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COLLISIONAL-RADIATIVE
MODEL IN NON
EQUILIBRIUM HIGLY
|ONIZED PLASMAS

1.1 Introduction

The collisional-radiative (CR) model is an effeetitheoretical basis for
the calculation of the excited level population®iac or ionic), volume
recombination and ionization coefficients and rateon times necessary
for establishing quasi-stationary state population non equilibrium,
partially (or highly) ionized plasmas. A self-casteint solution for the
excited level populations and the quantities memtb above requires a
simultaneous solution of the system of the rateatign for the level
populations and the Boltzmann equation determinireg electron energy
distribution function (EEDF).

To obtain a generalized solution of the problemdatgd it is necessary

to impose some simplifying assumptions on the dagpbf the rate
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equations and the Boltzmann equation. One of thaddmental
assumptions made in almost all extensive compunsiticased on realistic
atom models is the use of the Maxwellian EEDF [[1X}. However, it is
shown by many authors that this assumption is ustified for a wide
range of physically conditions in various gases.

The EEDF is obtained by the solution of the Boltamaquation. In
this approach, the effects of electric and magnfatids, space gradients
and flow conditions on free electrons can be ingastd. In this work,
only the electric field is considered. The parametieich characterizes the
shape of the distribution function is the reducledteic field, E/N, where E
is the electric field and N is the plasma densitge electric field, or a
generic external force, in fact, accelerates frisete®ns giving them a
privileged motion direction. The effect is the gextmn of anisotropy of
the velocity distribution function. On the othemlda collisions with heavy
particles tend to redistribute the motion of frdectons in all space
directions reducing the anisotropy. Many other tercan influence the
shape of distribution function. The electron-elestr collisions, for
example, play a very important role because argoresble of a
redistribution of the total electron kinetic energyd tend to establish the
Maxwell distribution. In contrast, inelastic colbss cause loss of energy
and can be treated as sinks. When the anisotrofheofelocity distribution
function is small, the two-terms spherical harmoexpansion of the
distribution function is applicable. This approximea limits the simulation
conditions at plasmas with low rates of E/N (abbdt Td, where 1 Td =
10%" V/em?) [1]-[11]. When the distribution function is calated, the
transport coefficients, as drift velocity, ionizati coefficient and electron

mobility, can be evaluated.
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1.2 The Boltzmann equation

The quantity of interest in Boltzmann’s equationthg one-particle

distribution functionf = f(v,x,t). The functionf is defined so that
n,fdxdv is the number of particles in the phase-spacemel@lement

dxdv at a timet. The normalization condition is that the local fpable

number density of particles at a point in space is
n(x,t) =n,[ f (v, xtpv (1.1)

where for non uniform systemsy, is the average particle density. For

homogeneous systems, the (1.1) becomes:
[flvxthv=1 (1.2)
Let's consider the number of particlen=n,f(v,x,tjd>dv in the

phase-space volume. In the absence of interpamieeactions, the particle

coordinates in a timé& change to

V=v+ F & (1.3)
m

where F is any external force field that acts to the et (gravity,

electromagnetic forces).
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In the time& several collisions occur, some of which scattetigas

into the velocity intervatlv and some out odiv (see figure 1.1).

Scaltering out

___Same volume element
at time {+ 6t

Single - particle
phase space
volume element
attime ¢, dx dv

Scattering in

Figure 1.1 - Schematic representation of the motion of amitg@simal volume element
in single-particle phase space volume.

Writing the rate at which the collisions charfgend taking into account

the effect of the collisions, the following equatis derived:

a(nf)

5(nf)j | .

+\7Egrad(nf)+ftgraounf) =Z(
m X
This is the Boltzmann equation and determines the velocity
distribution of the particles. The right-hand taewalledcollision integral
The sum is extended at each type of collision {edeeelectron collisions,
ionizations, excitations, ...) considered.
Once that the Boltzmann equation is solved and distribution

function is calculated, some plasma proprietiesmasn velocityv_ (or
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mean energy) and drift velocity, , expressed by the following equations

(1.5), are evaluated:

v, = [vi{vjaev (L.5)
v, = [v, f [v)av (1.6)

1.3 Thecollision integrals

1.3.1 Elastic collisons: general formulation

For elastic collisions between neutral particledetween neutral and
charged patrticles, the evaluation of the collisierms is straightforward,
since it is sufficient consider only two-body csitins. For particle
densities, in fact, less than standard density{®7 cm®), it is possible to
assume the hypothesis of "molecular chaos," thabisorrelation exists
between the initial velocities of the two particles a collision. For
collisions between charged patrticles the long-ramgfere of the Coulomb
potential is in contradiction to the previous cdiaah, but, if the Coulomb
potential is regarded as shielded or "cut-off" la¢ tDebye length, the
charged-body interactions can be treated as twg-boltisions.

Let us consider collisions between particles otgmel and 2. The rate
of depleting collisions, (collision in which the nales are scattered out
form the velocity volume element) is given directhy the collision
frequency of particles of the velocity class in sfien with particles of

species 1.
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The differential rate per unit volume of depletic@lisions is given by

the following relation:
drR =nn,f,(c)f,(w)gl,,(g, x)dQd*wdc (1.7)

where 1,(g,x)dQ is the differential cross section for scatteriggis the
relative velocity and is the scattering angle. The most convenient way o
ordering replenishing collisions is through the sideration of inverse
collisions. An inverse collision is defined as tbellision in which the
initial velocities of the two particles are equalthe final velocities of the
direct collision. Furthermore, the velocity planktioe inverse collision is
the same plane as that of the original collisiod Hre deflection angle is
taken as equal to the original scattering aggldnder these conditions, the
velocities after the inverse collision will be efjoa the velocities before
the original collision. Ifc’ and w' are the velocities before the inverse

collision, the differential rate of the inverselmbn is:

dR =nn, f (c)f,(W)al, (g, y)dQd°wdc (1.8)

where for elastic collisions g = g'. Combining efijpa (1.7) and (1.8), the

collision integral for elastic collisions is:

C,=nn,[ [ [1(c),w)- 1.(c)r.W)191,.(0. )d0d'w (1.9)

Q

whered?®*w'd3c'=d*wd3c.

10
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The calculation of this collision integral is natvial. The equation

(1.9), in fact, as well depends of the distributfanction f,of particles of

type 2, and without any simplifications this termashbe considered. In the

next sections, the particle species referred as &lactrons.

1.3.2 Elastic electron-electron collisions: the Fokker-Plank term

The effects of charged-particle collisions resugtimy from collisions
in which the deflections, and hence velocity changdé the particles are
small. The predominance of small deflections inrghd-particle collisions
gives rise to the Fokker-Planck collision term. itstf simplification in
equation (1.9) is the expression of the cross @edtp that assumes the

Rutherford form:

(gl ) 1
)= o an{1) @10
2

where m; is the reduced mass ang @ are the electric charges. Since the

effects of charged-particle collisions result mgiflom collisions where
the change in particle velocities is small, thections fl(E') and fZ(W) are

expanded in a Taylor's series as follows:

fl(E') = fl(E) + x, (C',f:’_cﬁ)"'1 'L (C'/:’_Cﬁ)(cly_cy)+"'

oc 20c.o0c
;f 1ﬁ aVZf (1.11)
f(wW)=f (W) +—2(W -w,)+= Z_\wW_.-w_ W —-w |+...
2( ) 2( ) awﬁ( B ,5) Zawﬁawy( B ,3)( 14 V)

11
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Substituting the equations (1.11) into (1.9) andteraf some

manipulations the usual term of the electron-etectollisions is obtained:

0 oH 1 092 0°G
C.=nnl,<—| f f )
2o 12{ acﬁ[ 1acﬁj Zacﬁac [ 1acﬁacy]} (1.12)

where the function G and H are the so-called Rdsémipotential and are

defined as:
=ﬂ —2d
m o
(1.13)
G =[gf,d'w
andl, = m”g QY="22g'4 n( %% ] logA\
ny ”l TE,M,Q

It should be noted thdt,, is independent of the relative velocity@?

is the momentum-transfer cross section. Equatioh2jlis the Fokker-

Planck collision term.
1.3.3 Elastic collisions: electron-heavy particles

In an elastic collision between an electron andeavii particle, as a
result of the difference of mass of the two pagsclthe changes in the
energy of the electron and in the velocity of teavy particle are small. In
addition since the electron velocity is typicalljuoh greater than that of

the heavy particle, the relative velocity g is meaqual to the electron

12
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velocity c. The velocities of the two particles after a aitlh, expressed in

terms of peculiar velocities, are

c=c- m+m( k) = c—m(_uiﬁ (1.14a)
e 2N (Y — o 2m/m,
W_W+m+%(gm()k_w+1+mew( k)i (1.14b)

where the subscript h denotes the heavy partidie. Vector k is a unit

vector directed along the external bisector ofreslative velocitiesg and

g' before and after the collision (see figure 1.2).

e

dQ =sinX dxdd

X
2%

V=% (r—x)

Y

49y = sinydydé = %cos X ldX| do

\

Figure 1.2 - Schematic representation of the collision plane.

k

13
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Since nymy, is small andg =c - wc, the equations (1.14) are written

by means of binomial series as:

o=V + 2wk k+2%(5[ﬂ_< K+ ... (1.15a)
Wzv_v+2%(6[u_<ﬁ<—2%(?vu<7 K+ ... (1.15b)

where the velocity V is defined by =c-2{ckjk. As done for the
electron-electron collision term, the functionﬁ(&') and fz(W) are

expanded in a Taylor's series in term of/my. Finally, in order to
eliminate the dependence from the relative velaaitthe termgleh(g,)(),

it is necessary to write an expansion for thisdaetiso. Substituting these
expansions in the (1.9) and after some manipulateomd simplifications,

the following expression is obtained:

= V |- ol = al}\eh lkTh azoeh _
Ceh neé[k[ fe(\/) fe(c)]|:veh uhﬁ aCﬁ + 2 n% aCﬁaCﬁ:|ko

of (V)— —.
-2n, | kﬁ—e@uh kv, dQ, + (1.16)

60[,,

¥ 2neﬂi{ | kﬁk{cy feW)+ﬂﬂ@}ﬁethk}

m, oc, m, oc,

The first part of the first term on the right-haside of equation (1.16)

represents the effect on Df scattering by infinitely massive heavy
particles. The terms that involve ka@ndu, reflect the effect of the thermal

and diffusive motions of the heavy particles. Thstfpart of the last term

14
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represents the effect of the recoil of the heavytiggas, which is a
consequence of their finite mass. For practicappse, several terms (in

particular the derivatives af,) in equation (1.16) give no contribution, so

that the application of &is less complicated.
1.3.4 Indastic collisions: excitations

If the solution of Boltzmann equation is devotedie determination of
the distribution function of free electrons, an orjnt simplification in the
evaluation of the inelastic collision terms occlBecause of the difference
of mass of the two particles (electron and heawyigh@), the velocity of
the electrons is much higher than that one of hegaasticles. So, the

differential rate per unit volume for the excitatirs:

dR =n,N, [, (v, )Vf (v)dQd*v (1.17)

where o, (v, x)dQ is the differential excitation cross section. Aftbe

collision, the electrons are scattered out of thlaity volume element
d®. So, the equation (1.17) corresponds to the daglétrm.

At the same way, considering the electrons thaseattered intad’v,

the following expression is obtained:

dR =n,N,[o, (v, )V f (v)dQd*V (1.18)

Equation (1.18) is the replenishing term. The etecivelocity before

and after the collision are related by means tHeviing relation:

15



CHAPTER 1

-~ =g (1.19)

whereg; is the excitation energy. Substituting equatiorig} into (1.18)

the excitation collision term is obtained:

(5(?)1% =nN,| [aj 0" 1 @) =0, v @}de (1.20)

(Note that differentiating (1.19)dv =Vv'dV' is obtained)
1.3.5 Indastic collisions: ionizations

With analogous approach, it is possible to write depleting term for

ionization that is:

dR =n,N, [, (v, x)vf (v)dQd*v (1.21)

where o, (v, x)dQ is the differential ionization cross section. Irder to

write the replenishing term, it is convenient tditspp the electron in
primary andsecondary The first one is the electron incident. The otiser
the electron that becomes free after the collisi®@w, the energy

conservation law gives:

2
(m;/ —giJ energy of the two electrons after the collisio (1.22a)

16
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2
A[m;/ —giJ primary electron energy with<A<1 (1.22b)

The velocity at which the primary electron enters the element

volume dv is;

A(m\IZ -é‘i}ﬂ (1.23)

Differentiating equation (1.23) it can be foundtthaj\/=%vdv.

In the same way, replacind with (1-A) and v’ with v”, the
contribution of the secondary electron is carriedl &o, the replenishing

term is:

@)+ o)

12

Vv
A

dR =nN, [ {ai(v', x) f(\T')}deW (1.24)

@-A)v

Finally, the ionization collision term becomes:

12

(250 =nn o, 1@ o

2

f(v") -

(1.25)

- (v V(WO

17
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1.4 The two term approximation

In a wide range of physical situations in collisdominated plasmas, a

particular representation of the electron Boltzmaguoation is carried out.
The idea is to express the distribution functib@) in terms of a spherical-
harmonic expansion (or Legendre’s orthogonal patyiats P, (cos®)) that

can be written as:

tv)=>" 1, (v)P, (coso) (1.26)

n=0

where the functionsf  are all isotropic an® is the angle between the

generic forceF and v direction. When the anisotropy of the velocity
distribution function not negligiblef{ >> f, >> f,,...), only the first two

polynomials are considered, so the equation (lb26pmes:
f{7)= 1)+ cos0t,)= ) +( % 1) (1.27)

in which F =(00,F). This approximation is called two-terms spherical

harmonic expansion. Substituting equation (1.28ath of (1.5) and (1.6),

the following equations are obtained:
v, =(v) = 4| v*f,(v)dv (1.28)
0

and

18
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v, =(VcosO) = gn]o Vi (v)dv (1.29)

From these equations it can be observed that thetifuin f, governs
the plasma proprieties that depend of the mearciglaas mean energy
and viscous stress. By the other hatmdijs responsible of the directional
proprieties. So, f,(v) and f,(v) are called respectively isotropic and

anisotropic term.
Finally, substituting equation (1.27) in (1.2), thsormalization

condition becomes:

00

4nf v*f,(v)dv=1 (1.30)

0

1.5 Effects of the two term approximation in the Boltzmann

equation

In the case of stationary plasma, substitutingetkigansion(1.27) into
the Boltzmann equation (1.4), two scalar equatifmsf, and f; are

obtained:

o(nf,) Eend (., v _

(1.31)
d(nf) _Eendf,(v)
ot m dv

+avnf,(v)=Y.C,

19



CHAPTER 1

where the unique external force acting on electroossidered is the
electric field E, directed only along the 0-z axitie parametea is the
first Towsend coefficient and takes into accounttié variations of
electron density along the z axis. The termsa@d G are the collision

integral expressed by:

C, z%ji (5 (gf)L|Ld(cosB) (1.32a)
C, Egt[l(@) cosd(cosO) (1.32b)

In the evaluation of the electron-electron colisiterm from the
Fokker-Planck expression (1.12), it is sufficiemt ¢onsider only the
contribution offyg(v) in the expansion (1.27), singe>> f4, f,,...With this

condition the following expression is obtained:

. 10 < 411 of ¢ 4 ,of ¢
Cl=nT =—|47 |V fdv+—=—"2|v'fdv+—v*—2|vfdv ,
ee e eevz V|: 0_([ 0 3 VGV'([ 0 3 OV'[ 0 jl (1 33)

If the electron-electron collisions play a fundama¢mole (for example
fully ionized plasmas) also in the reducing thesattopy caused by the
electric field, theC’, term has to be considered.

In the evaluation of the electron-heavy particléision term, both the
fo andf; functions have to be considered. In fact, the goacole of these
collisions is to redistribute in all space direagothe motion of free

electrons reducing the anisotropy. Introducingdkpansion (1.27) into the

20
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equation (1.16) and after some manipulations, W termsC. and C_,

are obtained:

10 KT, 1 of

C..=n, ﬂ—z—{\ﬁ( f, + —h——OJ m/gﬁ} (1.34)
m, v ov m, v ov

Cih = _nhvéi) fr- nhu_hvgm)% (1.35)

wherev® =n gQ%”(g) andQ¥(g) is the momentum transfer cross section.
If the mean velocity of the heavy particles is lothe second term of
equation (1.35) is negligible.

When the inelastic collisions are not too frequehis sufficient to
consider only the first contribution of the expams(1.27) and plack~ f,
in their evaluation. As consequence, the integaflision C" is zero. For

excitation and ionization processes tHad®m reads:

Co.=nN, {Qj (v')V—V'Z f,(vV)-Q, (v)vfo(v)} (1.36)

12

v*? , 3
A fo (V) +Q (V") Y

C2 =nN, {Qi (') fo (V') = Q (W, (V)} (1.37)

where Q(v)=[o(v, x)dQ is the integral cross section of the generic

Q

process.

21
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1.6 The electron energy distribution function (EEDF)

The substitution of the two term expansion in th@tBnann equation
allows to write a system of two scalar equationfy andf;. Introducing the
second expression of the equation (1.31) into itlsé dne and substituting
the collisional terms previously described, angntedifferential equation

for f,(v) is obtained. Usually, the problem is re-formulaitedhe electron

kinetic energy domain u=m2. As consequence, the the Boltzmann
equation for the electron energy distribution fumct(EEDF)f(u) takes the

following second order non-linear integro-differi@hform:

d?f (u) df (u) _
<) 0@ T ) (o) 9,0)1(w)=0 (1.38)
with the normalization condition, from equation2}l.expressed as

f (uWudu=1 (1.39)

O3

The expressions of the coefficients in the (1.38)the following:

: u 3 3a
K(u)_—E(E’j U _AKT A -2 B[qufdu+u2ffdu} (1.40a)
3lm) A mm 3 b U

2
u=3 5 R s T A e )

m) dulA) 3m A mm mm du (1.40b)

- BHJGfdw\/GI fdu}

22
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Ho)= 2o ) )l )

"3 n? dulA) 3ANY mm du
(1.40c)
+£ZN uQ (u)+£ZNuQ(u)
mz ; i i mz : i
Zﬂk(uk)f(uk)zézNi[QJ(u-kuj)I:Qu-'-ui)]f(u-'-uj)-'-
Ry e

in which Alu)=>Q%(u)n, andB(T,)=n_...
h

The solution of the equation (1.38) allows to eatduthe EEDFR(u).
Afterwards, the electron temperaurgid evaluated in terms of the electron

mean energy as:

_2 _ 27
T, —§<um> = { uf (u)v/u du (1.41)

Finally, the other parameters of interest, as tiifé \elocity (expressed

by (1.29)) and the first Towsend coefficientare evaluated:

v, =% Tufl(u)du (1.42)

23
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a=— (1.43)
wherev; is the ionization frequency defined as:

v :Z I N.Q (v)v fv(v)dvzzi: \/%I N.Q (u) f (u)udu (1.44)

1.7 Solution of the Boltzmann equation

1.7.1 Discretization of the energy domain

The discretization in the energy domain has beemecaout by means
of a finite difference formulation. Ify, u;, u.; are the kinetic energy of
the generic points i-1, I, i+1 ang,f f;, fi,; are their function values, the

second order expansion in a Taylor's series gives:

f,,=f+f'Au, +% f."(Au,)?
(1.45)

fFlzfi—f[Au;+%fﬁKAu)2

Substituting these expansions in the equation {1tB8 following

expression for the generic point i is derived:

a,f.+taf +a,f, (1.46)

24
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with

_ 1 U
A7 AU (Bu+ Au+)(2 K Au+j

1 u y
= 2+(Au_ - Au, )——---Au Au
4 Au_Au[ (au +)K K } (1.47)
= i e 2T

Au, (Au_+Au ) K

In order to represent the inelastic collision teimshe energy domain,
it is necessary to add the coefficients resultogn the approximation of
the generic functionf (ky +u,) in which y is the threshold energy. This
function is expanded in a second order Taylor'sesaround the nearest

domain point w The coefficients of this expansion are:

Au

d = A (Bu+ Au+)[_ Au, + (Au)z]

_ 1 1 (Au)?
St e g @9
f. =(Au_ +Au) Au

Au_(Au_ +Au,)

Due to a strong dependence of the discretizatiep Sy the input
parameters (electric field, density and temperytuee step by step
calculation of the coefficient K and U is performéddhe discretization step
Au adopted has to satisfy the stability condititun< 2K /U . Another more
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restrictive condition is adopted taking into accotdimat the coefficient

y#0 and (1.38) is not homogeneous.

1.7.2 Boundary conditions

The boundary conditions adopted are the following:

Tf(u)\/adu=1

(1.49)
Separationf theenergydomains

The first of the (1.49) is the already describednmadization condition
(1.39). The integral is calculated by means of‘th@peze rule” The other
one illustrates that all the collisional eventsihgwelectron energy greater
than the maximum value of the domain (for examp® &V) are not

considered. This condition is expressed by seting=0 in (1.47), if n are

the number of the discretization points.

1.7.3 Solution of the system

The non linear system is solved iteratively by FH@RTRAN routine
DLSLXG that solves a system of linear algebraicagigms having a real
sparse coefficient matrix. It first uses the roatiDLFTXG to perform an
LU factorization of the coefficient matrix. The atibn of the linear system
iIs then found using DLFSXG. The routine DLFTXG bgfault uses a

symmetric Markowitz strategy to choose pivots thaist likely would

26
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reduce fill-ins while maintaining numerical statyili In the figure 1.3 the

basic structure of the numerical code is shown.

DATA READ PHYSICS
INPUT DATA DATA

DISCRETIZATION
AND
CALCULATION OF K, U,y

CALCULATION OF
THE INELASTIC
COLLISIONSTERMS

CONVERGENCE
CRITERIUM ON
EEDF AND Tg

CALCULATION OF
TRANSPORT
PARAMETERS

Figure 1.3 - Flux diagram of the numerical code solving tl@tBnann equation.
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1.8 Application of the model at monatomic weakly ionized

plasmas

The model is firstly applied at stationary and hgemeus argon
weakly ionized plasma, with ionization degree lgsm 1C. In this way,
the calculated electron energy distribution funt$i@re compared with the
results presented in reference [1] and the tramsparameters with

reference [2]. The following anelastic and elastidlision processes are

considered:
Ar(1)+e - Ar()+e (excitations to a level j from ground n
level)
Ar(l)+e - Ar,(1)+e+e (ionization from ground level) ()]
Ar,—e
Ar, —e (elastic collisions) (1)
e-e

In the equation (I) j is referred at the neutrgjaar levels indicated in
table 1.1.

Designation| Excitation energy [eV]
4s [3/2} 11.548
4s [3/2} 11.624
4s [1/2} 11.723
4s [1/2) 11.828

Table 1.1 - Energy levels of neutral argon considered.
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Following the same approach used by Vleck [1] angblution of the
equation (1.38), the distribution functioffu) is replaced by the
corresponding Maxwellian functidiy(u) in the coefficients containing the
Fokker-Plank term. In figure 1.4 the numerical Hssaf the ratiof(u)/fy(u)
for electron temperature, = 20000 °K are shown. The simulations are
performed at N = 1.61x16° m*>, at two values of heavy particle
temperature (= 300 °K and 1000 °K) and with electron densitythe
range of 18 + 107

Te =20000 K

1.E-01

1.E-04 ~

flfm

1.E-07

1.E-10

Energy [eV]

Figure 1.3 - Calculated EEDF at = 20000 °K

The calculated EEDF is nearly Maxwellian up to thest argon
excitation level (11.55 eV) in all cases investghtOn the other hand, the
high-energy tail is underpopulated. If the electdamsity is increased, the
tail is more populated and the deviations from Mexwellian distribution
are less evident. These results are in excellenteagent with those

presented by Vleck.
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Drift velocity
1.0E+06 ¢
1.0E+05
@ 1.0E+04 g
£ i
> 10E+03 g ==
/ —g=5e5
1.0E+02 B Robertson - Lucas [—
§ A g variabile
1.0E+01 \\\\\H; \\\\H\; \\\\\H; \\\\\H; Lol
1.0E-23 1.0E-22 1.0E-21 1.0E-20 1.0E-19 1.0E-18
E/N (V m"2)

Figure 1.4 - Calculated drift velocity at different E/N ratios.

alfa/N
1.0E-20
I g
1.0E-21 + ]
;c\Tl.OE-22 |
1S F
% i
= 1.0E-23
- |
10E-24 =
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Figure 1.5 - Calculated ionization coefficient at different Ef&tios.
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In the figures 1.4 and 1.5 the drift velocityy nd the ionization
coefficienta/N are shown. An excellent agreement with the drpamtal
data of \4 measured by Robertson and Lucas [2] (figure k4)htained
when the ionization degree is varied with the r&ibl. A good agreement
with the calculated values of by Puech-Torchini§2dlso obtained fom/N
(figure 1.5).

1.9 EEDF at MPD plasma conditions

The application of the model solving the Boltzmaquation to these
type of plasmas is not trivial. These plasmas heracterized by very high
E/N ratios (16 Td, or more, where 1Td = TOV/m?) with strong electric
field (E = 200 + 800 V/m) and low density (N =10+ 10° m?).
Moreover, due to the fully ionized condition (sdepter 3) the electron-
electron collisions become the leading term andatiygroximation used in
the previous section is not longer valid. Finallyle to the probable high
energy of the heavy particles, their mean velomtyhe equation (1.35)
could be considered. Due to these consideratitvesfdilowing anelastic

and elastic collision processes are considered:

Ar(l)+e - Ar()+e (excitations to a level j from ground n
level)
Ar(l)+e - Ar,()+e+e
(ionizations from ground level) (11

Ar,()+e - Ar,()+e+e
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Ar(l)+e - Ar,(1)+e+e (direct excitation from the ground level
of neutral argon)

Ar —e

Ar2 -€ . . .

Ar, -e (elastic collisions) (IV)

e-e

In the equations (1) and (IV) j is referred at flodowing argon levels

indicated in table 1.2.

Designation Excitation energy [eV]
Ar | 4s [3/2), 11.548
Ar | 4s [3/2}; 11.624
Ar | 4s [1/2) 11.723
Ar | 4s [1/2} 11.828
Ar | 4d [1/2]; 14.710
Arl | 6p' [1/2],, 6p' [3/2], 6p' [3/2} 15.200
Arll 3p6 (2S) 29.240
Arll 3p4(3P)4s (2P) 33.000
Ar i 3p4(3P)4p (4P*5/2) 34.984
Arll 3p4(3P)4p (4D*5/2) 35.310
Ar I 3p4(3P)4p (2D*5/2) 35.441
Arll 3p4(3P)4p (2D*3/2) 35.524
Arll 3p4(3P)4p (2P*1/2) 35.562
Arll 3p4(3P)4p (2P*3/2) 35.628
Arll 3p4(3P)4p (4S*) 35.728
Ar ll 3p4(3P)4p (25%) 35.734
Arll 3p6 (2S) 13.481
Arll 3p4 (3P)4s (2P1/2) 17.267

Table 1.2 - Energy levels of neutral argon considered.

Figure 1.6 shows the numerical results off(lig/fy,(u) ratio in the case
of E = 100 V/m and N= 10" m™. The calculated electron temperatuge T
Is 33.400 °K. The form is slightly Maxwellian up &pproximately 20 eV

after that the tail overpopulated.
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Figure 1.6 - Calculated EEDF at E = 100 V/m and N 10°° m®,

The same considerations are valid also if the etefield is increased
(E = 200 V/m). The results are shown in figure (.7~ 70.000 °K).
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Figure 1.7 - Calculated EEDF at E = 200 V/m ang N 10°° m®>.
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All these simulations are performed with= 0 and with percentage of
Arlll density less than 0.1%. The role the e-Artbllisions are more
evident if this percentage is increased up to 1%e fiesults are shown in
figure 1.8 with E = 100 V/m andJd\ 10° m™ (T~ 110.400 °K).

1.E+01
E =100 VIm

fifm

1.E+00

1.E-01

Energy [eV]

Figure 1.8 - Calculated EEDF at E = 100 V/m and N 10" m*.

The calculated EEDF is not too different from theaxvellian
distribution with the high energy tail less popeththan the case of figure
1.6. The decrease near the higher boundary is blpbeaused by
numerical effects.

An indication of the validity of the two term apprmation to solve the
Boltzmann equation in plasmas characterized by Eifphratio is given by
the behaviour of th&/fy ratio, reported in figure 1.9 in the same simolati
conditions of figure 1.6. The ratio stays less tharty up to 30 eV and
then increases. So the high energy tail of the EEDEId not be
sufficiently well described. On the other handisinecessary to note that

the inelastic processes and the e-e collisiongdaseribed only by thé&
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function and the role of; should be taken into account. However, these
considerations do not compromise the validity @& thodel developed, but

they have to be intended as the basis for thedwtark.

1.E+03
E =100 V/m J
o L —
= 0 20 40 60 80 100
1.E-02
1.E-07
Energy [eV]

Figure 1.9 - Calculated f/f, ratio at E = 100 V/m and N= 10%° m”>.

1.10 Collisional-radiative model of Arll system

1.10.1 Formulation of the problem

The equation describing the population/depopulatisechanisms of

the excited generic level k is the following comiily equation:

% +grad(v,n) =P, - D, (1.50)
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where R and b are the terms that describe the population and the
depopulation of the level k by the collisional amadliative processes. The
distribution function of the particles in the levelis taken Maxwellian.
Usually, the collisional and radiative phenomenamohate over the
transport phenomena and the so-called quasi statlysolution (QSSS)

is applicable and the equation (1.50) becomes:
P.—D=0 (1.51)

The model is applied to the singly ionized argostem (Arll). The

collisional and radiative processes, for the Aaitk the following:

Arll (K) +e 5 o Arll (j) +e

Arll (K) + Arll () <59 EF S Arll (j) + Arll ()
Arll (k) +e 8% - Arlll 1) +e+e

Arll (k) + Arll (1) % - Arlll @) + Arll @) +e
Arll (k) +hy, &0 - Arll ()

Arll (K) + hv <R - Arlll (1) +e

Here, G; and K are the rate coefficients for collisional excivatiby
electrons and by the ground state of the Arll re8pely. Fx and Ly are
respectively the rate coefficients for the invepsecesses (collisional de-
excitation). § and \f are corresponding collisional ionization rate

coefficients while Qand W, are the rate coefficients for the inverse three-
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body recombination andyRs the radiative recombination rate coefficient.

Ay is the transition probability),; and/A\y are the optical escape factors for

bound-bound and free-bound transitions.

Writing a balance for the population and the depatmn of the level k

the equation (1.52) is derived:

p

2.a,n,+9,=0

j=1
The coefficients are given by:

a, =nC, +nK, forj<k

J

akj = neij + nlij +Aij<j forJ > k

g, =—£neSJ +nV, +Zp‘,akJ] forj=k
j=1

j#k

6k = nen+ (neok + anVk + /\kA<)

(1.52)

(1.53a)

(1.53b)

(1.53c)

(1.53d)

In the present model, the collisions with the At)lare not considered.

Furthermore, the plasma is considered opticallg tbr all the radiations

and then is sef\; = Ay = 1. The expressions for the rate coefficients are

given by:

C, = \/%Taki (u)uf (u)du

ukj

(1.54a)
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~ 29 _
ij “m g d[ja-kj (U)Uf (u ukj)du (1.54b)
.=y = [auuf()u (1.540)

) 3 o H? 32, i
Qk—\/; ( } [ (u)uf (u-u,)du (1.54d)

2
\/_Zggl; i[h—j fak v2f(hv-u)dv (1.54e€)
+ uc/h

The expressions of the cross sections are repiortbeé Appendix A.

The boundary conditions are given by the follownagditions:

(1.55)
N, constant

The first equation is the condition of global naiity of the electrical
charge in the plasma.

The QSSS approximation is no longer valid for tloldy ionized
argon particles in the ground state (also for thegylg ionized argon)
because the transport phenomena are not negligdae.the continuity

equation reads:
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on
a_tk + grad(vknk) = r]eI\IArII SCR - neNArIII CR = Ieff (156)
where the coefficients are given by:
1 p
Sr=S+ 2NnS (1.56)
Arll k=2
p p
Ter =MD Q+ 2 AR (1.57)

The equation (1.56) allows to classifiy the examiatspace of the Arll

system in:

|« >0 ionizing system

|« <O recombining system

|« =0 ionization-recombination equilibrium

1.10.2 Results and discussions

The level of the Arll system are grouped in p =effective excited
states. These levels are reported in the tablavithdinformation on their

configuration and the statistical weight values.
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E[nee\r/]gy Configuration Stvigizt;ﬁal
0.0000| 3s2.3p5(2P*) 6

13.4798| 3s.3p6(2S) 2
16.4334| 3s2.3p4(3P)3d(4D) 20
16.6439| 3s2.3p4(3P)4s(4P5/2) 6
16.7485| 3s2.3p4(3P)4s(4P3/2) 4
16.8125| 3s2.3p4(3P)4s(4P1/2) 2
17.1400| 3s2.3p4(3P)4s(2P3/2) 4
17.2658| 3s2.3p4(3P)4s(2P1/2) 2
17.7106| 3s2.3p4(3P)3d(4F) 28
18.0012| 3s2.3p4(3P)3d(2P) 6
18.2921| 3s2.3p4(3P)3d(4P) 12
18.4266| 3s2.3p4(1D)4s(2D3/2) 4
18.4541| 3s2.3p4(1D)4s(2D5/2) 6
18.5559| 3s2.3p4(3P)3d(2F) 14
18.6945| 3s2.3p4(3P)3d(2D) 10
19.1175| 3s2.3p4(1D)3d(2G) 18
19.2229| 3s2.3p4(3P)4p(4P*5/2) 6
19.2611| 3s2.3p4(3P)4p(4P*3/2) 4
19.3054| 3s2.3p4(3P)4p(4P*1/2) 2
19.4945| 3s2.3p4(3P)4p(4D*7/2) 8
19.5490| 3s2.3p4(3P)4p(4D*5/2) 6
19.6103| 3s2.3p4(3P)4p(4D*3/2) 4
19.6426| 3s2.3p4(3P)4p(4D*1/2) 2
19.7212| 3s2.3p4(3P)4p(2D*) 10
19.8341| 3s2.3p4(3P)4p(2P*) 6
19.9675| 3s2.3p4(3P)4p(4S*) 4
19.9725| 3s2.3p4(3P)4p(2S*) 2
20.2594| 3s2.3p4(1D)3d(2F) 14
20.7436| 3s2.3p4(1S)4s(2S) 2
21.1270| 3s2.3p4(1D)4p(2F*5/2) 6
21.1431| 3s2.3p4(1D)4p(2F*7/2) 8
21.3933| 3s2.3p4(1D)4p(2P*)+3d(2D) 16
21.4952| 3s2.3p4(1D)4p(2D%*) 10
21.6496| 3s2.3p4(1D)3d(2P) 6
22.2877| 3s2.3p4(1S)3d(2D) 10
22.5969| 3s2.3p4(3P)5s(4P) 12
22.7514| 3s2.3p4(3P)5s(2P) 6
22.8135| 3s2.3p4(3P)4d(4D)+(1D)3d(2S) 22
22.9487| 3s2.3p4(3P)4d(4F9/2) 10
23.0627| 3s2.3p4(3P)4d(4F7/2+5/2+3/2) 18
23.0823| 3s2.3p4(3P)4d(4P1/2) 2
23.1455| 3s2.3p4(3P)4d(4P3/2+5/2) 10
23.2102| 3s2.3p4(3P)4d(2F) 14
23.4431| 3s2.3p4(3P)5p(4P*) 12
23.5815| 3s2.3p4(3P)5p(4D*+2P*)+4d(2P) 38
23.6627| 3s2.3p4(3P)5p(2D*+2S*) 12
23.7020| 3s2.3p4(3P)5p(4S*) 4
23.8018| 3s2.3p4(1S)4p(2P*3/2) 4
23.8463| 3s52.3p4(1S)4p(2P*1/2) 2
23.8836| 3s2.3p4(3P)4d(2D) 10
24.1797| 3s2.3p4(3P<2>)4f 70
24.2843| 3s2.3p4(1D)5s(2D) 10
24.3360| 3s2.3p4(3P<1>)4f+(3P<0>)4f 56
24.6232| 3s2.3p4(1D)4d(2G) 18
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24.7356| 3s2.3p4(3P)6s(4P)+(1D)4d(2D+2P) 28
24.8222| 3s2.3p4(3P)5d(4D)+(3P)6s(2P)+(1D)4d(2F) 40
24.9768| 3s2.3p4(3P)5d(4F+4P+2F) 54
25.1736| 3s52.3p4(3P)6p(4P*+4D*+4S*+2P*+2D*) 50
25.2532| 3s52.3p4(1D)5p(2F*+2P*+2D%*) 30
25.3777| 3s2.3p4(3P)5d(2D+2P) 16
25.4160| 3s2.3p4(3P)6p(2S*)+(3P<2>)5f 72
25.4474| 3s2.3p4(1D)4d(2S)+(3P<2>)5¢g 92
25.5735| 3s2.3p4(3P<1>)5f,g 96
25.6305| 3s2.3p4(3P<0>)5f,g 32
25.7934| 3s52.3p4(3P)7s(4P+2P) 18
25.8478| 3s2.3p4(3P)6d(4D+4F+4P) 58
25.9164| 3s2.3p4(1D<2>)4f+(3P<2>)7p 102
25.9773| 3s2.3p4(3P)6d(2F+2P+2D) 28
26.1106| 3s2.3p4(3P<2>)6f,g,h 268
26.2481| 3s2.3p4(3P<1>)6f,g,h 162
26.3048| 3s2.3p4(3P<0>)6f,g,h 48
26.3771| 3s2.3p4(3P)7d(4D+4F+2F)+(1D)6s(2D) 44
26.5149| 3s2.3p4(3P<2>)7f,g,h,i 366
26.6212| 3s2.3p4(1D)5d(2F+2G+2D)+(3P)8d(4D+4F) 56
26.6640| 3s2.3p4(3P<1>+3P<0>)7f,g,h,i+(1S)5s(28) 284
26.7767| 3s2.3p4(3P<2>)8f,9,i,k 338
26.9106| 3s2.3p4(1D)5d(2S)+(3P<1>+3P<0>)8i,k 226
27.1701| 3s2.3p4(1D<2>)5f,g 126
27.6297| 3s2.3p4 5

Table 1.4 - Energy levels of the Arll system.

The distribution of the population over the eneeygited levels in the

conditions of figure 1.6 is shown in figure 1.10.
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Figure 1.10 - Calculated population distribution of Arll system.
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In this figure, only the population density of theergy levels being to
the most intense Arll transitions in the wavelengiimge of the OMA
system used in the experimental investigation & RMPD thruster are
shown. The population density is characterizedvny different excitation
temperatures. The low-lying levels temperaturasTapproximately 1.2 eV
(1 eV = 11.600 °K) while the high-lying levels teerpture T, is 2.5 eV.
So, in these conditions, the Arll system is ngpliTE. The radiative decay
from the higher levels is an significant contriloatiof the low-lying levels.
On the other hand, the high-lying levels (over 20) are mostly populated
by collisions with electrons. Tis 4-5 times lower than the calculated T
and gives a rough estimation of it. The separaligwel! between the two
population groups corresponds to the energy whezecalculated EEDF
departs from the Maxwellian form. Finally, by meaof the equation
(1.56), the flux dz over the levels is calculateds lis approximately

3.5x10° m’/s and the Arll system is classified as ionizing.
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