INDEX

SUMMARY	1
INTRODUCTION	3
CHAPTER 1 - COLLISIONAL-RADIATIVE MODEL IN NON	
EQUILIBRIUM HIGLY IONIZED PLASMAS	
1.1 Introduction	5
1.2 The Boltzmann equation	7
1.3 The collision integrals	9
1.3.1 Elastic collisions: general formulation	9
1.3.2 Elastic electron-electron collisions: the Fokker-Plank term	11
1.3.3 Elastic collisions: electron-heavy particles	12
1.3.4 Inelastic collisions: excitations	15
1.3.5 Inelastic collisions: ionizations	16
1.4 The two term approximation	18
1.5 Effects of the two term approximation in the Boltzmann equation	19
1.6 The electron energy distribution function (EEDF)	22
1.7 Solution of the Boltzmann equation	24
1.7.1 Discretization of the energy domain	24
1.7.2 Boundary conditions	26
1.7.3 Solution of the system	26
1.8 Application of the model at monatomic weakly ionized plasmas	28

1.9 EEDF at MPD plasma conditions	31
1.10 Collisional-radiative model of ArII system	35
1.10.1 Formulation of the problem	35
1.10.2 Results and discussions	39
CHAPTER 2 - DESCRIPTION OF THE EXPERIMENTAL	
APPARATUS AND DIAGNOSTIC SET-UP	
2.1 The MPD thruster	43
2.1.1 Introduction	43
2.1.2 Description of the experimental apparatus	44
2.1.3 Thruster performance	46
2.1.4 Set-up of the spectroscopic measurements	48
2.1.4.1 Non intrusive collecting probe and test conditions	49
2.1.4.2 Intrusive collecting probe and test conditions	50
2.1.5 Imaging of the plasma plume: set-up and test conditions	54
2.2 The RF discharge reactor	55
2.2.1 Theory of dust particle formations	55
2.2.2 Description of the experimental apparatus	57
2.2.3 Set-up of the optical measurements	58
2.2.4 Measurements of the electrical parameters	60
2.2.5 Test conditions	61
CHAPTER 3 - RESULTS OF THE OPTICAL MEASUREMEN	TS
3.1 Results for the MPD thruster	63
3.1.1 Spectra of emitted radiation	63
3.1.2 Calculation of the plasma parameters	71
3.1.2.1 Evaluation of the electron temperature	74
3.1.2.2 Comparison with the results of the CR model	85

3.1.2.3 Evaluation of the electron density	87
3.2 Results of the optical measurements on the RF discharge	89
3.2.1 Time evolution of Si-H line	90
3.2.2 Time evolution of H_{α} line	91
3.2.3 Time evolution of He line and video camera recording	93

CHAPTER 4 - EXPERIMENTAL RESULTS OF THRUSTER PLUME IMAGING

4.1 Imaging plasma plume at $I = 4500$ A and $B = 0$ mT	97
4.2 Imaging plasma plume at $I = 7500$ A and $B = 0$ mT	99
4.3 Imaging plasma plume at $I = 4500$ A and $B = 80$ mT	101
4.4 Imaging plasma plume at $I = 7500 \text{ A}$ and $B = 80 \text{ mT}$	103

CHAPTER 5 - EVOLUTION OF THE ELECTRICAL PARAMETERS ON RF DISCHARGE

5.1 Introduction	107
5.2 Time evolution of the electrical parameters	108
5.3 Effect of the gas temperature on the electrical parameters	113
5.4 Comparison with the optical measurements	116
CONCLUSIONS	119
ACKNOWLEDGMENTS	121
APPENDIX A: CROSS SECTIONS USED IN THE CR	123
MODEL	
APPENDIX B: NUMERICAL CODE OF THE CR MODEL	129
REFERENCES	187