig. 3.3: Superconducting Magnet along with the Test Facility. 

 

 

3.6 Electrode Setup 

All electrodes were machined from aluminum jig plate.  This was done for 

two reasons:  Firstly, jig plate is dimensionally stable for machining shapes 

with high aspect ratios.  Secondly, in air, aluminum has the lowest cathode 

voltage drop of any common structural material
ix

 (Although this latter fact will 

be discussed shortly and shown to be inconsequential).  A schematic of the 

pulser electrodes, through which the plasma was sustained, is shown in figure 

3.1b. 

In previous experience, three-dimensional corners were found to create 

sufficient heat to deteriorate the polycarbonate tunnel walls.  For this reason, 

the corners of the pulser electrodes are rounded.  The electrode geometry was 

arrived at through an iterative approach.  A large plasma volume is desired, but 

because of the large density gradients (and associated conductivity gradients) 

across a supersonic flow, wider electrodes allow the discharge current to flow 

mostly through the boundary layer.  In the stream-wise direction, the plasma 

need only be as long as the power extraction/addition electrodes.  Any 

unnecessarily increased length in this direction needlessly heats the flow and 

increases the power load on the pulser. 
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The design of the MHD power extraction electrodes, which will henceforth be 

referred to as the MHD electrodes, has three main constraints:  

 

1)  The MHD electrodes must be in contact with the conductive plasma.  

Because the discharge is in the free stream flow, these electrodes must 

extend from the tunnel wall into the discharge. 

2)  The MHD electrodes must not short out the pulser sustained discharge.  

Their (span-wise) thickness must be small relative to the tunnel width, 

otherwise the pulser sustained discharge will be diverted from the 

supersonic flow into the MHD electrodes leaving a void in conductivity 

between the electrodes. 

3)  Their impact on the fluid flow should be minimal.  Along with the 

second  condition , this suggests a low profile wing geometry. 

 

The resultant MHD electrode design is shown in figure 3.1a. 

 

 

3.7 MHD Current Measurement Setup 

Electrical noise from the pulser, combined with the interaction of the pulser 

electrodes and the MHD electrodes as coupled through the discharge pose 

difficult challenges in measuring the Faraday current.  For an ideally balanced 

pulser discharge, the pulser anode and cathode would receive equal and 

opposite positive and negative voltages respectively.  Unfortunately, this is not 

observed.  Due mainly to asymmetric capacitive coupling of the pulser 

electrodes and their various connecting lines to the ground, the MHD electrodes 

float up and down many kilovolts during a 2ns pulse.  Because of the great 

disparity in this voltage swing relative to the expected MHD voltage/current 

characteristics, filtering is not feasible.  The solution is to isolate the MHD 

electrodes (and associated measurement circuit) from ground and to minimize 

the capacitance of the circuit relative to both ground and to free space, and to 

maximize its impedance to the short, high-voltage pulse.  A small circuit was 

constructed using an LED to measure Faraday current and to achieve optical 

isolation.  A second diode was added to protect the LED from reverse voltages.  

A resistive bridge was used to provide a bias voltage across the channel with 

the intent, at the time, of overcoming the cathode sheath voltage.  The 

resistance bridge also provides isolation between the MHD electrodes and the 

laboratory. 

The device was calibrated by connecting a function generator in parallel with 

the MHD electrodes.  Current was determined by measuring the voltage across 

one of the 2kΩ resistors with an oscilloscope.  This was compared to the output 
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of the PMT as measured on an oscilloscope.  The LED/PMT circuit was found 

to have a threshold of 75 µA, a sensitivity of 20 mV/ma, and, aside from 

propagation delay, a frequency response in excess of 100 MHz. 

 

 

3.8 Discharge Current Measurement Setup 

The discharge current through the pulser electrodes was measured by placing 

a 1.2 Ω shunt (consisting of ten 12 Ω, low inductance, carbon resistors) in 

series with the pulser as shown in figure 3.4.  This setup measures both 

displacement and conductive current through the channel. 

 

I ~ 1 ma

To photomultiplier

(Faraday Current)

U

B

U x B

30 kV Pulser

Vext =  600 Volts

I = 10 ma

22 kΩ

4 x 8 kΩ

100 kΩ

Vbias

2kΩ

Pulser Current

Measurement
1.2Ω

2kΩ

 
fig. 3.4: Diagram of discharge current and Faraday current measurement 

setup. 

 

 

3.9 Imaging 

A Fuji 2800 CCD camera was used to record images of the discharge in the 

MHD channel.  CCD cameras have been found to be resistant to magnetic 

fields of the order of one Tesla and to electrical noise generated by the pulser.  
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The camera has a 6x optical zoom allowing it to be placed a safe distance from 

the magnet.  The camera was positioned downstream of the test section looking 

directly upstream to the discharge through an acrylic window. 
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4. Results & Discussion 
 

 

4.1 Relevant Parameters 

In all experiments presented in this work the magnetic field used was 5 Tesla.  

If an electron collision frequency of 4 GHz per standard Torr is assumed
ix

 the 

resultant Hall parameter at our test section conditions is Ωe ≈ 7.  In the 

boundary layer where the density is approximately three times lower than in the 

Mach 3 flow, the Hall parameter will be on the order of 20.  Since the 

following relation gives the ratio of the conductivities along and across the 

magnetic field lines,  

 

( )2
1 eσ σ⊥ = + Ω

�
,      (4.1) 

 

where σ||  and σ⊥ are the conductivities parallel to and perpendicular to the 

magnetic field respectively, then we expect a huge disparity when comparing 

conductivities between the MHD electrodes to conductivities between the 

pulser electrodes.  The magnetic field is therefore expected to have a dramatic 

effect on the current path of the discharge.  A further consequence of the tensor 

nature of the conductivity is to increase the effective area of the MHD 

electrodes by allowing them to draw Faraday current from a wider area of the 

plasma than their cross section would suggest. 

The flow time through the MHD channel, which is taken to be the time it takes 

for the free stream flow to convect over the pulser electrodes, works out to be 

42 µsec.  This corresponds to four of the 100 kHz high-voltage pulses. 

Theoretical prediction over the properties of the experimental MHD channel 

can be found on figure 4.0. However, some strong deviations from those have 

been observed. Budgetary and time constraints necessitate a relatively small 

scale experimental facility.  This will tend to reduce results for three reasons: 

 

Sheaths – While the voltage of the MHD generator (uBd) varies linearly 

with length, the cathode voltage drop does not.  In this experiment uBd  is 

600 m/s x 5Tesla x 5 cm = 150 volts, which is smaller than the cathode drop 

from aluminum in air of 230 volts
ix

.  Whereas in a large-scale facility this 

voltage drop would be small or negligible with respect to the Faraday EMF, 

it is a dominant feature in this experiment.   

 

The length of the interaction region in this experiment is a couple of 

centimeters.  This reduces the aspect ratio of the channel making 
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segmentation and Hall setups difficult.  The fraction of energy removed 

from a given flow is proportional to the length of the channel.  

 

In low Reynolds number wind-tunnel flows, the boundary layer comprises a 

relatively large fraction of the flow-field.  Dealing with large boundary 

layers and their associated conductivity gradients complicates the design of 

an MHD channel. 
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Fig. 4.0: Predictions for Faraday Generator with continuous and segmented 

electrodes. B = 6 Tesla, <ne>=5×10
11
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; K (loading factor) = 0.5. 

 

4.2 Images of Discharge 

A progression of images of the discharge is shown in figure 4.1 along with 

scaled sketches of the MHD channel cross section.  The images were taken 

from downstream of the MHD. 

In figure 4.1a corresponds to the first and simplest channel design.  In this 

case the pulser electrodes span the full height of the wind-tunnel walls. 
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Fig. 4.1: The iteration of MHD channels from the first setup (a) with the 

plasma entirely in the boundary layer, to the present setup (d) with the plasma 

volume filling and in the supersonic core flow. 

 

It is clear that the entire discharge is confined to the boundary layer.  The 

bulge seen in the plasma in the top left image (without the magnetic field) is 

consistent with the form of the boundary layer of a rectangular supersonic 

wind-tunnel in what is often referred to as the “dog bone” form of the free 
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stream flow.  As expected, applying a magnetic field has the effect of confining 

the current path to the magnetic field lines and, in this case, reducing its 

fraction in the free stream. 

Figure 4.1b shows the second iteration in the development of the MHD 

channel.  In this case portions of the electrodes over the floor and ceiling 

boundary layers are insulated with a 1cm wide layer of 2mm thick 

polycarbonate dielectric.  The luminous portion of the discharge is still 

primarily in the boundary layer.  However, the effect of the applied magnetic 

field is evident to cause a significant amount of the discharge to be confined to 

the volume between the pulser electrodes. 

As shown in figure 4.1c, the pulser electrodes were narrowed further in an 

attempt to remove the discharge entirely from the floor and ceiling boundary 

layers.  The thin profile, wing cross section electrodes described in figure 3.1 

were introduced to measure Faraday current.  Once again, the effect of the 

magnetic field is seen: in this case removing the discharge entirely from the 

boundary layer and into the free stream. 

The final design of the channel is shown in figure 4.1d.  In this case the 

pulser electrodes were widened so as to ionize a greater fraction of the flow 

(60% of the flow passes through the discharge).  The Faraday electrodes are 

now bathed in the plasma with a clear conductive path through the high 

velocity flow.  The additional step of covering the pulser electrodes with 

Kapton tape was implemented to insure that the Faraday current was not 

shorted out.  This is necessitated by the fact that due to the Hall parameter of 7, 

the conductivity along the magnetic field (between the Faraday electrode and 

the pulser electrode and back) is roughly 50 times the conductivity between the 

electrodes.  The nude pulser electrodes effectively neutralize all vertical 

electrical fields in the discharge. 

Horizontal layers of varying brightness are seen in all instances of the 

discharge with the magnetic field on.  These are currently a subject of 

investigation.  

 

 

4.3 Pulse Current and Voltage 

The resistive shunt used to measure the discharge current supplied by the 

pulser was presented in the previous chapter.  To determine the approximate 

impedance of the plasma, resistors were placed in series with the pulser 

electrodes with one atmosphere of air in the wind-tunnel test section (sufficient 

to prevent breakdown).  Time traces of the resulting voltages were recorded on 

an oscilloscope.  Oscilloscope traces corresponding to several resistor values 

were compared to traces corresponding to breakdown through the Mach 3 flow.   
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Visual analysis of shunt signals shows that after breakdown the resistance of 

the discharge is approximately 1 kΩ (relative to the pulser). 

For an ideal cable transformer carrying a pulse of 225 Ω 30 kV, we would 

expect the voltage peak at the pulser electrodes to be nearly 60 kV.  However, 

due to capacitive coupling between the electrodes, their connections to the 

cable transformer, the magnet body, and free space, the actual voltage across 

the pulser electrodes is estimated to peak at approximately 30 kV.  This 

corresponds to a discharge current of less than 30 A through the equivalent 

1 kΩ resistance. 

 

 

4.4 Faraday Current & Voltage 

The principle employed to measure Faraday current was as follows:  The 

MHD channel was run with the magnetic field set to 5 Tesla.  PMT voltage 

traces corresponding to Faraday current were recorded on an oscilloscope.  

Because the circuit (shown in figure 3.4) is only sensitive to current flow in one 

direction, the magnetic field direction was then reversed and data was recorded 

a second time.  It was assumed that the form of the pulser driven discharge 

would be independent of magnetic field direction.  It is clear from the images of 

figure 4.1 that a comparison of the cases of B = 5 Tesla and B = 0 correspond 

to completely different plasmas and would not isolate the measurement of 

Faraday current. 

This method was employed in all cases shown in figure 4.1.  Current vs. time 

traces of the resultant Faraday current are presented in figure 4.2.  Seems that, 

these curves demonstrate for the first time a cold-air supersonic MHD 

generator.  

Kapton foils have proved to be essential in MHD voltage detection, as with 

their absence the Faraday field is shortened by pulser electrodes. 

To gain further insight into the electrical characteristics of the MHD channel, 

current measurements were recorded using a variety of bias voltages and are 

presented in figure 4.3   The cases corresponding to 112 Volts - UB and +UB 

are very similar.  This implies the Faraday voltage to be 56 Volts.  The 

measured current in the 80 Volts - UB case suggests the Faraday voltage is less 

than 80 Volts, which is consistent with the 56 Volt estimate. 
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Fig. 4.2: Faraday current measurements with the magnetic field in each 

direction.  In the bottom graph, the plot has been smoothed with a 250 ns 

Gaussian window. 
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Fig. 4.3: Faraday current measurements with different bias voltages and 

magnetic field directions.  In the bottom graph, the plot has been smoothed with 

a 250 ns Gaussian window.  The order of the curves from top to bottom is the 

same as the order in the legend. 

 

If the Faraday voltage is assumed to be 56 Volts, and considering the peak 

currents in figure 4.3 range from 0.4 to 1.1 mA for corresponding voltages 

ranging from 56 to 300 Volts, then peak conductivities across the MHD 

generator correspond to resistance levels of 140 kΩ to 270 kΩ.  This increase in 

resistance with increasing current flow is consistent with expectations across a 

cathode sheath. 
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Several comparisons with basic theory can be made at this point.  The ratio of 

resistance of the plasma across the magnetic field lines (~200 kΩ) to the 

resistance along the magnetic field lines (~1 kΩ) is approximately 200.  As the 

Hall parameter ranges from 20 to 7 from boundary layers to the isentropic free 

stream, from equation 4.1 we would expect the conductivity ratio to be between 

400 and 50. 

 

 

4.5 Microwave Measurements in Static Cell 

The transmission fraction of extraordinary microwaves propagating through 

our system, was measured at an assortment of different magnetic field values.  

The measurements were performed at both diagnostic frequencies used in this 

investigation.  The results are shown in 4.4 and 4.5.  In all cases, the periodic 

nature of our pulsed ionization scheme is evident with a 10 µsec period.  Also 

in all cases, the system has reached a pseudo-steady state over several seconds.  

A closer inspection shows that the transmission fractions are not explained by a 

simple interpretation based on the calculated values in figure 4.6 and figure 4.8.  

It is possible to attribute this to the refraction, diffraction, reflections, nor 

impedance mismatching discussed previously. 
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Fig. 4.4: Measured transmission of 12.6 GHz microwave through plasma at the 

four pressures investigate. 
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Fig. 4.5:  Measured transmission of an 18.5 GHz microwave signal through 

plasma at the various pressures and magnetic field values investigated. 
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Fig. 4.6:  Calculated transmission of 12.6 GHz microwaves through 3 cm of 

plasma. 
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Fig. 4.7:  Refractive index for transmission of 12.6 GHz microwaves. 
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Fig. 4.8:  Calculated transmission of 18.5 GHz microwaves through 3 cm of 

Plasma. 
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Fig. 4.9:  Refractive index for transmission of 18.5 GHz microwaves. 
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4.6 Emission Spectroscopy 

Emission spectroscopy was used to measure the average rotational and 

vibrational temperatures in the static cell plasma for various pressures.  Figure 

4.10 shows that the rotational temperature increased from 200 K to about 500 K 

as the pressure was raised from 1 torr to 20 torr in the static cell. This 

temperature was measured from several vibrational bands
xvi

. The average 

vibrational temperature was measured to be around 1141 K.  
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Fig. 4.10:  Averaged rotation temperature as a function of static cell pressure 

(two data set are shown). 

 

 

4.7 Results and Discussion from Microwave Data Set 

A very significant feature can be found in the transmission measurements of 

12.6 GHz at 0.4 Tesla in figure 4.4.  In this case no transmission is observed at 

any of the pressures studied. It was then realized that collision frequencies 

considerably lower than what was first assumed could explain the complete 

absorption.  This, combined with the observed transmission at the other applied 

field strengths lead to a significant logical conclusion when compared to the 

calculated transmission values shown in 4.6.  The electron number density and 

electron collision frequency must lie within the following ranges. 
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    2 x10
11

 cm
-3

<  ne  < 10x10
11

cm
-3

   (4.2) 

     νe < 20 GHz                   (4.3) 

 

The measurements at 12.6 GHz motivated the next set of data using the 

18.5 GHz source.  This frequency was chosen, according with the magnetic 

field intensities, to ‘scan’ the upper hybrid absorption band through the number 

density range predicted using the absorption at 12.6 GHz at 0.4 Tesla.  The 

resultant transmission measurements are shown in Fig.  4.5. 

There is a wealth of information presented in this figure, particularly when 

compared with the absorption bands shown in figure 4.8.  The lack of 

transmission of 18.5 GHz at 0.65 Tesla is consistent with the lack of 

transmission of 12.6 GHz at 0.4 Tesla.  Both imply the number density and 

collision frequency range given in equations 4.2 and 4.3.  Here follows all the 

pressure measurements: 

 

1 Torr: 

 

With an applied field of 0.4, 0.5, and 0.8 Tesla, significant transmission 

is observed.  Initially, at 0.6, 0.65, and 0.7 Tesla no transmission is 

observed.  At 3 µsec, 0.6 Tesla begins to transmit.  These observations, 

viewed in light of the calculated transmission fractions shown figure 

4.5Fig. , lead to the conclusion that the electron collision frequency is 

in the range of 5 to 10 GHz and the electron number density is in the 

range of 2x10
11

/cm
3
 to 9x10

11
/cm

3
.  At 3 µsec the number density falls 

below the 0.6 Tesla resonances.  This happens in the vicinity of 3x10
11

 

per cm
3
.  These number density ranges are shown graphically in figure 

4.11. 
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Fig. 4.11:  Electron number density for 1 Torr plasma over one 10 µsec pulser 

cycle. 

 
5  Torr: 

 

The transmission data at 5 Torr is quite similar to the data at 1 Torr.  

The transmission at 0.6 Tesla begins at about 7.5 µsec (ne ~ 3x10
11

 per 

cm
3
), and 0.5 Tesla does not transmit at first.  This latter observation 

implies the initial electron number density to be approaching 10
12

 per 

cm
3
.  These ranges are shown in figure 4.12. 
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Fig. 4.12: Electron number density for 5 Torr plasma over one 10 µsec pulser 

cycle. 

 

10 Torr: 

 

This case follows the trend of the previous two cases in that no 

transmission of the 0.6 Tesla plasma is observed at all.  In addition, the 

0.5 Tesla plasma also blocks initially.  The remaining 9 µsec, in which 

the 0.5 Tesla plasma transmits while the 0.6, 0.65, and 0.7 Tesla 

plasmas do not transmit implies that the electron collision frequency is 

less that 20 GHz.  For electron collision frequencies between 5 GHz and 

20 GHz, the lack of transmission at both 0.6 Tesla and 0.65 Tesla 

implies the electron number density to be in excess of 3x10
11

 per cm
3
.  

These ranges are shown in figure 4.13. 
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Fig 4.13:  Electron number density for 10 Torr plasma over one 10 µsec pulser 

cycle. 

 

20 Torr: 

 

The conclusions in this case are similar to those in the 10 Torr case, 

except that here, the 0.5 Tesla plasma does not transmit until nearly 3 

µsec.  These ranges are shown in figure 4.14. 

 

By means of the high-voltage, short duration, pulsed ionization scheme it 

was possible to obtain initial electron number densities on the order of 10
12

 per 

cm
3
, and electron collision frequencies in the range of 5 GHz to 20 GHz.  The 

number densities then decayed to 2 to 5 x10
11

 per cm
3
 over the 10 µsec delay 

between high voltage pulses.  A trend of increasing number density and 

collision frequency  with increasing pressure is observed.  These increases 

however, are quite modest with respect to the 20 fold increase in pressure. 
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Fig 4.14:  Electron number density for 20 Torr plasma over one 10 µsec pulser 

cycle. 

 

With this parametric study it was possible to determine unambiguously 

the plasma collisional frequency. By means of this value, it was possible to 

time resolving the measurement of the electron number density, as it is 

possible to see in figures 4.15, 4.16, 4.17. 
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Fig 4.15:  Measured time resolved attenuation of the 12.6 GHz microwave 

source. 
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Fig 4.16:  Smoothed time resolved attenuation of the 12.6 GHz microwave 

source. 
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Fig 4.17:  Time resolved electron number density, same key as in fig 4.16. 
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Conclusions 

 

 
A volume filling, uniform, non-equilibrium, cold plasma has been produced 

in a Mach 3 air flow using 2 ns, 100 kHz repetition rate, 30 kV pulses.  

Theoretical analysis indicates the electron number density to be on the order of 

5×10
11

-10
12

 cm
-3

. 

The 5 Tesla magnetic field was shown to improve the uniformity of the 

plasma and had a dramatic effect in confining the plasma to the inter-electrode 

volume.  

An experimental observation of an MHD electric field in MHD generator 

with non-equilibrium ionization in cold supersonic flows has been made. 

By varying an applied bias voltage across the MHD channel, the Faraday 

voltage was measured to be 60% of the theoretical value. 

Electron number densities and collision frequencies were evaluated by 

varying the intensity of the applied magnetic field and observing conditions 

corresponding to complete absorption/reflection of the diagnostic microwaves.  

The number densities generated by the pulsed ionization scheme were found to 

peak at about 10
12

 per cm
3
.  Over the 10 msec decay time between pulses the 

number densities were observed to decay to about 2 x10
11

 per cm
3
 using 1 Torr 

of air in the cell and 5x10
11

 per cm
3
 using 20 Torr of air in the static cell. 
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