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EQUILIBRIUM HIGLY 

IONIZED PLASMAS 

 

 

 

1.1 Introduction 

 

The collisional-radiative (CR) model is an effective theoretical basis for 

the calculation of the excited level populations (atomic or ionic), volume 

recombination and ionization coefficients and relaxation times necessary 

for establishing quasi-stationary state population in non equilibrium, 

partially (or highly) ionized plasmas. A self-consistent solution for the 

excited level populations and the quantities mentioned above requires a 

simultaneous solution of the system of the rate equation for the level 

populations and the Boltzmann equation determining the electron energy 

distribution function (EEDF).  

To obtain a generalized solution of the problem indicated it is necessary 

to impose some simplifying assumptions on the coupling of the rate 
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equations and the Boltzmann equation. One of the fundamental 

assumptions made in almost all extensive computations based on realistic 

atom models is the use of the Maxwellian EEDF [12]-[15]. However, it is 

shown by many authors that this assumption is not justified for a wide 

range of physically conditions in various gases.  

The EEDF is obtained by the solution of the Boltzmann equation. In 

this approach, the effects of electric and magnetic fields, space gradients 

and flow conditions on free electrons can be investigated. In this work, 

only the electric field is considered. The parameter which characterizes the 

shape of the distribution function is the reduced electric field, E/N, where E 

is the electric field and N is the plasma density. The electric field, or a 

generic external force, in fact, accelerates free electrons giving them a 

privileged motion direction. The effect is the generation of anisotropy of 

the velocity distribution function. On the other hand, collisions with heavy 

particles tend to redistribute the motion of free electrons in all space 

directions reducing the anisotropy. Many other terms can influence the 

shape of distribution function. The electron-electron collisions, for 

example, play a very important role because are responsible of a 

redistribution of the total electron kinetic energy and tend to establish the 

Maxwell distribution. In contrast, inelastic collisions cause loss of energy 

and can be treated as sinks. When the anisotropy of the velocity distribution 

function is small, the two-terms spherical harmonic expansion of the 

distribution function is applicable. This approximation limits the simulation 

conditions at plasmas with low rates of E/N (about 103 Td, where 1 Td = 

10-17 V/cm2) [1]-[11]. When the distribution function is calculated, the 

transport coefficients, as drift velocity, ionization coefficient and electron 

mobility, can be evaluated. 
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1.2 The Boltzmann equation 

 

The quantity of interest in Boltzmann’s equation is the one-particle 

distribution function ( )txvff ,,= . The function f is defined so that 

vdxfdn0  is the number of particles in the phase-space volume element 

vdxd  at a time t. The normalization condition is that the local probable 

number density of particles at a point in space is 

 

( ) vdtxvfntxn ∫= ,,),( 0  (1.1) 

 

where for non uniform systems, n0 is the average particle density. For 

homogeneous systems, the (1.1) becomes: 

 

( ) 1,, =∫ vdtxvf  (1.2) 

 

Let’s consider the number of particles ( ) vdxdtxvfndn ,,0=  in the 

phase-space volume. In the absence of interparticle interactions, the particle 

coordinates in a time δt change to 
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where F  is any external force field that acts to the particles (gravity, 

electromagnetic forces).  
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In the time δt several collisions occur, some of which scatter particles 

into the velocity interval vd  and some out of vd  (see figure 1.1).                                

 

 

 
Figure 1.1 - Schematic representation of the motion of an infinitesimal volume element 

in single-particle phase space volume. 
 

 

Writing the rate at which the collisions change f and taking into account 

the effect of the collisions, the following equation is derived: 
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This is the Boltzmann equation and determines the velocity 

distribution of the particles. The right-hand term is called collision integral. 

The sum is extended at each type of collision (electron-electron collisions, 

ionizations, excitations, …) considered. 

Once that the Boltzmann equation is solved and the distribution 

function is calculated, some plasma proprieties, as mean velocity mv  (or 
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mean energy) and drift velocity α,dv  expressed by the following equations 

(1.5), are evaluated: 

 

( )∫
+∞

∞−

= vdvfvvm

3  (1.5) 

 

( )∫
+∞

∞−

= vdvfvvd

3
, αα  (1.6) 

 

1.3 The collision integrals 

 

1.3.1 Elastic collisions: general formulation 

 

For elastic collisions between neutral particles or between neutral and 

charged particles, the evaluation of the collision terms is straightforward, 

since it is sufficient consider only two-body collisions. For particle 

densities, in fact, less than standard density (2.7x1019 cm-3), it is possible to 

assume the hypothesis of "molecular chaos," that is no correlation exists 

between the initial velocities of the two particles in a collision. For 

collisions between charged particles the long-range nature of the Coulomb 

potential is in contradiction to the previous condition, but, if the Coulomb 

potential is regarded as shielded or "cut-off" at the Debye length, the 

charged-body interactions can be treated as two-body collisions. 

Let us consider collisions between particles of species 1 and 2. The rate 

of depleting collisions, (collision in which the particles are scattered out 

form the velocity volume element) is given directly by the collision 

frequency of particles of the velocity class in question with particles of 

species 1.  
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The differential rate per unit volume of depleting collisions is given by 

the following relation: 

 

( ) ( ) cwdddggIwfcfnndR 33
122121 ),( Ω=− χ  (1.7) 

 

where I12(g,χ)dΩ is the differential cross section for scattering, g is the 

relative velocity and χ is the scattering angle. The most convenient way of 

ordering replenishing collisions is through the consideration of inverse 

collisions. An inverse collision is defined as the collision in which the 

initial velocities of the two particles are equal to the final velocities of the 

direct collision. Furthermore, the velocity plane of the inverse collision is 

the same plane as that of the original collision and the deflection angle is 

taken as equal to the original scattering angle χ. Under these conditions, the 

velocities after the inverse collision will be equal to the velocities before 

the original collision. If 'c  and 'w  are the velocities before the inverse 

collision, the differential rate of the inverse collision is: 

 

 

where for elastic collisions g = g'. Combining equation (1.7) and (1.8), the 

collision integral for elastic collisions is: 

 

( ) ( ) ( ) ( ) wddggIwfcfwfcfnnC
w

3
1221212112 ),( ] '' [ Ω−= ∫∫

Ω

χ  (1.9) 

 

where cwddcdwd 3333 '' = . 

( ) ( ) ''),('' 33
122121 cdwddggIwfcfnndR Ω=+ χ           (1.8) 
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The calculation of this collision integral is not trivial. The equation 

(1.9), in fact, as well depends of the distribution function 2f of particles of 

type 2, and without any simplifications this term must be considered. In the 

next sections, the particle species referred as 1 are electrons.  

 

1.3.2 Elastic electron-electron collisions: the Fokker-Plank term 

 

The effects of charged-particle collisions result mainly from collisions 

in which the deflections, and hence velocity changes, of the particles are 

small. The predominance of small deflections in charged-particle collisions 

gives rise to the Fokker-Planck collision term. A first simplification in 

equation (1.9) is the expression of the cross section I12 that assumes the 

Rutherford form: 
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where m12 is the reduced mass and q1, q2 are the electric charges. Since the 

effects of charged-particle collisions result mainly from collisions where 

the change in particle velocities is small, the functions ( )'1 cf  and ( )'2 wf  are 

expanded in a Taylor's series as follows: 
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Substituting the equations (1.11) into (1.9) and after some 

manipulations the usual term of the electron-electron collisions is obtained: 
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where the function G and H are the so-called Rosenbluth potential and are 

defined as: 
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It should be noted that Γ12 is independent of the relative velocity g. ( )1

12Q  

is the momentum-transfer cross section. Equation (1.12) is the Fokker-

Planck collision term. 

 

1.3.3 Elastic collisions: electron-heavy particles 

 

In an elastic collision between an electron and a heavy particle, as a 

result of the difference of mass of the two particles, the changes in the 

energy of the electron and in the velocity of the heavy particle are small. In 

addition since the electron velocity is typically much greater than that of 

the heavy particle, the relative velocity g is nearly equal to the electron 
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velocity c . The velocities of the two particles after a collision, expressed in 

terms of peculiar velocities, are 
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where the subscript h denotes the heavy particle. The vector k is a unit 

vector directed along the external bisector of the relative velocities g  and 

'g  before and after the collision (see figure 1.2).  

 

 

Figure 1.2 - Schematic representation of the collision plane. 
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Since me/mh is small and cwcg ≅−= , the equations (1.14) are written 

by means of binomial series as: 
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where the velocity V is defined by ( )kkccV ⋅−≡ 2 . As done for the 

electron-electron collision term, the functions ( )'1 cf  and ( )'2 wf  are 

expanded in a Taylor's series in term of me/mh. Finally, in order to 

eliminate the dependence from the relative velocity in the term ( )χ,ggIeh , 

it is necessary to write an expansion for this factor also. Substituting these 

expansions in the (1.9) and after some manipulations and simplifications, 

the following expression is obtained: 
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The first part of the first term on the right-hand side of equation (1.16) 

represents the effect on fe of scattering by infinitely massive heavy 

particles. The terms that involve kTh and hu  reflect the effect of the thermal 

and diffusive motions of the heavy particles. The first part of the last term 
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represents the effect of the recoil of the heavy particles, which is a 

consequence of their finite mass. For practical purpose, several terms (in 

particular the derivatives of ehν̂ ) in equation (1.16) give no contribution, so 

that the application of Ceh is less complicated. 

 

1.3.4 Inelastic collisions: excitations 

 

If the solution of Boltzmann equation is devoted to the determination of 

the distribution function of free electrons, an important simplification in the 

evaluation of the inelastic collision terms occurs. Because of the difference 

of mass of the two particles (electron and heavy particle), the velocity of 

the electrons is much higher than that one of heavy particles. So, the 

differential rate per unit volume for the excitation is:  

 

vddvvfvNndR jje

3)(),( Ω= ∫
Ω

− χσ  (1.17) 

 

where Ωdvj ),( χσ  is the differential excitation cross section. After the 

collision, the electrons are scattered out of the velocity volume element 

vd3 . So, the equation (1.17) corresponds to the depleting term. 

At the same way, considering the electrons that are scattered into vd3 , 

the following expression is obtained: 

 

')'('),'( 3vddvfvvNndR jje Ω= ∫
Ω

+ χσ  (1.18) 

 

Equation (1.18) is the replenishing term. The electron velocity before 

and after the collision are related by means the following relation: 
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j
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where εj is the excitation energy. Substituting equation (1.19) into (1.18) 

the excitation collision term is obtained:  
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(Note that differentiating (1.19) ''dvvvdv=  is obtained) 

 

1.3.5 Inelastic collisions: ionizations 

 

With analogous approach, it is possible to write the depleting term for 

ionization that is: 

 

vddvvfvNndR iie

3)(),( Ω= ∫
Ω

− χσ  (1.21) 

 

where Ωdvi ),( χσ  is the differential ionization cross section. In order to 

write the replenishing term, it is convenient to split up the electron in 

primary and secondary. The first one is the electron incident. The other is 

the electron that becomes free after the collision. So, the energy 

conservation law gives: 
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     energy of the two electrons after the collision (1.22a) 
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The velocity at which the primary electron enters in the element 

volume vd3  is: 
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Differentiating equation (1.23) it can be found that vdvdvv
∆

= 1
'' .  

In the same way, replacing ∆ with (1-∆) and v’ with v’’, the 

contribution of the secondary electron is carried out. So, the replenishing 

term is: 
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Finally, the ionization collision term becomes: 
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1.4 The two term approximation 

 

In a wide range of physical situations in collision-dominated plasmas, a 

particular representation of the electron Boltzmann equation is carried out. 

The idea is to express the distribution function ( )vf  in terms of a spherical-

harmonic expansion (or Legendre’s orthogonal polynomials ( )ΘcosnP ) that 

can be written as: 

 

( ) ( ) )(cos
0

Θ=∑
∞

=
n

n
n Pvfvf  (1.26) 

 

where the functions nf  are all isotropic and Θ is the angle between the 

generic force F  and v  direction. When the anisotropy of the velocity 

distribution function not negligible (f0 >> f 1 >> f 2,…), only the first two 

polynomials are considered, so the equation (1.26) becomes: 
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in which ( )FF ,0,0= . This approximation is called two-terms spherical 

harmonic expansion. Substituting equation (1.27) in both of (1.5) and (1.6), 

the following equations are obtained: 
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( )dvvfvvvd ∫
∞
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From these equations it can be observed that the function 0f  governs 

the plasma proprieties that depend of the mean velocity, as mean energy 

and viscous stress. By the other hand, 1f  is responsible of the directional 

proprieties. So, ( )vf0  and ( )vf1  are called respectively isotropic and 

anisotropic term. 

Finally, substituting equation (1.27) in (1.2), the normalization 

condition becomes: 
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1.5 Effects of the two term approximation in the Boltzmann 

equation 

 

In the case of stationary plasma, substituting the expansion (1.27) into 

the Boltzmann equation (1.4), two scalar equations for f0 and f1 are 

obtained:  
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where the unique external force acting on electrons considered is the 

electric field E, directed only along the 0-z axis. The parameter α is the 

first Towsend coefficient and takes into account of the variations of 

electron density along the z axis. The terms C0 and C1 are the collision 

integral expressed by: 
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In the evaluation of the electron-electron collision term from the 

Fokker-Planck expression (1.12), it is sufficient to consider only the 

contribution of f0(v) in the expansion (1.27), since f0 >> f 1, f2,…With this 

condition the following expression is obtained: 
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If the electron-electron collisions play a fundamental role (for example 

fully ionized plasmas) also in the reducing the anisotropy caused by the 

electric field, the 1
eeC  term has to be considered. 

In the evaluation of the electron-heavy particle collision term, both the 

f0 and f1 functions have to be considered. In fact, the principal role of these 

collisions is to redistribute in all space directions the motion of free 

electrons reducing the anisotropy. Introducing the expansion (1.27) into the 
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equation (1.16) and after some manipulations, the two terms 0

ehC  and 1

ehC  

are obtained: 
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where ( ) ( ) )(11 ggQn ehheh =ν  and ( ) )(1 gQeh  is the momentum transfer cross section. 

If the mean velocity of the heavy particles is low, the second term of 

equation (1.35) is negligible. 

When the inelastic collisions are not too frequent, it is sufficient to 

consider only the first contribution of the expansion (1.27) and place f ≈ f0 

in their evaluation. As consequence, the integral collision C1 is zero. For 

excitation and ionization processes the C0 term reads: 
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where ( ) ( )∫
Ω

Ω= dvvQ χσ ,  is the integral cross section of the generic 

process. 
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1.6 The electron energy distribution function (EEDF) 

 

The substitution of the two term expansion in the Boltzmann equation 

allows to write a system of two scalar equations in f0 and f1. Introducing the 

second expression of the equation (1.31) into the first one and substituting 

the collisional terms previously described, an integro-differential equation 

for )(0 vf  is obtained. Usually, the problem is re-formulated in the electron 

kinetic energy domain u=mv2/2. As consequence, the the Boltzmann 

equation for the electron energy distribution function (EEDF) f(u) takes the 

following second order non-linear integro-differential form: 
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with the normalization condition, from equation (1.2), expressed as 
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The expressions of the coefficients in the (1.38) are the following: 
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in which ( ) ( )( ) h
h

eh nuQuA  1∑≡  and ( ) eeee nTB Γ≡ . 

The solution of the equation (1.38) allows to evaluate the EEDF f(u). 

Afterwards, the electron temperaure Te is evaluated in terms of the electron 

mean energy as: 
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Finally, the other parameters of interest, as the drift velocity (expressed 

by (1.29)) and the first Towsend coefficient α, are evaluated: 

 

( )duuuf
m

v
v

d ∫
∞

=

=
0

12
 

3

8π
  (1.42) 

 



CHAPTER 1 

 24 

 

d

i

v

να =   (1.43) 

 

where νi is the ionization frequency defined as: 
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1.7 Solution of the Boltzmann equation 

 

1.7.1 Discretization of the energy domain 

 

The discretization in the energy domain has been carried out by means 

of a finite difference formulation. If ui-1,  ui, ui+1 are the kinetic energy of 

the generic points i-1, I, i+1 and fi-1, fi, fi+1 are their function values, the 

second order expansion in a Taylor's series gives: 
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Substituting these expansions in the equation (1.38) the following 

expression for the generic point i is derived: 

 

1111 ++−− ++ iiiiii fafafa  (1.46) 
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with 
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In order to represent the inelastic collision terms in the energy domain, 

it is  necessary to add the coefficients resulting from the approximation of 

the generic function ( )ki ukuf +  in which uk is the threshold energy. This 

function is expanded in a second order Taylor's series around the nearest 

domain point uv. The coefficients of this expansion are: 
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Due to a strong dependence of the discretization step by the input 

parameters (electric field, density and temperature), a step by step 

calculation of the coefficient K and U is performed. The discretization step 

u∆  adopted has to satisfy the stability condition UKu 2≤∆ . Another more 
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restrictive condition is adopted taking into account that the coefficient 

0≠γ  and (1.38) is not homogeneous. 

 

1.7.2 Boundary conditions 

 

The boundary conditions adopted are the following: 
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The first of the (1.49) is the already described normalization condition 

(1.39). The integral is calculated by means of the “ trapeze rule”. The other 

one illustrates that all the collisional events having electron energy greater 

than the maximum value of the domain (for example 100 eV) are not 

considered. This condition is expressed by setting 01 =+na  in (1.47), if n are 

the number of the discretization points. 

 

1.7.3 Solution of the system 

 

The non linear system is solved iteratively by the FORTRAN routine 

DLSLXG that solves a system of linear algebraic equations having a real 

sparse coefficient matrix. It first uses the routine DLFTXG to perform an 

LU factorization of the coefficient matrix. The solution of the linear system 

is then found using DLFSXG. The routine DLFTXG by default uses a 

symmetric Markowitz strategy to choose pivots that most likely would 
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reduce fill-ins while maintaining numerical stability. In the figure 1.3 the 

basic structure of the numerical code is shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 - Flux diagram of the numerical code solving the Boltzmann equation. 
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1.8 Application of the model at monatomic weakly ionized 

plasmas 

 

The model is firstly applied at stationary and homogeneus argon 

weakly ionized plasma, with ionization degree less than 10-3. In this way, 

the calculated electron energy distribution functions are compared with the 

results presented in reference [1] and the transport parameters with 

reference [2]. The following anelastic and elastic collision processes are 

considered: 

 

e(j)Are(1)Ar 11 +→+  (excitations to a level j from ground 

level) 
(I) 

 

ee(1)Are(1)Ar 21 ++→+  (ionization from ground level) (II) 

 









−
−

e-e

eAr

eAr

2

1

 (elastic collisions) (III) 

 

In the equation (I) j is referred at the neutral argon levels indicated in 

table 1.1.  

 

Designation Excitation energy [eV] 

4s [3/2]2 11.548 

4s [3/2]1 11.624 

4s [1/2]0 11.723 

4s [1/2]1 11.828 
 

Table 1.1 - Energy levels of neutral argon considered. 
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Following the same approach used by Vleck [1] on the solution of the 

equation (1.38), the distribution function f(u) is replaced by the 

corresponding Maxwellian function fM(u) in the coefficients containing the 

Fokker-Plank term. In figure 1.4 the numerical results of the ratio f(u)/fM(u) 

for electron temperature Te = 20000 °K are shown. The simulations are 

performed at Nh = 1.61x1023 m-3, at two values of heavy particle 

temperature (Th = 300 °K and 1000 °K) and with electron density in the 

range of 1014 ÷ 1020. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.3 - Calculated EEDF at Te = 20000 °K. 

 

The calculated EEDF is nearly Maxwellian up to the first argon 

excitation level (11.55 eV) in all cases investigated. On the other hand, the 

high-energy tail is underpopulated. If the electron density is increased, the 

tail is more populated and the deviations from the Maxwellian distribution 

are less evident. These results are in excellent agreement with those 

presented by Vleck.  
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Figure 1.4 - Calculated drift velocity at different E/N ratios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.5 - Calculated ionization coefficient at different E/N ratios.  
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In the figures 1.4 and 1.5 the drift velocity Vd and the ionization 

coefficient α/N are shown. An excellent agreement with the experimental 

data of Vd measured by Robertson and Lucas [2] (figure 1.4) is obtained 

when the ionization degree is varied with the ratio E/N. A good agreement 

with the calculated values of by Puech-Torchin [2] is also obtained for α/N 

(figure 1.5). 

 

1.9 EEDF at MPD plasma conditions 

 

The application of the model solving the Boltzmann equation to these 

type of plasmas is not trivial. These plasmas are characterized by very high 

E/N ratios (103 Td, or more, where 1Td = 10-21 V/m2) with strong electric 

field (E = 200 ÷ 800 V/m) and low density (N = 1019 ÷ 1020 m-3). 

Moreover, due to the fully ionized condition (see chapter 3) the electron-

electron collisions become the leading term and the approximation used in 

the previous section is not longer valid. Finally, due to the probable high 

energy of the heavy particles, their mean velocity in the equation (1.35) 

could be considered. Due to these considerations, the following anelastic 

and elastic collision processes are considered: 

 

e(j)Are(1)Ar 11 +→+  (excitations to a level j from ground 

level) 
(I) 
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ee(1)Are(1)Ar 21 ++→+  (direct excitation from the ground level 

of neutral argon) 
(III)  











−
−
−

e-e

eAr

eAr

eAr

3

2

1

 (elastic collisions) (IV) 

 

In the equations (I) and (IV) j is referred at the following argon levels 

indicated in table 1.2.  

 

 Designation Excitation energy [eV] 

Ar I 4s [3/2]2 11.548 
Ar I 4s [3/2]1 11.624 
Ar I 4s [1/2]0 11.723 
Ar I 4s [1/2]1 11.828 
Ar I 4d [1/2]1 14.710 
Ar I 6p' [1/2]1, 6p' [3/2]1, 6p' [3/2]2 15.200 
Ar II 3p6 (2S) 29.240 
Ar II 3p4(3P)4s (2P) 33.000 
Ar II 3p4(3P)4p (4P*5/2) 34.984 
Ar II 3p4(3P)4p (4D*5/2) 35.310 
Ar II 3p4(3P)4p (2D*5/2) 35.441 
Ar II 3p4(3P)4p (2D*3/2) 35.524 
Ar II 3p4(3P)4p (2P*1/2) 35.562 
Ar II 3p4(3P)4p (2P*3/2) 35.628 
Ar II 3p4(3P)4p (4S*) 35.728 
Ar II 3p4(3P)4p (2S*) 35.734 

   
Ar II 3p6 (2S) 13.481 
Ar II 3p4 (3P)4s (2P1/2) 17.267  

Table 1.2 - Energy levels of neutral argon considered. 

 

Figure 1.6 shows the numerical results of the f(u)/fM(u) ratio in the case 

of E = 100 V/m and Ne = 1019 m-3. The calculated electron temperature Te 

is 33.400 °K. The form is slightly Maxwellian up to approximately 20 eV 

after that the tail overpopulated.  



COLLISIONAL-RADIATIVE MODEL IN NON EQUILIBRIUM PLASMAS 

 33 

E = 100 V/m

1.E-01

1.E+01

1.E+03

1.E+05

0 20 40 60 80 100

Energy [eV]

f/f
M

 
Figure 1.6 - Calculated EEDF at E = 100 V/m and Ne = 1020 m-3.  

 

The same considerations are valid also if the electric field is increased 

(E = 200 V/m). The results are shown in figure 1.7 (Te ≈ 70.000 °K). 
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Figure 1.7 - Calculated EEDF at E = 200 V/m and Ne = 1020 m-3. 
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All these simulations are performed with α = 0 and with percentage of 

ArIII density less than 0.1%. The role the e-ArIII collisions are more 

evident if this percentage is increased up to 1%. The results are shown in 

figure 1.8 with E = 100 V/m and Ne = 1019 m-3 (Te ≈ 110.400 °K). 
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Figure 1.8 - Calculated EEDF at E = 100 V/m and Ne = 1019 m-3.  

 

The calculated EEDF is not too different from the Maxwellian 

distribution with the high energy tail less populated than the case of figure 

1.6. The decrease near the higher boundary is probably caused by 

numerical effects. 

An indication of the validity of the two term approximation to solve the 

Boltzmann equation in plasmas characterized by high E/N ratio is given by 

the behaviour of the f1/f0 ratio, reported in figure 1.9 in the same simulation 

conditions of figure 1.6. The ratio stays less than unity up to 30 eV and 

then increases. So the high energy tail of the EEDF could not be 

sufficiently well described. On the other hand, it is necessary to note that 

the inelastic processes and the e-e collisions are described only by the f0 
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function and the role of f1 should be taken into account. However, these 

considerations do not compromise the validity of the model developed, but 

they have to be intended as the basis for the future work. 
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Figure 1.9 - Calculated f1/f0 ratio at E = 100 V/m and Ne = 1020 m-3.  

 

 

1.10 Collisional-radiative model of ArII system 

 

1.10.1 Formulation of the problem 

 

The equation describing the population/depopulation mechanisms of 

the excited generic level k is the following continuity equation: 

 

KKkk
k DPnvgrad
t

n −=+
∂

∂
)(  (1.50) 
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where Pk and Dk are the terms that describe the population and the 

depopulation of the level k by the collisional and radiative processes. The 

distribution function of the particles in the level k is taken Maxwellian. 

Usually, the collisional and radiative phenomena dominate over the 

transport phenomena and the so-called quasi steady-state solution (QSSS) 

is applicable and the equation (1.50) becomes: 

 

0=− KK DP  (1.51) 

 

The model is applied to the singly ionized argon system (ArII). The 

collisional and radiative processes, for the ArII, are the following: 
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Here, Ckj and Kkj are the rate coefficients for collisional excitation by 

electrons and by the ground state of the ArII respectively. Fjk and Ljk are 

respectively the rate coefficients for the inverse processes (collisional de-

excitation). Sk and Vk are corresponding collisional ionization rate 

coefficients while Qk and Wk are the rate coefficients for the inverse three-
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body recombination and Rk is the radiative recombination rate coefficient. 

Akj is the transition probability, Λkj and Λk are the optical escape factors for 

bound-bound and free-bound transitions.  

Writing a balance for the population and the depopulation of the level k 

the equation (1.52) is derived: 

 

0
1
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=

k

p

j
jkjna δ  (1.52) 

 

The coefficients are given by: 

 

kjkjekj KnCna 1+=                     for j < k (1.53a) 

 

kjkjkjkjekj ALnFna Λ++= 1         for j > k (1.53b) 
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( )kkkkeek AWnOnnn Λ++= + 1δ  (1.53d) 

 

In the present model, the collisions with the ArII(1) are not considered. 

Furthermore, the plasma is considered optically thin for all the radiations 

and then is set Λkj = Λk = 1. The expressions for the rate coefficients are 

given by: 
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The expressions of the cross sections are reported in the Appendix A. 

The boundary conditions are given by the following conditions: 

 


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
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constant 

1

ArIII

p

k
kArIIIe
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nNN

 (1.55) 

 

The first equation is the condition of global neutrality of the electrical 

charge in the plasma. 

The QSSS approximation is no longer valid for the doubly ionized 

argon particles in the ground state (also for the singly ionized argon) 

because the transport phenomena are not negligible. So, the continuity 

equation reads: 
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effCRArIIIeCRArIIekk
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where the coefficients are given by: 
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The equation (1.56) allows to classifiy the excitation space of the ArII 

system in: 

 

0>effI    ionizing system  

 

0<effI    recombining system  

 

0=effI    ionization-recombination equilibrium  

 

1.10.2 Results and discussions 

 

The level of the ArII system are grouped in p = 78 effective excited 

states. These levels are reported in the table 1.4 with information on their 

configuration and the statistical weight values.  
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Energy 
[eV] Configuration 

Statistical 
weight 

   
0.0000 3s2.3p5(2P*) 6 

13.4798 3s.3p6(2S) 2 
16.4334 3s2.3p4(3P)3d(4D) 20 
16.6439 3s2.3p4(3P)4s(4P5/2) 6 
16.7485 3s2.3p4(3P)4s(4P3/2) 4 
16.8125 3s2.3p4(3P)4s(4P1/2) 2 
17.1400 3s2.3p4(3P)4s(2P3/2) 4 
17.2658 3s2.3p4(3P)4s(2P1/2) 2 
17.7106 3s2.3p4(3P)3d(4F) 28 
18.0012 3s2.3p4(3P)3d(2P) 6 
18.2921 3s2.3p4(3P)3d(4P) 12 
18.4266 3s2.3p4(1D)4s(2D3/2) 4 
18.4541 3s2.3p4(1D)4s(2D5/2) 6 
18.5559 3s2.3p4(3P)3d(2F) 14 
18.6945 3s2.3p4(3P)3d(2D) 10 
19.1175 3s2.3p4(1D)3d(2G) 18 
19.2229 3s2.3p4(3P)4p(4P*5/2) 6 
19.2611 3s2.3p4(3P)4p(4P*3/2) 4 
19.3054 3s2.3p4(3P)4p(4P*1/2) 2 
19.4945 3s2.3p4(3P)4p(4D*7/2) 8 
19.5490 3s2.3p4(3P)4p(4D*5/2) 6 
19.6103 3s2.3p4(3P)4p(4D*3/2) 4 
19.6426 3s2.3p4(3P)4p(4D*1/2) 2 
19.7212 3s2.3p4(3P)4p(2D*) 10 
19.8341 3s2.3p4(3P)4p(2P*) 6 
19.9675 3s2.3p4(3P)4p(4S*) 4 
19.9725 3s2.3p4(3P)4p(2S*) 2 
20.2594 3s2.3p4(1D)3d(2F) 14 
20.7436 3s2.3p4(1S)4s(2S) 2 
21.1270 3s2.3p4(1D)4p(2F*5/2) 6 
21.1431 3s2.3p4(1D)4p(2F*7/2) 8 
21.3933 3s2.3p4(1D)4p(2P*)+3d(2D) 16 
21.4952 3s2.3p4(1D)4p(2D*) 10 
21.6496 3s2.3p4(1D)3d(2P) 6 
22.2877 3s2.3p4(1S)3d(2D) 10 
22.5969 3s2.3p4(3P)5s(4P) 12 
22.7514 3s2.3p4(3P)5s(2P) 6 
22.8135 3s2.3p4(3P)4d(4D)+(1D)3d(2S) 22 
22.9487 3s2.3p4(3P)4d(4F9/2) 10 
23.0627 3s2.3p4(3P)4d(4F7/2+5/2+3/2) 18 
23.0823 3s2.3p4(3P)4d(4P1/2) 2 
23.1455 3s2.3p4(3P)4d(4P3/2+5/2) 10 
23.2102 3s2.3p4(3P)4d(2F) 14 
23.4431 3s2.3p4(3P)5p(4P*) 12 
23.5815 3s2.3p4(3P)5p(4D*+2P*)+4d(2P) 38 
23.6627 3s2.3p4(3P)5p(2D*+2S*) 12 
23.7020 3s2.3p4(3P)5p(4S*) 4 
23.8018 3s2.3p4(1S)4p(2P*3/2) 4 
23.8463 3s2.3p4(1S)4p(2P*1/2) 2 
23.8836 3s2.3p4(3P)4d(2D) 10 
24.1797 3s2.3p4(3P<2>)4f 70 
24.2843 3s2.3p4(1D)5s(2D) 10 
24.3360 3s2.3p4(3P<1>)4f+(3P<0>)4f 56 
24.6232 3s2.3p4(1D)4d(2G) 18 
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24.7356 3s2.3p4(3P)6s(4P)+(1D)4d(2D+2P) 28 
24.8222 3s2.3p4(3P)5d(4D)+(3P)6s(2P)+(1D)4d(2F) 40 
24.9768 3s2.3p4(3P)5d(4F+4P+2F) 54 
25.1736 3s2.3p4(3P)6p(4P*+4D*+4S*+2P*+2D*) 50 
25.2532 3s2.3p4(1D)5p(2F*+2P*+2D*) 30 
25.3777 3s2.3p4(3P)5d(2D+2P) 16 
25.4160 3s2.3p4(3P)6p(2S*)+(3P<2>)5f 72 
25.4474 3s2.3p4(1D)4d(2S)+(3P<2>)5g 92 
25.5735 3s2.3p4(3P<1>)5f,g 96 
25.6305 3s2.3p4(3P<0>)5f,g 32 
25.7934 3s2.3p4(3P)7s(4P+2P) 18 
25.8478 3s2.3p4(3P)6d(4D+4F+4P) 58 
25.9164 3s2.3p4(1D<2>)4f+(3P<2>)7p 102 
25.9773 3s2.3p4(3P)6d(2F+2P+2D) 28 
26.1106 3s2.3p4(3P<2>)6f,g,h 268 
26.2481 3s2.3p4(3P<1>)6f,g,h 162 
26.3048 3s2.3p4(3P<0>)6f,g,h 48 
26.3771 3s2.3p4(3P)7d(4D+4F+2F)+(1D)6s(2D) 44 
26.5149 3s2.3p4(3P<2>)7f,g,h,i 366 
26.6212 3s2.3p4(1D)5d(2F+2G+2D)+(3P)8d(4D+4F) 56 
26.6640 3s2.3p4(3P<1>+3P<0>)7f,g,h,i+(1S)5s(2S) 284 
26.7767 3s2.3p4(3P<2>)8f,g,i,k 338 
26.9106 3s2.3p4(1D)5d(2S)+(3P<1>+3P<0>)8i,k 226 
27.1701 3s2.3p4(1D<2>)5f,g 126 
27.6297 3s2.3p4 5  

Table 1.4 - Energy levels of the ArII system. 

 

The distribution of the population over the energy excited levels in the 

conditions of  figure 1.6 is shown in figure 1.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.10 - Calculated population distribution of ArII system. 
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In this figure, only the population density of the energy levels being to 

the most intense ArII transitions in the wavelength range of the OMA 

system used in the experimental investigation of the MPD thruster are 

shown. The population density is characterized by two different excitation 

temperatures. The low-lying levels temperature TL is approximately 1.2 eV 

(1 eV = 11.600 °K) while the high-lying levels temperature TH is 2.5 eV. 

So, in these conditions, the ArII system is not in pLTE. The radiative decay 

from the higher levels is an significant contribution of the low-lying levels. 

On the other hand, the high-lying levels (over 20 eV) are mostly populated 

by collisions with electrons. TH is 4-5 times lower than the calculated Te 

and gives a rough estimation of it. The separation level between the two 

population groups corresponds to the energy where the calculated EEDF 

departs from the Maxwellian form. Finally, by means of the equation 

(1.56), the flux Ieff over the levels is calculated. Ieff is approximately 

3.5x1023 m3/s and the ArII system is classified as ionizing. 


