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CHAPTER 1

INTRODUCTION

For a successful technology, reality must take precedence over pub-
lic relations, for nature cannot be fooled.

(Richard Feynman)



In 2004, the 10 Mach hypersonic �ight demonstration by the NASA re-
search aircraft X-43 boosted the research activity about the atmospheric
and space hypersonic �ight [1], [2], [3]. In this context, Magnetohydrody-
namics (MHD) can be regarded as a promising �eld [4], [5], [6], [7], [8], [9].
MHD has been proposed as an added tool in the development of the air
breathing engines needed for hypersonic �ight exploitation: an MHD sys-
tem has been suggested to control the �uid dynamics at the inlet of the
scramjet [10], [11], [12]. In the Russian AJAX project, MHD techniques are
utilized to bypass kinetic energy of the working �uid from the supersonic
di�user to the nozzle, reducing the �ow velocity in the combustion chamber
to acceptable value, even for high vehicle Mach numbers [13], [14], [15].
An induced MHD interaction can also modify the �ow �eld in the boundary
layer of a re-entry hypersonic vehicle, moving the shock front away from the
body walls, or generating a torque allowing an active �ow control without
movable parts [16], [17], [18], [19].
The work presented in this thesis is focused on a numerical analysis of the
shock moving e�ect. In the re-entry phase, for Mach numbers ranging from
12 to 25, the temperature at the vehicle surface can exceed 2000 K, due to
both convection and radiation from the shock layer [20]. In order to face
with the strong thermal stresses the fuselage is subjected to, the body walls
are equipped with a shielding coverage made up of di�erent materials en-
suring a proper heat dissipation. By pushing the shock front away from the
body nose, the heat �uxes are mitigated and the load on the thermal shield
is reduced.
If a magnet system is installed on the fuselage, capable to generate �elds at
the order of Tesla, a Lorentz force acts on the charges convected with the
ionized air surrounding the aircraft, and generates an electromotive force.
The resulting current J couples with magnetic �eld generating a body force
J×B acting on the �ow.
Several magnets con�guration have been proposed and tested in wind tun-
nels facilities [21], [22], [23] [24], [25], [26], [27], [28], [29]. The modeling
e�ort presented here concentrates on a axi-symmetric con�guration for the
magnets that generates a current �ow in the azimuthal direction, positioned
where the MHD interaction is stronger, that is, where the �ow �eld is almost
orthogonal to the magnetic �ux density [30], [31].
A sketch of the MHD interaction con�guration around a conical test body
is given �gure 1.1; a picture of the �ow around a conical test body with
and without MHD interaction is shown in �g 1.2. The current and �eld
components in the direction u × B, where u is the mass �ow velocity, are
referred to as the Faraday components, whereas the components in the plane
(B, (u×B)×B) are named Hall components.
The di�usion e�ect of the current in the Hall direction is modeled by de�ning
a tensor conductivity, that introduces an anisotropy in the electrodynamic
problem formulation, that is, in the formulation of the partial di�erential
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(a) (b)

Figure 1.1: MHD interaction regions (a) and Hall currents
(b).

(a) (b)

Figure 1.2: Flow pattern without MHD interaction (a) and
with MHD interaction (b).

equation to be solved to determine the current entities. The physical anisotropy
generates computational di�culties in the �nite element solution, that does
not reach convergence in several cases. The strategy to overcome this di�-
culty is linked to the solver algorithm behavior that has to take into account
the preferred direction set by the physical problem. Once obtained the solu-
tion, a proper treatment of the �nite element results for the potential permits
an higher accuracy in the �eld evaluation.
The modeling activity presented in this work has been performed within the
CAST project, funded by the Italian Space Agency (ASI), aimed at develop-
ing an integrated experimental-computational environment to explore new
possible con�gurations for aerospace transport.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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In the following, chapters 2, 3 present the physical and numerical models
respectively, chapter 4 addresses the computational issues touched on above,
chapter 5 presents the simulation results obtained.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



CHAPTER 2

RESISTIVE MAGNETOHYDRODYNAMICS: THE

PHYSICAL MODEL.

Cerca le cose di�cili e sarai salvo era scritto. Perchè la salvezza
sta nella ricerca. Anche se non si trova. Anche se non si sa cosa
si cerca. Anche se non si sa che si cerca.

Rosario Magrì
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Abstract. Magnetohydrodynamics is a continuum description of a charged
�uid �ow in an electromagnetic �eld. The continuum assumption results in
a time and length scale de�nition for the phenomena that can be described
by the model, and allows some simpli�cations in both the �uid dynamic and
electrodynamic description. Fluid dynamics is modeled by the Navier-Stokes
equations, with added source terms in momentum and energy equations ac-
counting for the Faraday law and the electromagnetic energy contribution.
Electrodynamics is described by the generalized Ohm's law, and by the
Maxwell-Faraday and Ampere-Maxwell equations, where the displacement
current is neglected. The convection current results divergence free, and the
physical model is stated by imposing null divergence for the conduction cur-
rent expressed by the generalized Ohm's Law. For the studied hypersonic
�ight applications the magnetic Reynolds number is low, and the magnetic
�eld induced by the current can be neglected compared to the imposed mag-
netic �eld, constant in time. The electric �eld results therefore irrotational,
and a scalar potential can be de�ned.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Chapter 2. Resistive Magnetohydrodynamics: the physical model. 7

Introduction.

The physical model the work presented in this thesis is based on, is a one-
�uid continuum model. The continuum assumption for the mass �ow leads
to the classical Navier Stokes equations formulation, with the added terms
due to the electromagnetic interaction between the charged �uid and the
electromagnetic �eld. The model is completed by the (generalized) Ohm's
law that links the current density to the electric �eld it generates, and by
the Maxwell-Faraday and Ampere-Maxwell equations. This is treated in sec-
tion 2.1. The generalized Ohm's law describes a conducting �uid where the
conductivity has not a scalar nature. It depends on the action of a magnetic
�eld on a collision dominated plasma: collisions favor the di�usion of the
charged particles. A tensor expression for the generalized Ohm's law is the
strategy adopted to numerically treat the issues implied by anisotropy. This
tensor formulation is described in section 2.2. Finally, section 2.3 discusses
the dynamic equation for the magnetic �eld and the adopted low magnetic
Reynold numbers approximation.

2.1 Magneto-hydrodynamic equations.

For a many particle plasma and long time scale phenomena, the plasma
reaches through collisions a Maxwellian equilibrium and the charge separa-
tions saturate. In these conditions, it is possible to formulate a macroscopic
model for a plasma as a single �uid. To quantify the time and length scale
implied by this assumptions, let us introduce the electrons Debye length and
the plasma frequency:

λD =
(
ε0kT

ne2

)1/2

= 69.0 ·

(
T

n

)1/2

m (2.1)

ωp =
(
ne2

ε0me

)1/2

= 2π · 8.97 ·n1/2 s−1 (2.2)

where T is the plasma temperature, n is the electron number density, me is
the electrons mass. The Debye length de�nes the shielding e�ect the plasma
has on the Coulomb �eld generated by the single charged particles in it: for
distances greater than the Debye length, the Coulomb potential generated
by each charge drops and the interactions between charged particles are no
longer two body coulomb collisions, but can be described by the action of
a mean electromagnetic �eld on each charge. For the plasma involved in
hypersonic �ight applications, the Debye length is of order of 4 · 10−6, much
less of the length scales of the phenomena under study.
The plasma frequency describes the response of the plasma to a distortion
of the neutrality condition: the charge density �uctuates with an harmonic

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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oscillator behavior, whose oscillation frequency is given by ωp. For hyper-
sonic �ight plasmas, the order of magnitude of the characteristic frequency
is 109s−1. By multiplying the two quantities 2.1, 2.2 we obtain:

λDωp =
(
kT

me

)1/2

' C̄e (2.3)

where C̄e is the mean thermal speed of electrons. Equation 2.3 implies
that electrons travel a distance λD in a time ω−1

p /2π before the restoring
force acts. The distance λD is therefore the limiting distance to observe
charge neutrality deviations, and the time ω−1

p /2π is the limiting time to
observe such a variation. Furthermore, any disturbance of angular frequency
greater than ωp doesn't a�ect the charge neutrality assumption. Holding this
assumptions, a current density in the plasma can be de�ned as the sum of the
current densities due to each conducting species, that is, electrons and ions.
The time scale restrictions posed above, permits to neglect the displacement
currents compared to the conduction current:

|∂D|/|∂t|
|J|

∼ Dc

tcJc
∼ ε0Ec
tcσcEc

=
ε0
σctc

� 1. (2.4)

where tc is the characteristic time scale of the phenomena under study, and
σc is the characteristic plasma conductivity. For 2.4 to hold it has to be
tc � ε0/σc. Since:

σc ∼
ne2

meνeH
, (2.5)

where νeH is the average collision frequency between electrons and heavy
particles, 2.4 holds if

tc � νeH/ω
2
p. (2.6)

, as mplied by ??. For the continuum �uid dynamic approximation to hold,
it has to be tc � ν−1

eH , so 2.6 implies that if tc >> ω−1
p the displacement

current can be neglected.
Since

ρch|u|
|J|

∼ ε0
σctc

(2.7)

ρch|E|
|J×B|

∼ ε0
σctc

, (2.8)

where ρch is the charge density and u is the �ow velocity, if tc >> ω−1
p

the convection current can also be neglected compared with the conduction
current, so as the force acting on the �uid because of its charge, compared

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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with the Hall forces J×B.
It is now possible to state the magnetohidrodynamic (MHD) equations:

∂ρ

∂t
+∇(ρu) = 0 (2.9)

∂(ρu)
∂t

+∇(ρuu + pI− τ) = J×B (2.10)

∂(ρei)/∂t+∇[(ρei + p)u]−∇ · (τ ·u) +∇(FT) = J ·E (2.11)

J = σ(E + u×B)− βe
J×B
B

+ βeβi
(J×B)×B

B2
(2.12)

∇×B = µ0J (2.13)

∇×E = −∂B
∂t
. (2.14)

where it have been introduced the Hall parameters βe, βi for electrons and
ions, given by:

βe =
ωe
νen

(2.15)

βi =
ωi
νin

(2.16)

where ωe,i are the cyclotron frequencies for ions and electrons respectively,
and νen,in are the collision frequencies between electrons, ions and the neu-
tral particles.
Equations 2.9 to 2.11 are the Navier-Stokes equations with the added terms
due to the electromagnetic interaction between the plasma conduction cur-
rent J and the electromagnetic �eld. Equation 2.12 is known as the gen-
eralized Ohm's law, written for weakly ionized gases, and will be discussed
in more detail in the next section. The last two equations are the Maxwell
equations for the electric and magnetic �elds. The electric �eld is deter-
mined by the conduction current J through the Ohm's law equation, since
no charge density appears in the MHD equations. The magnetic �eld is the
superimposition of the imposed and induced magnetic �elds. Equation 2.13
determines the induced part only.
A last comment about equation 2.13: it implies that the conduction current
is divergence free in the MHD approximation,

∇ ·J = 0 (2.17)

For a complete treatment of the collisional plasmas theory, and of the mag-
netohydrodynamics formulation, the reader is referred, for example, to [32],
[33], [34], [35], [36].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 2.1: Charged particles trajectories in crossed electric
and magnetic �elds.

2.2 Di�usion in a magnetic �eld: anisotropy and

the conductivity tensor.

In order to give some insight on the equation 2.12, let us consider the behavior
of singly ionized positive ions and electrons, in a weakly ionized plasma.
In presence of a uniform electric �eld, charged particles move in a direction
parallel or antiparallel to the �eld, depending on their charge. A conduction
current in the �eld direction is observed.
In presence of both an uniform electric a magnetic �eld, charged particles,
regardless of the charge sign, reach a drift velocity uD in the direction E×B:

uD =
E×B
B2

. (2.18)

The particle motion is shown in �gure 2.1 for a z aligned magnetic �eld and
an y aligned electric �eld [34]. Since both positive and negative charges have
the same drift velocity, no conduction current would be observed.
The situations described above correspond to the limiting cases of a strongly
collision dominated, and a collisionless plasma, respectively. In presence of
many collisions, the motion of the particles around the magnetic �eld lines is
often interrupted, and the bending e�ect of the �eld on the particle trajecto-
ries can be neglected, resulting in a motion along the electric �eld direction.
The opposite condition maximises the action of the magnetic �eld, generat-
ing a drift motion in the direction E×B. The relative incidence of collisions
in presence of a magnetic �eld is described by the Hall parameter 2.15: the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ratio between the frequency of the gyroscopic motion and the collision fre-
quency de�nes which of the behaviors described above has to be expected.
For the intermediate cases, with E = Ey î and B = Bzk̂, the following equa-
tions describe the electron motions:

Uex =
βeµe

1 + β2
e

Ey (2.19)

Uey = − µe
1 + β2

e

Ey (2.20)

where µe = e/meνen is the electron mobility, related to βe by:

βe = µeB. (2.21)

As expected, electrons drift mainly in the electric �eld directions for low βe,
in the direction E × B for high Hall parameters. The electron conduction
current is written

Jex = − σe
1 + β2

e

Ey = (σe)⊥Ey (2.22)

Jey =
σeβe

1 + β2
e

Ey = −(σe)HEy (2.23)

where σe = ne2/meνen is the scalar electron conductivity. Since (σe)H goes
to zero for low βe values, equations 2.19 show that for low Hall parameters
the electron conductivity has a scalar nature. Equations analogue to 2.19
can be worked out for ions, obtaining:

Uix =
βiµi

1 + β2
i

Ey (2.24)

Uiy =
µi

1 + β2
i

Ey (2.25)

where µi = e/miνin is the ion mobility, related to βi by:

βi = µiB. (2.26)

The ratio between the di�usion velocities components will determine the rel-
ative contribution of each species to the conduction current in the considered
direction.
The total conduction current will be written as:

Jx = en(Uix − Uex) ∼ − σeβe
(1 + βeβi)2 + β2

e

Ey = −(σ)HEy (2.27)

Jy = en(Uiy − Uey) ∼
σe(1 + βeβi)

(1 + βeβi)2 + β2
e

Ey = (σ)⊥Ey (2.28)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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where the total conductivity has been approximated with the electron con-
ductivity. The module of the total conduction current J is given by

J =
σ√

1 + β2
e

Ey. (2.29)

The current module is then maximum when the Hall parameter is minimum,
i.e. when the charges drift in the E×B is negligible.
Equations 2.27 can be written for a general orientation of E in the vector
form 2.12, or in a cartesian tensor form:

Jα = σαβEβ. (2.30)

For βiβe � 1 the conductivity tensor in 2.30 can be expressed as1:

σ =
σ

1 + β2
e

 1 + β2
x βxβy − βz βxβz + βy

βxβy + βz 1 + β2
y βyβz − βx

βxβz − βy βyβz − βx 1 + β2
z

 (2.31)

and 2.12 takes the form:

J = σE (2.32)

In the reference frame moving with the �ow, where the total electric �eld is
written:

E′ = E + u×B, (2.33)

we obtain:

J = σE′ = σ(E + u×B). (2.34)

2.3 Low magnetic Reynolds numbers regime.

A description of the dynamic evolution of the magnetic �eld B, can be
obtained by substituting 2.13 and the generalized Ohm's law for scalar con-
ductivity:

J = σ(E + u×B), (2.35)

in 2.14. The resulting equation is [34]:

∂B
∂t

=
1
µ0σ
∇2B +∇× (u×B) (2.36)

The �rst term in the right hand side of equation 2.36 recalls a di�usion
equation: for u = 0 the �eld lines tend to di�use in space and decay in time.

1See [37], [38]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The second term can be interpreted by noting that the �ow variation through
an area S whose bound is attached to �ow streamlines is given by:

dΦ
dt

=
∫ ∫

S

[
∂B
∂t
−∇× (u×B)

]
· dS. (2.37)

Equations 2.36 and 2.37 imply that for in�nitely conducting �uid the vari-
ation of the �ux of the magnetic �eld through the surface S would be null,
that is, the magnetic �eld lines are convected with the �uid. The second
term can therefore be interpreted as the magnetic �eld variation due to its
convection with the �uid.
In the general case, the magnetic �eld exhibits both convection and di�u-
sion. The ratio of the convection to the di�usion is expressed by the magnetic
Reynolds number <m:

<m ≡ ucLc/(µ0σc)−1 = ucLcσcµ0. (2.38)

where Lc is the characteristic length of the phenomena under study.
For the applications studied in this work, the magnetic Reynolds number is
much less than unity, that is, the convection of the magnetic �eld lines is neg-
ligible. Furthermore, since the characteristic value of the induced magnetic
�eld can be obtained from 2.35 and 2.13 as:

Bind
c ∼ Lcµ0Jc = Lcµ0σcucBc (2.39)

the magnetic Reynolds number can be interpreted as the ratio of induced to
total magnetic induction.
The physical model adopted in this work, will therefore neglect the induced
magnetic �eld and will consider the only imposed magnetic �eld. Since it is
constant, the equation 2.14 implies that the electric �eld is irrotational, and
a scalar potential can be de�ned:

∇×E = 0 (2.40)

E = −∇φ. (2.41)

The generalized Ohm's law 2.34 can be written as:

J = σ(−∇φ+ u×B). (2.42)

that, with 2.40 and 2.17 completes the electrodynamic model.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .





CHAPTER 3

ELECTRODYNAMICS: THE NUMERICAL MODEL.

If people reach perfection they vanish, you know.

T.H. White (The Once and Future King)
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Abstract. The electrodynamic equation has been discretized by applying
the �nite element method, in the weighted residual formulation.
The �nite element method consists in an expansion of the unknown solution
of the di�erential problem on a basis of linear functions. The di�erential
operator is evaluated for the approximated solution. By minimizing the
integral error of this evaluation on the computational domain, the coe�cients
of the expansion are obtained as solution of a linear system Ax = b. The
solution vector component are the nodal values of the unknown function. The
key idea of the �nite element method lies in the choice of the basis function,
each of which is not null only in a cluster of elements around a node. The
contribution of each element can be therefore computed separately and then
the contributions add up to build the �nal solving system.
The chapter presents the overall procedure and the implementation of the
technique for the electrodynamic case.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Introduction

The �nite element method is widely applied to solve di�erential problems
described by elliptic PDE equations. The weak solution obtained describes
the physics of the problem with high accuracy, even if linear approximating
shape functions are chosen. The model presented in this chapter applies
the �nite element method to the electrodynamic equations, obtaining the
Hall potential generated by the interaction between the plasma �ow and the
magnetic �eld, the electric �eld and the current density generated into the
plasma.

3.1 The �nite element method: an overview

The �nite element method (FEM) has been adopted in this work to solve
the di�erential problem arising from the electrodynamic modeling. The key
concepts of the FEM approach will be presented in this section, for a general
self-adjoint problem in one dimension. The generalization to the multidi-
mensional case and can be found, for example, in [39], [40], [41].
Let L be a self-adjoint di�erential operator on the function u, and consider
the problem:

L[u] = f(x) u ∈ [a, b] (3.1)

with the boundary conditions:

B(u) = 0 for u = a or u = b (3.2)

where B(u) is a di�erential operator on the domain boundary. The �nite
element method seeks for an approximate solution by building an integral
formulation of 3.1:

(v,L[u]− f) = 0 (3.3)

with the inner product notation:

(u, v) :=
∫ b

a
vudx. (3.4)

Equation 3.2 has to hold for all square integrable test (or weight) functions
v on the domain, that is for all v ⊂ L2. The unknown functions u, v, can be
substituted at this point by the approximating functions U , V :

(V,L[U ]− f) = 0 (3.5)

U , V belong to the n-dimensional subspaces Sn, Ŝn of L2 called respectively
the trial space and the test space. By choosing a basis

Nj(x),Mj(x) j = 1, · · · , n (3.6)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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of both spaces, the functions U , V can be expressed as a linear combination
of the basis functions:

U =
n∑
j=1

cjNj(x) (3.7)

V =
n∑
j=1

djMj(x) (3.8)

The problem 3.5 becomes

n∑
j=1

dj(Mj ,L[U ]− f) = 0 j = 1, · · · , n. (3.9)

Since 3.9 has to be satis�ed for all it implies that

(Mj ,L[U ]− f) = 0 j = 1, · · · , n. (3.10)

where appears the residual L[U ]−f , that names the method. By identifying
the test space Ŝn with the trial space Sn, and choosing the same basis
Nj , j = 1, · · · , n the Galerkin's method is obtained:

(Nj ,L[U ]− f) = 0 j = 1, · · · , n. (3.11)

that is:

n∑
k=1

ck(Nj ,L[Nk]− f) = 0 j = 1, · · · , n. (3.12)

Equation 3.12 represents a linear algebraic system in the unknown values
ck. The success of the �nite element method relies mainly on a convenient
choice of the basis functions, that makes the integrals 3.12 easy to evaluate.
In particular, if the basis functions Nj are non zero only on the elements con-
taining the node j, the inner products 3.12 split into the contributions of the
elements where Nj is not null. The most common example in one dimension
is given by the so called hat functions, shown in �gure 3.1. Equation 3.12 is
integrated by part so as to reduce the derivative order on the trial functions,
as in the procedure outlined in the next section.

3.2 The numerical model formulation

The numerical model applies the concept presented above to the electrody-
namic equation 2.42. This section presents the tridimensional treatment but
the same approach has been adopted for the two-dimensional axial symme-
tric formulation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 3.1: Hat function in one dimension for a four element
discretization of a one dimensional domain, as shown in [42]

The unknown potential φ(x, y, z) is piecewise approximated by using the
shape functions Ni(x, y, z), i = 1, · · · , n:

φ∗(x, y, z) = {NT (x, y, z)}{φ} (3.13)

where φ∗ represents the approximated potential, {NT (x, y, z)} is the shape
functions' vector, and {φ} is the vector of the unknown nodal values. It
implies that the electric �eld and the current density are approximated as:

E(x, y, z)∗ = [−∇N ]{φ} (3.14)

J(x, y, z)∗ = σ([−∇N ]{φ}+ u×B) (3.15)

where u is the �ow velocity, B is the magnetic �ux density, and σ is the con-
ductivity tensor. As in equation 3.12, the weighted residual of the continuity
equation for the current density is set to zero:∫

Ω
N∇ ·J∗dΩ = 0 (3.16)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Equation 3.16 is integrated by part, i.e. the divergence theorem is applied
to the vector NJ(x, y, z)∗ :∫

Ω
N∇ ·J∗dΩ =

∫
∂Ω
NJ∗nd∂Ω−

∫
Ω
∇N ·J∗dΩ (3.17)

By substituting 3.14 in 3.17 the �nal formulation is obtained:

−
∫

Ω
∇N ·σ(u×B)dΩ−

∫
∂Ω
NJ∗nd∂Ω = −

∫
Ω
∇N ·σ[∇N ]{φ∗}dΩ. (3.18)

Equation 3.18 is an algebraic linear system in the unknown nodal values {φ}
of the potential, since the integrals on the domain can be split on the shape
functions supports Ωi and evaluated, for example, by the Gauss quadrature
rule. Consider the integrals:∫

Ωi

∇Ni ·σ[∇N ]{φ∗}dΩi (3.19)

The support Ωi is made up of nel elements containing the node i, therefore
the integral in 3.19 can be written as the sum:∫

Ωi

∇Ni ·σ[∇N ]{φ∗}dΩi =
nel∑
h=1

∫
Ωh

∇Ni ·σ[∇N ]{φ∗}dΩh (3.20)

Consider tetrahedral elements with nodes i, j, k,m: the approximated po-
tential 3.13 on the element is written as

φ∗ = Niφi +Njφj +Nkφk +Nmφm. (3.21)

By substituting in 3.19, the following expression is obtained:∫
Ωi

∇Ni ·σ[∇N ]{φ∗}dΩi =

nel∑
h=1

∫
Ωh

∇Ni ·σ[∇(Niφi +Njφj +Nkφk +Nmφm)]d(Ωh),
(3.22)

that is:∫
Ωi

∇Ni ·σ[∇N ]{φ∗}dΩi =

nel∑
h=1

[
∫

Ωh

∇Ni ·σ[∇(Nid(Ωh)]φi + [
∫

Ωh

∇Ni ·σNjd(Ωh)]φj

+ [
∫

Ωh

∇Ni ·σNkd(Ωh)]φk + [
∫

Ωh

∇Ni ·σNmd(Ωh)]φm.

(3.23)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Equation 3.23 can be written as:∫
Ωi

∇Ni ·σ[∇N ]{φ∗}dΩi =

nel∑
h=1

(aiiφi + aijφj + aikφk + aimφm).
(3.24)

with:

aii =
∫

Ωh

(∇Niσ∇Ni)dΩh (3.25)

aij =
∫

Ωh

(∇Niσ∇Nj)dΩh (3.26)

aik =
∫

Ωh

(∇Niσ∇Nk)dΩh (3.27)

aim =
∫

Ωh

(∇Niσ∇Nm)dΩh (3.28)

The element (ijkm) contributes to the i-th equation with the coe�cients
aii, aij , aik, aim, to the j-th equation with the coe�cients aji, ajj , ajk, ajm,
and so on.
The contributions can be organized in a 4×4 matrix, called element matrix :

Kijkm =


aii aij aik aim
aji ajj ajk ajm
aki akj akk akm
ami amj amk amm

 (3.29)

The coe�cient aαβ of the element matrix Kijkm adds up to the coe�cient
labeled αβ in the global matrix, referred to as the sti�ness matrix. The
process of building up the sti�ness matrix from the element matrices is called
the assembly process. The RHS vector is built by the same procedure, and
the �nal linear system is obtained.
The solution gives the nodal values for the potential, and from 3.14 the values
of the electric �eld and the current density can be computed. The solution
process is analyzed in chapter 4.

3.3 The numerical model implementation

The implementing code has been developed partly in FORTRAN 90, and
partly in FORTRAN 77 for both the two and three dimensional cases.
Figure 3.2 shows the code structure for the three dimensional case. The
main modules' features are listed below:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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� type de�nitions and variable declarations,

� declarations of the workspace variable for the iterative solver,

� reading of the mesh data, of the input physical quantities and boundary
conditions,

� sti�ness matrix computation,

� conductivity tensor computation at each node,

� Faraday �eld computation at each node,

� computation of mesh adjacency matrix,

� computation of the element sti�ness matrix and R.H.S.,

� average of the conductivity tensor and Faraday �eld on the element,

� imposition of boundary conditions,

� assembling the element sti�ness matrices and the R.H.S.,

� preconditioning,

� solution of the linear system to obtain electric potential, electric �eld
and current density,

� computation of the electric �eld and of the current density.

The input-output structure of the code is shown in table 3.1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Table 3.1: Input output structure for the electrodynamic code.

Code segment Quantities Speci�cations

Mesh
Nodes (x, y, z) coordinates of the mesh nodes

Faces of Tetrahedra nodes indexes, area
Tetrahedra nodes indexes, volume

Input Physical quantities

Velocity �eld
Electrons mobility

Given by the kinetic model
Electrons density

Magnetic �ux density

Boundary conditions
Current density Neumann boundary condition

normal to the boundary
Electric potential Dirichlet boundary condition
on the boundary

Output Physical quantities

Electric potential

J×E,
Electric �eld E source term for the

�uid dynamic momentum equation

J · E,
Current density J source term for the

�uid dynamic energy equation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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(a) Part I (b) Part II

(c) Part III

Figure 3.2: Flowchart for the tridimensional electrodynamic
code.
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CHAPTER 4

COMPUTATIONAL METHODS

What is the use of a book, without pictures or conversations?

Lewis Carroll.
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Abstract. This chapter presents the numerical techniques adopted to ob-
tain the �nite element solution of the electrodynamic equation.
The peculiar structure of the conductivity matrix generates a non-symmetric,
highly anisotropic sti�ness matrix. The associated system is solved by a
GMRes iterative algorithm, but the convergence behavior of the solver is
not optimal if a standard preconditioning is applied. These di�culties are
linked to the physics of the MHD phenomenon under study, and have been
overcome by developing a reordering method that takes into accounts the
preferred directions identi�ed by the physical con�guration.
The accuracy of the �eld evaluation has been increased by implementing an
error recovery technique. Finally, the implemented code has been analyzed
to evaluate the time costs and the memory usage e�ciency. The analysis
described has been carried out for the two dimensional code. Nevertheless,
the methods applied can be extended to the three dimensional case.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Introduction

The �nite element method applied to the anisotropic physical con�guration
described in the previous chapters, generates a large sparse linear system to
be iteratively solved. The anisotropy of the conductivity tensor results in
a non symmetric, highly anisotropic sti�ness matrix, that generates several
computational di�culties. A particular attention has therefore to be paid in
the choice and in the optimization of the solution strategy. This chapter out-
lines the numerical techniques adopted to obtain the solution, and presents
the methods developed and implemented to overcome the numerical di�cul-
ties and improve the quality of the approximation.

4.1 Linear solvers and the GMRes Algorithm

Several strategies can be applied to obtain the solution of the linear system
Ax = b, where A is a sparse1 n× n matrix. For �nite element applications,
when the number n ranges from thousands to millions, an iterative approach
has to be adopted. It basically consists in identifying an iteration operator
G such that:

xk+1 = Gxk + f. (4.1)

The limit of this sequence, if the limit exists, is the solution x:

x = Gx+ f. (4.2)

It can be seen, by expanding x on a basis of eigenvectors of G, that the
existence of the limit is guaranteed if the spectral radius ρ(G) of the matrix
is less than one:

ρ = max
i
{λi} (4.3)

ρ < 1 (4.4)

where λi are the matrix eigenvalues.
A widely used class of iterative linear solvers are referred to as the projection
methods, because they seek for the solution vector x by projecting it onto
a subspace K of Rn. The residual rk = b − Axk of the projected vector
xk is required to be orthogonal to another subspace L of Rn. Projection
methods generalize the idea that, starting from an initial guess, the solu-
tion point can be reached by taking steps in mutually orthogonal directions
(i.e. by traveling along the directions de�ned by an orthogonal basis of the
search subspace K ). The approximation at the step k is de�ned as a linear
combination of the previous search directions (i.e., the approximation at the

1A sparse matrix is a matrix primarly populated with zeroes.
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step k is de�ned as a vector of the subspace spanned by the traveled search
directions). The distance to be covered in each step is de�ned by a residual
minimization condition, corresponding to an orthogonality requirement (e.g.,
a directional derivative minimization requires the orthogonality between the
gradient vector and the search direction itself [43], [44] ).
In this approach, the G operator is de�ned by the choice of the two spaces
K and L.
A popular choice for the space K is the so-called Krilov subspace generated
by the initial residual r0 = b−Ax0. The m-th Krilov subspace Km is de�ned
as:

Km(A, r0) ≡ span{r0, Ar0, A
2r0, . . . , A

m−1r0} (4.5)

For general non-symmetric matrices, one of the most e�ective projection
methods currently available is the GMRes, �rst proposed by Saad and Schultz
in 1986 [45]. GMRes builds an orthogonal basis of the space Km, and min-
imizes the euclidean norm of the residual over all the vectors in that space.
Step by step, the dimension of the approximating Krilov subspace increases
and the accuracy of the solution improves. The basis is built up by the
Arnoldi procedure, that consists in a step by step Gram-Schmidt orthogo-
nalization of the set Air0. Its formulation is given, for example, in Saad [46]
and is reported below:

Algorithm 4.1 Arnoldi procedure

1: Choose a vector v1 of norm 1
2: for j = 1, 2, ...,m do

3: Compute hij = (Avj , vi) for i = 1, 2, ..., j
4: Compute wj ← Avj −

∑j
i=1 hi,jvi

5: hj+1,j = ||wj ||2
6: if hj+1,j = 0 then
7: Stop
8: end if

9: vj+1 = wj/hj+1,j

10: end for

The algorithm 4.1 can be written in matrix form, by introducing the (m +
1)×m Hessenberg matrix Hm:

Hm =



h1,1 h1,2 h1,3 . . . h1,m

h2,1 h2,2 h2,3 . . . h2,m

0 h3,2 h3,3 . . . h3,m
...

. . .
. . .

. . .
...

0 0 0 hm,(m−1) hm,m
0 0 0 h(m+1),m


(4.6)
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The matrix entries are de�ned by the lines 3, 5 in the algorithm 4.1. Each
column j contains the projection of the vector Avj on the previous vectors
of the basis. The j + 1th element in the column is the norm of the j + 1th
basis vector. Thus, in matrix form, lines 3, 5 and 9 of 4.1 can be rewritten
as

AVm = Vm+1Hm (4.7)

where Vm is the matrix whose column are the vectors vj , j = 1, . . . ,m.
The algorithm breaks down when the computed Krilov subspace Kj is in-
variant under A. In this case, the approximation computed from any pro-
jection method on the subspace Kj is exact [46]. Once a basis has been
found, GMRes expresses a generic vector of the approximating space by its
expansion on the basis:

x = x0 + Vmy (4.8)

where y is the components' vector and x0 is the initial guess to the solution.
By posing v1 = r0/||r0||2 = r0/β the residual can be written as

b−A(x0 + Vmy) = (4.9)

= r0 −AVmy (4.10)

= βv1 − Vm+1Hmy (4.11)

= Vm+1(βe1 −Hmy) (4.12)

where e1 is the �rst vector of the canonic basis of Rm. The residual norm is
then computed as:

J(y) ≡ ||b−A(x0 + Vmy)||2 = ||βe1 −Hmy||2 (4.13)

The GMRes approximation at step m is the vector

xm = x0 + Vmym (4.14)

where ym minimizes the norm 4.13.
This minimization condition is equivalent to setting the subspace L equal to
AKm. Since the new search subspace is obtained as the orthogonalization
of AKm, this condition asks for the approximation at step m − 1 to be
orthogonal to the approximation at step m.
After n iterations, Gmres builds up an exact approximation for Rn. Since
n in practice is high, Gmres is stopped when the residual is reduced to a
certain fraction of the initial residual, i.e. when

||rk||2 ≤ ε||r0||2 (4.15)

The quality of the approximation at them−th step is linked to the spectrum
of the matrix A. Convergence is fast if eigenvalues of A are clustered away
from the origin, see Fig. 4.1, and if the matrix is near normal:
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Figure 4.1: Optimal distributions of the eigenvalues for the
iterative solution of the system.

AA+ ' A+A (4.16)

where A+ is the transpose conjugate of A. For further details, the conver-
gence behavior of GMRes is discussed, for example in [45],[46].

4.2 Preconditioning and ILU-type algorithms.

The convergence of any iterative method solving the linear system Ax = b
depends on the distribution of the eigenvalues of the matrix A. A straight-
forward way to improve the convergence is therefore to solve an equivalent
system characterized by a well conditioned matrix, i.e. by a matrix with an
optimal distribution of the eigenvalues. It can be achieved by multiplying
both sides of the equation by a matrix M−1:

M−1Ax = M−1b (4.17)

If the matrix M−1A has a better eigenvalue distribution than the original
matrix A, the system can be more easily solved.
In practice, the matrixM−1A needs not to be formed explicitly, because the
preconditioning operation is included in the solver's algorithm, as can be seen
in algorithm 4.2. It is apparent from 4.2 that the matrix M−1 needs only to
be multiplied by a vector, and this operation should not be too expensive to
perform in terms of time costs.
By choosing M ≡ A the preconditioning becomes the explicit inversion of
the system. It is obviously meaningless to explicit compute the inverse of A,
but it's possible to choose M as an incomplete factorization of A:

M = LU (4.18)

A = LU −R (4.19)

where the L, U matrices approximate a factorization of the matrix A, and
R is the residual of the approximate factorization.
It's known that for non-singular matrices, it is possible to build an exact
factorization into a lower (L) and upper (U) triangular factors by applying
the Gaussian elimination procedure reported in algorithm 4.3 (for further
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Algorithm 4.2 Right preconditioned GMRes

1: Choose a vector x0 and a dimension m
2: Compute r0 = Ax0 − b, β = ||r0||2, v1 = r0/β
3: Arnoldi
4: for j = 1, 2, ...,m do

5: zj ←M−1vj
6: w ← Azj
7: for i = 1, 2, ..., j do
8: hij ← (w, vi)
9: w ← w − hi,jvi
10: end for

11: hj+1,j = ||w||2
12: vj+1 = w/hj+1,j

13: end for

14: De�ne Vm = [v1, . . . , vm] and Hm = {hi,j}.
15: Form the approximate solution

16: xm = x0 +M−1Vmym
17: where ym = argminy||βe1 −Hmy||2, e1 = [1, 0, . . . , 0]T

18: Restart
19: If satis�ed stop, else set x0 ← xm and goto 2

details, see, for example, [47],[48],[49]).
The main issue of this procedure is that the L,U factors are generally not
sparse even if the matrix is. It is therefore necessary to de�ne a method
to limit the number of non zero entries in the LU factors, i.e to reduce the
number of the �ll-ins generated in the factorization process. Such procedures
are referred to as Incomplete LU (ILU) factorizations [50], [46]. Clearly, the
cruder the dropping strategy, the poorer the improvement in performances
and robustness obtained for the iterative solver. On the other hand, the
cruder the dropping strategy, the lower the time and memory cost of the
preconditioners. It is usually preferable, anyway, to choose a good factoriza-
tion, because it guarantees an increased stability of the iterative solver.
Di�erent ILU-based preconditioners are de�ned by di�erent dropping strate-

Algorithm 4.3 Gaussian Elimination

1: for i = 2, . . . , n do
2: for k = 1, . . . , i− 1 do
3: aik ← aik/akk
4: for j = k + 1, . . . , n do
5: aij ← aij − aikakj
6: end for

7: end for

8: end for
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gies they adopt to obtain the approximated sparse L, U factors. We outline
here the ILU(p) and ILUT methods, and refer the reader to [46], [51], [52]
for a complete treatment.
De�ne the non-zero pattern of A as the set :

NZ(A) = {(i, j), 1 ≤ i, j ≤ n|ai,j 6= 0} (4.20)

The ILU(0) method performs the L,U factorization and drops all the non-
zero terms outside the non-zero pattern of A. During the Gauss elimination,
therefore, every non null coe�cient in a position where A has a zero entry is
neglected. Figure 4.2 shows a sketch of the non null entries distibution for an
example sparse matrix B, its exact L, U factors and the ILU(0) approximated
ones.
ILU(0) produces obviously a rough approximation of the L, U factors of
A, as for general matrices they would be dense. In order to improve the
approximation quality, it has been introduced the concept of level of �ll.
The level of �ll gives an order of magnitude estimate of the size of the non
zero entries generated in the Gaussian elimination process: the higher the
level, the smaller the element. In order to match this de�nition, a level of �ll
is attributed to each element in a Gaussian elimination process, and initially
set to:

lev(aij) = 0 if aij 6= 0, or i = j (4.21)

lev(aij) =∞ elsewhere (4.22)

During the process, the level of �ll is updated each time the element is
modi�ed in row 5 of algorithm 4.3:

lev(aij) = min{lev(aij), lev(aik) + lev(akj) + 1} (4.23)

Equation (4.23) shows that the level of �ll never increases during the elimi-
nation: a non null entry in a position belonging to NZ(A) mantains a zero
level of �ll throughout the process. At the end of the procedure 4.3 all the
terms having a level of �ll higher than a certain threshold p, are discarded.
The strategy outlined above is based on the assumption that the size of a
matrix element with level k can be estimated by εk, ε ≤ 1. This is veri�ed
by, for example, diagonally dominant matrices processed in algorithm 4.3,
since each element is divided by the corresponding diagonal term, but it is
not true in the general case.
As the threshold increases, a greater number of element is retained, and bet-
ter approximations are obtained. The ILU(p) preconditioner algorithm is
reported in 4.4. The dropping strategy adopted in algorithm 4.4 is based on
topologic considerations and on the poor order of magnitude estimate of the
elements' module outlined above.
No explicit evaluation of the element module is done during the procedure,
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(a) B

(b) L (c) U

(d) IL (e) IU

Figure 4.2: The matrix B and the exact and ILU(0) approxi-
mated L U factors.

and it can generate low quality approximations. In order to overcome this
issue, it can be de�ned a new algorithm, that takes into account the ac-
tual module of the discarded elements. It can been achieved by setting a
threshold on the module values. In the ILU-type computational algorithm,
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Algorithm 4.4 ILU(p)algorithm

1: For all aij 6= 0 set lev(aij) = 0
2: for i = 2, . . . , n do
3: if lev(aik) ≤ p then

4: for k = 1, . . . , i− 1 do
5: aik ← aik/akk
6: for j = 1, . . . , n do
7: aij ← aij − aikakj
8: Update level of �ll of non zero aij
9: end for

10: end for

11: end if

12: Replace any element in row i with level aij > p by zero.
13: end for

the L,U factors are stored in the same matrix. If there is a row in this matrix
populated by high values elements, too many elements would be retained if
the only threshold-based dropping strategy is applied.
In order to control this behaviour, it is possible to set the maximum number
r of elements to be retained in each row: the r largest elements in the L and
U parts of the row are preserved.
The above consideration outline the ILUT algorithm reported in 4.5 (see [46]).

Algorithm 4.5 ILUT algorithm

1: for i = 1, . . . , n do
2: w ← ai∗
3: for k = 1, . . . , i− 1 do
4: if wk 6= 0 then
5: wk ← wk/akk
6: Apply a dropping rule to wk
7: if wk 6= 0 then

8: w ← w − wk ∗ uk∗
9: end if

10: end if

11: end for

12: Apply a dropping rule to row w
13: lij ← wj for j = 1, . . . , i− 1
14: uij ← wj for j = i, . . . , n
15: w ← 0
16: end for

The algorithm is de�ned by the dropping rules in lines 5, 10. The �rst
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dropping process is based on the element values:

1. The user de�ned threshold τ is weighted by the current row 2-norm:
τi = τ ∗ ||w||2,

2. All the row element smaller than τi are set to 0.

In line 10, the dropping process of line 5 is repeated. Then, the p largest
elements in the L, U part of the row are retained, and the others are set to
0.
It can be noted that if it is possible to arrange the A matrix coe�cients so
as to minimize the number and the size of the �ll-ins generated in the Gauss
procedure, a softer dropping strategy can be applied, obtaining a better
L,U factors approximation. The following sections will outline a method to
obtain this result.

4.3 Reordering methods and preconditioning.

The mesh adopted for the �nite element discretization can be viewed as a
graph, i.e. a collection of connected nodes. The adjacency matrix of a graph
is de�ned by:

mij = 1 if nodes i, j are connected (4.24)

mij = 0 otherwise (4.25)

The matrix generated in the �nite element discretization has the same coef-
�cients distribution as the adjacency matrix of the discretizing mesh. If the
labeling of the mesh nodes is changed, the position of the non null elements
ofM is changed according to the new labels. An optimal choice of the labels
would therefore result in an optimal distribution of the non null entries. This
optimization is treated in subsection 4.3.2.
If the discretized physical problem shows a preferred direction, an appro-
priate choice of the nodes' numbering direction would produce an optimal
distribution of non null coe�cients' size. This is treated in 4.3.3.

4.3.1 Graph theory nomenclature.

A graph is a collection of nodes connected by arcs. The following summary
outlines some notions and notations about undirected graphs2:

� If V is a �nite non-empty set and E is a collection of unordered pairs
(vi, vj) of V , then G(V,E) is a graph.

2An undirected graph is a graph whose nodes are connected by undirected arcs. This
de�nition excludes self connected nodes, since the set E cannot contain duplicates.
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� The elements of V = V (G) and E = E(G) are called vertices and edges
respectively.

� If {vi, vj} ∈ E, i.e. if vi, vj are connected by an edge, then vi, vj are
said to be adjacent.

� The degree of a vertex is the number of vertices adjacent to him.

� A path in a graph is a sequence of connected nodes.

� A level structure, L(G), of a graph G is a partition of the set V (G)
into levels L1, L2, . . . , Lk such that:

1. All vertices adjacent to vertices in level L1 are either in L1 or in
L2,

2. All vertices adjacent to level Lk are in either level Lk or Lk−1,

3. For 1 < i < k, all vertices adjacent to level Li are in either level
Li or Li−1 or Li+1.

Graphs can be used to represent the structure of a matrix, such a represen-
tation being particularly useful for sparse matrices analysis. Some notions
are given in the following:

� Given a N ×N matrix A, we can de�ne a graph G(V,E) where V has
n elements {v1, . . . , vn} representing the rows in A, and {vi, vj} ∈ E if
aij 6= 0

� The bandwidth of a matrix A is the maximum distance of a non null
element from the main diagonal:

b(A) = max{|i− j| aij 6= 0} (4.26)

� A matrix is said to be an M -matrix if

1. ai,i > 0 for i = 1, . . . , n

2. ai,j ≤ 0 for i 6= j i, j = 1, . . . , n

3. A is non singular

4. A−1 is non-negative

� The envelope (or pro�le) of A contains the elements of A to the right
of the �rst non null element of each row, and to the left of the main
diagonal:

Env(A) ≡ {(i, j), j ≤ i and ∃k ≥ i | akj 6= 0} (4.27)

For further details, the reader is referred to [53], [54].
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Algorithm 4.6 Cuthill-MCKee algorithm

1: Select a starting node vr of minimal degree
2: De�ne a permutation vector p
3: De�ne a vector q ← 0
4: p1 ← r
5: for i = 1, . . . , n do

6: for j = 1, . . . , n do

7: l = 1
8: if {vi, vj} ∈ E then

9: ql ← j
10: l = l + 1
11: end if

12: Reorder q by increasing degree of vqj , j = 1, . . . , l
13: for m = 1, . . . , l do
14: step = 0
15: if pk ≤ j ∀k = 1, . . . , n then
16: p(i+step) ← j
17: step← step+ 1
18: end if

19: end for

20: end for

21: end for

4.3.2 The Reverse Cuthill McKee Algorithm

The bandwidth of a sparse matrix A can be reduced by labelling the con-
nected nodes with near indexes. The �rst proposed strategy to obtain such
a reduction is due to E. Cuthill and J. McKee [55], and reported below:

1. Select a starting node and relabel it as 1.

2. The nodes adjacent to this node are numbered in sequence beginning
with 2 in the order of their increasing degree. These nodes are at
distance 1 from node 2. They are said to be at the second level.

3. These procedure is repeated for each node in second level in sequence,
i.e. �rst for node 2, then for node 3, then for node 4, etc.

4. The above procedure is repeated for the nodes at each successive level.

An example of Cuthill McKee (CM) renumbering is shown in Fig. 4.3, and
an implementing algorithm is outlined in 4.6.
Once selected a starting node, the CM algorithm performs a breadth �rst
traversal (referred to as Breadth First Search, BFS) of the graph, labeling
the neighboring nodes by increasing degree. This procedure minimizes the

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



38 4.3. Reordering methods and preconditioning.

(a) Random numbering

(b) CM Numbering

Figure 4.3: Cuthill-McKee renumbering of an example undi-
rected graph.

label distance between connected nodes and generates a vertices partitio-
ning, where vertices with the same depth in BFS are on the same level.
The relevance of this technique in computations is linked to the e�ect it
has on the adjacency matrix of the graph, that is, on the sti�ness matrix
generated in a �nite element discretization, where non null elements arise
in positions labeled by connected nodes. Figure 4.4 shows the adjacency
matrices for the graphs of Fig. 4.3. It is apparent that the reordering results
in a bandwidth and pro�le size reduction of the matrix.
In 1971, A. George proposed to reverse the CM numbering, achieving in

most cases a further pro�le reduction of the matrix 3 [57]. The resulting
algorithm is referred to as Reverse Cuthill McKee (RCM).
The computational advantages obtained by applying a reordering stem from
the e�ects of a reduced pro�le on the incomplete factorization [58], [53], [59],
[60], [61].

3It has been demonstrated by W.H. Liu, and A.H. Sherman in 1976 [56].
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(a) Random numbering (b) RCM Numbering

Figure 4.4: Reverse Cuthill-McKee renumbering e�ect on an
example sparse matrix.

Recall the incomplete elimination step of algorithm 4.3. The j loop applies
to all row elements to the right of the �rst non null element in each row.
To give an order of magnitude estimate of the number of non null terms
introduced in the L, U factors by the Gauss procedure (�ll-ins), consider a
worst case arrangement of the non-null coe�cients in A, for a given band-
width b. Assume that the only non null out-diagonal element in each row i,
with i ≤ (b + 1) is in the �rst column, whereas for i > (b + 1) it is labeled
(b + j, j). If no cancellation is taken into account, the number of �ll-ins
introduced satis�es:

Nfill ≤
N(N − 1)

2
+ (b− 1)(N − b) +

(b− 2)(b− 1)
2

. (4.28)

Since b < N , 4.28 shows that a reduction of the bandwidth leads to a reduc-
tion of the �ll-ins generated by the Gauss procedure. In other words, an op-
timal ordering generates the best elimination sequence for the matrix A, i.e.
the one that introduces the lower number of new non null elements [59] [62].
The matrix A for the above example and the non null entries introduced by
Gauss elimination are shown in Fig. 4.5.

A last comment about the starting node for the renumbering. An optimal
choice maximizes the depth of the level structure, and minimizes its width.
The �rst strategy aimed at this scope, suggested by Cuthill and McKee, sim-
ply picks up a node with the lowest number of connections, i.e. a node of
minimal degree. A further step is due to Gibbs, Poole and Stockmeyer, [54],
who applied the concepts of peripheral and semiperipheral node. A periph-
eral node is a node that generates a level structure of maximal depth in
the graph, i.e. it has the maximum distance by another node in the graph.
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Figure 4.5: Non null entries distribution (square shaped mark-
ers), and �ll-ins (dots) in Gauss procedure for the example in
text.

Algorithm 4.7 Pseudo-peripheral node

1: Select a starting node x← vr of minimum degree
2: Generate the level structure L1, L2, . . . , Ls rooted at x
3: for uk ∈ Ls, of minimum degree do

4: Generate the level structure M1,M2, . . . ,Mt rooted at uk
5: if k > r then

6: x← uk
7: end if

8: end for

9: Reorder x is a semiperipheral node

Finding such a node would imply a search amongst all the minimal degree
nodes of the graph, and it obviously would not be cost e�ective. Gibbs,
Poole and Stockmeyer suggested instead to apply the heuristic 4.7 to �nd a
semiperipheral node. It is not guaranteed the algorithm selects a peripheral
node, but it most likely will �nd a �boundary node�, with a deep level struc-
ture.

Algorithm 4.7 produces a further reduction in the pro�le of the sti�ness ma-
trix.
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Figure 4.6: Natural x−y and y−x orderings for a discretizing
mesh.

1 2 3 4

x-y ordering

1

3

4

2

y-x ordering

For the mesh con�gurations studied in this work, anyway, where boundary
nodes are usually nodes of minimal degree, the procedure 4.7 can be omitted,
and good results are obtained by selecting a minimal degree starting node.

4.3.3 The weighted reverse Cuthill McKee: algorithm.

The RCM ordering is based on the mesh topology, and has no preferred
spatial direction. The physical problem studied in this work, on the contrary,
has a preferred spatial direction de�ned by the imposed magnetic �eld.
A work by Clift and Tang [63] suggests that the proper strategy to introduce
a direction sensitivity into the RCM algorithm can be derived by analyzing
the discretization of the 2D anisotropic PDE:

∂

∂x
(K

∂φ

∂x
) +

∂

∂y
(
∂φ

∂x
) (4.29)

on a rectangular grid, with K =1000.
Clift and Tang [63] provide a comparison between the performances of an
iterative solver applied to the problem 4.29 for an x−y and y−x ordering of
the mesh nodes (see Fig. 4.6). A remarkable improvement is obtained when
using the second.
In the cited paper, the Authors note that the anisotropy of the equation

results in a di�erent size for the sti�ness matrix entries, depending on the
direction of the nodes connections: connections aligned in the x directions
have values O(K/K + 1), whereas connections along the y direction have
values O(1/K + 1), as can be easily seen by discretizing the equation (4.29)
and normalizing the resulting coe�cients by the diagonal element.
The values of the �ll-ins entries in the L factors are related to the matrix
coe�cients [63], [64], [65]:

Theorem 4.3.1. Let A be an M -matrix and let vi1 , . . . , vim be a path in the
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graph of A where

vi1 , . . . , vim ∈ {vi1 , . . . , vij−1}, (4.30)

then for i > j:

lij ≥
aii1ai1i2 . . . aimij
di1di2 . . . dimdij

, dk = akk (4.31)

The theorem shows that for the case of equation (4.29) connections oriented
in the y direction tend to generate smaller terms in the L factor.
Equation 4.29 is equation 2.42 written for a uniform B �eld along the y
direction, and a constant �ow velocity perpendicular to it, along the x di-
rection.
The conductivity tensor for these conditions is given by:

σ =
σ

1 + β2
e

 1 0 βe
0 1 + β2

e 0
−βe 0 1 + β2

e

 . (4.32)

The electrodynamic equation becomes:

∂

∂x
(
∂φ

∂x
) +

∂

∂y
[(1 + β2

e )
∂φ

∂y
] (4.33)

It follows from theorem 4.3.1 that a natural x−y ordering has to be preferred
in this case.
Table 4.1 shows the performances of an ILUT preconditioned GMRes for the
problem 4.33 discretized on a structured triangular mesh, for the x− y and
y − x ordering respectively.
As expected, best performances are obtained for the �rst ordering. Figure 4.7, 4.8
show a sketch of the matrix in the two cases. Triangular shaped markers de-
pict low value elements O(10−3) not visible in the gray scale representation.
It can be seen that the nonzero pattern is almost the same, but the dis-
tribution of the coe�cients modules is remarkably di�erent, and causes the
di�erence in the performances.

The objective of a reordering is to reduce the number and the module of the
�ll-ins entries. RCM achieves the �rst goal but misses the second, having
no sensitivity to the preferable direction set by the physical conditions. It
follows from the previous discussion that the RCM algorithm should be mo-
di�ed to take into account the anisotropy of the problem. A straightforward
way to introduce such a dependence in the algorithm is to assign a strength
to each connection in the matrix graph, and to reorder the nodes in the di-
rection of the weakest connection.
The reordering technique adopted is therefore characterized by the de�nition
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Table 4.1: Performances of an ILUT(level of �ll 20; threshold
1.0 × 10−4) preconditioned GMRes on a structured triangular
mesh, for constant B = 2T along the y direction.

x-y ordering y-x ordering

Nodes Iters Conv. rate Residual Iters Conv. rate Residual
30 7 1, 5 1, 3× 10−11 194 5, 7× 10−02 4, 1× 10−08

40 8 1, 8 2, 7× 10−11 277 4, 0× 10−02 3, 9× 10−08

50 9 1, 2 2, 2× 10−11 513 2, 1× 10−02 3, 7× 10−08

70 12 0, 92 3, 2× 10−11 1113 9, 9× 10−03 3, 1× 10−08

Figure 4.7: Pattern of the non-zero coe�cient of the sti�ness
matrix for the problem described in text (absolute values): xy
ordering.

of the connection strength. For the electrodynamic problem considered in
this work, equations (4.32) and (4.33) suggest to identify the direction of the
weakest connection with the one perpendicular to the magnetic �ux density
vector, since βe = µB. Once assigned a strength to each edge in the matrix
graph, the nodes are reordered subsequently in each RCM level by increas-
ing values of the scalar product of the mesh edges with the magnetic �ux
density vector. This algorithm is referred to in the following as Weighted
RCM (WRCM) [66].
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Figure 4.8: Pattern of the non-zero coe�cient of the sti�ness
matrix for the problem described in text (absolute values): yx
ordering

The dependence of the coe�cient size on the magnetic �eld in the general
case, for structured meshes, is given in the following calcution. For the sake
of simplicity, the value of the mobility is assumed equal to one, and the mul-
tiplicative factor in the expression of σ has been ignored, since it doesn't
a�ect the coe�cient size distribution.
The element matrix coe�cient Km,n for linear shape functions Nj(x, y) is
given by:

Km.n =
∫
V
∇NT

mσ∇NndV (4.34)

where,

∇NT
j = (

∂Nj(x, y)
∂x

,
∂Nj(x, y)

∂y
) (4.35)

and, in the assumed approximations:

σ =
(

1 +B2
x BxBy

BxBy 1 +B2
y

)
. (4.36)
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The element matrix coe�cient is given by:

(∇Nm,x,∇Nm,y) ·

(
∇Nn,x +∇Nn,xB

2
x +BxBy∇Nn,y

∇Nn,y +∇Nn,yB
2
y +BxBy∇Nn,x

)
. (4.37)

that gives:

(∇Nm,x,∇Nm,y) ·

(
Bx(B ·∇Nn) +∇Nn,x

By(B ·∇Nn) +∇Nn,y

)
. (4.38)

The element matrix becomes therefore:

Km,n =
∫
V

(B ·∇Nn)(∇Nm,xBx +∇Nm,yBy)

+∇Nm,x∇Nn,x +∇Nm,y∇Nn,y.

(4.39)

The �nal expression is therefore:

Km,n =
∫

(B ·∇Nm)(B ·∇Nm) + (∇Nm ·∇Nn). (4.40)

The contributions of the element matrixes add up to build the sti�ness of
the �nite element formulation. It is apparent from equation ?? the depen-
dence of the sti�ness matrix coe�cients on the scalar product between the
magnetic �ux density and the mesh edges, since the gradient of the linear
shape functions are perpendicular to each edge of the triangular elements.

Two strategies can be adopted in preferred direction sensitive reorderings.
The �rst reorders each RCM level by increasing degree, and applies the weak-
est connections ordering only to nodes having the same degree. The second
possibility is to neglect the nodes degree, and to reorder accounting only for
the connection strenghts. WRCM chooses the second approach, and does
not apply a minimal degree ordering in each level. This choice enhances
the sensitivity of the algorithm to the preferred direction, but increases the
matrix pro�le. Nevertheless, this e�ect can be neglected provided the RCM
levels are low populated. It can be obtained by a proper choice of the root
node of the reordering, as highlighted in section 4.3.2.
It can be observed that the Dirichlet boundary conditions con�guration could
also play a role in the choice of the root node. If the potential is de�ned on
the m-th grid point, the m-th row coe�cients in the A matrix will be zero
everywhere but in the position (m,m), where the coe�cient is 1.
Now consider the incomplete elimination step given in algorithm 4.3. For
each i-th row, the k loop sets to 0 all the elements before the diagonal.
To eliminate the �rst element, each row is combined with the �rst one, to
eliminate the second element with the second one, and so on. The j loop
accomplishes this task. By looking at the step 5 in the algorithm 4.3, it can
be easily seen that the elements ak,j generate �ll-ins if they are not null: if
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the elements ai,j were null before the elimination of the k-th element in the
row, they would become not null after the j loop unless the out-diagonal
entries of the k-th row were null, that is, unless the k-th row corresponds to
a point on a Dirichlet edge in the mesh.
Since each row is reduced by all the preceding rows, the previous consider-
ations would imply that if the �rst rows in the matrix are �Dirichlet rows�,
the �ll-ins could be reduced. These observations however apply to the �rst
row only, or to a matrix con�guration where �Dirichlet rows� are contiguous;
otherwise the �Dirichlet rows� following a �non-Dirichlet row� would be mo-
di�ed by the procedure, and would not preserve their structure.
The algorithm could be forced to choose the starting node on the Dirichlet
edge in order to have a �Dirichlet row� as �rst row, or even to choose all the
n Dirichlet nodes as �rst n nodes, but it would imply a larger bandwidth,
a�ecting the algorithm e�ciency.
For the WRCM algorithm presented here, the root node has been chosen
as a minimal degree node, since it has been noted that a well rooted RCM
numbering it's enough to ensure good results in terms of pro�le reduction.

The WRCM procedure is shown in Fig. 4.9 and is coded in FORTRAN 90.
The mesh is represented as a collection of nodes and edges types, on which
acts a searching routine, returning the permutation vector for the nodes.
Reordering is performed by a quick-sort implementing routine.

4.3.4 The weighted reverse Cuthill McKee: performances.

As a �rst step, the WRCM procedure has been tested for two simple con-
�gurations of the magnetic �ux density, for the problem 4.33 de�ned on a
triangular mesh of a square domain. For high values of electrons' mobility,
the solver showed low rate convergence, or no convergence at all, for the
examined cases. The de�nition of the �eld is given in the following, for a
magnetic �ux density aligned along straight lines, linearly decreasing (case
I):

Bx = B1x − x(B1x −B2x)/L, (4.41)

By = B1y − y(B1y −B2y)/L, (4.42)

where

B1x = 3.0T, (4.43)

B2x = 1.0T, (4.44)

B1y = 1.0T, (4.45)

B2y = 3.0T, (4.46)

L = 0.1m. (4.47)
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Figure 4.9: Code structure for the WRCM reordering routine.

Initialize Edges’ and Nodes’ Vector

Initialize Weights and Degrees

Order Node’s Vector by Degree and find a Starting Node.

Search for Neighbors.

Order Neighbors by Increasing Weight.

Label not labeled Nodes.

Select next Node in Nodes’ Vector as a starting Node. 

Reverse Ordering.

and for a B �eld aligned along circular lines (case II, see Fig: 4.10):

Bx = −2.0y/(x2 + y2), (4.48)

By = 2.0x/(x2 + y2). (4.49)

The choice of the boundary conditions aimed to reproduce the physical con-
�guration observed in the hypersonic MHD applications. The plasma region
with high conductivity values is con�ned between the shock and the vehicle
surface. The current path has therefore to be contained into this region.
This situation is reproduced by setting to zero the normal current density
on the boundary of the computational domain, i.e. by imposing a Neumann
condition on the corresponding boundary edges. On the test square domain,
the following boundary conditions have been set (see Fig: 4.10):

Jn = 0 edges 1, 2, 3, (4.50)

φ = 0 edge 4, (4.51)

where Jn is the current density normal to the considered edge. The tests
have been run on an Intel Xeon E5405 processor, and the GMres convergence
criterion is given by [45]:

||r(k)||2 ≤ ||r(0)||2, eps = 10−14 (4.52)
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Figure 4.10: B �eld (black) and velocity �eld (red) con�gu-
ration for the second test case.
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where r(k) is the residual vector after the k -th iteration.
The main computational di�culties arise at increasing values of the electron
mobility, so tables 4.2, 4.3, 4.4, 4.5 and �gures 4.12, 4.11 show the code
performances for increasing mobilities for the given magnetic �ux density
layout.

Table 4.2: Performances of an ILUT (level of �ll 20; threshold
1.0× 10−4) preconditioned GMRes: case I, unstructured, RCM
reordered mesh.

Mobility Iters Iters Convergence rate Residual
(1/T) (No reord) (RCM) (RCM) (RCM)

10 No Convergence 18 0.6 8.1× 10−09

20 No Convergence 21 0.5 1.3× 10−08

30 No Convergence 27 0.4 1.5× 10−08

40 No Convergence 29 0.4 1.5× 10−08

50 No Convergence 31 0.3 4.8× 10−08

70 No Convergence 32 0.4 1.1× 10−08

90 No Convergence 32 0.4 1.0× 10−08

Each table reports the number of iterations needed to reach the convergence
in case of no reordering (second column), and when the speci�ed ordering is
applied (third column). For the latter, the convergence rate and the residuals
are reported also (fourth and �fth column).
A comparison shows an outstanding improvement if the solver performance
when an RCM or a WRCM is applied. WRCM shows a good stability
and better performances for case II. Table 4.6 shows the outcomes of the
application of the RCM and WRCM reordering to a strongly anisotropic
case study. The code models the MHD interaction around a cone, in order
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Table 4.3: Performances of an ILUT (level of �ll 20; threshold
1.0×10−4) preconditioned GMRes: case I, unstructured, WRCM
reordered mesh.

Mobility Iters Iters Convergence rate Residual
(1/T) (No reord) (WRCM) (WRCM) (WRCM)

10 No Convergence 18 0.6 8.1× 10−09

20 No Convergence 21 0.5 1.1× 10−08

30 No Convergence 30 0.4 1.4× 10−08

40 No Convergence 31 0.4 1.3× 10−08

50 No Convergence 31 0.4 4.3× 10−08

70 No Convergence 32 0.4 1.1× 10−08

90 No Convergence 31 0.4 9.2× 10−09

Table 4.4: Performances of an ILUT (level of �ll 20; threshold
1.0× 10−4) preconditioned GMRes: case II, unstructured, RCM
reordered mesh.

Mobility Iters Iters Convergence rate Residual
(1/T) (No reord) (RCM) (RCM) (RCM)

10 31 19 0.6 8.3× 10−09

20 21 14 0.8 8.8× 10−09

30 24 17 0.7 2.4× 10−09

40 36 18 0.6 2.7× 10−09

50 60 21 0.5 2.9× 10−09

70 243 43 0.3 4.9× 10−10

90 1164 109 0.1 9.2× 10−10

Table 4.5: Performances of an ILUT (level of �ll 20; threshold
1.0 × 10−4) preconditioned GMRes: case II, unstructured,
WRCM reordered mesh.

Mobility Iters Iters Convergence rate Residual
(1/T) (No reord) (WRCM) (WRCM) (WRCM)

10 31 17 0.6 1.4× 10−08

20 21 13 0.9 2.2× 10−09

30 24 12 0.9 9.0× 10−09

40 36 17 0.7 8.2× 10−10

50 60 20 0.6 3.5× 10−10

70 243 21 0.5 3.0× 10−09

90 1164 37 0.3 2.1× 10−09
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Figure 4.11: Iterations' number as a function of the mobility
for case I, unstructured mesh.

Figure 4.12: Iterations' number as a function of the mobility
for case II, unstructured mesh.

to analize the results of an experimental campaign described in [24].
The improvement in performances introduced by the application of WRCM
to this case is apparent.

4.4 Field evaluation from the �nite element solu-

tion.

This section addresses the problem of an optimal evaluation of the �elds,
when the potentials are known from the �nite element solution.
The direct di�erentiation of the FEM potentials causes a loss in the accuracy
of the approximation, and the obtained FEM �elds show discontinuities at
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Table 4.6: Performances of an ILUT (level of �ll 20; threshold
1.0 × 10−4) preconditioned GMRes: a strongly anisotropic test
case, comparison between di�erent orderings.

Ordering Iters Convergence rate Residual

None No conv. - -
RCM 501 2.2× 10−02 1.2× 10−14

WRCM 358 3.1× 10−02 9.0× 10−14

Figure 4.13: An element patch for the SPR technique.

elements' edges.
The strategy presented in the following recovers the loss in accuracy by a a
posteriori treatment of the FEM data, i.e, it de�nes a procedure to evaluate
at best the derivatives once the solution for the potential is given by the
FEM method. Since the recovered values have higher accuracy, they can be
used to give an estimate of the errors on the FEM �elds.

4.4.1 The Superconvergent Patch Recovery: the technique.

The Superconvergent Patch Recovery (SPR) technique consists basically in
�nding out an optimal polynomial approximation for each component of the
�elds on a cluster of elements containing a given node, referred to as a patch
(see �g 4.13).
The order p of the approximating polynomial is de�ned by the order of the
elements. For the linear elements in two dimensions adopted in this work,
the polynomial will be a linear function of the coordinates.
The procedure to build such polynomials can be determined by considering
the following theorem, derived by Hermann [67]:
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Theorem 4.4.1. Consider the di�erential equation

Lu = STASu = p (4.53)

where L is the self-adjoint operator de�ned by S, and A and p are known
matrices of position.
The minimization of the energy functional Π de�ned as:

Π =
1
2

∫
Ω

(Su)TASudΩ−
∫

Ω
uTpdΩ (4.54)

gives at an absolute minimum the exact solution u = ū, and it is equivalent
to minimization of another functional Π∗ de�ned as

Π∗ =
1
2

∫
Ω

[S(u− ū)]TA[S(u− ū)]dΩ (4.55)

For the electrodynamic problem treated in this work, u represents the po-
tential, and S is the gradient operator. The �rst outcome of the Hermann
theorem is therefore that the weighted sum of squares of errors on the �elds
has a minimum when the approximate gradients Su approach the exact ones
Sū.
The Hermann theorem gives a �rst indication about the approximating poly-
nomials: they should �t the sampling points in a least square manner, in
order to guarantee the convergence to exact solution. The theorem further
states that a choice that minimizes 4.55 converges to exact values for the
gradients. The order of convergence depends on the sampling points. Equa-
tion 4.55 is a continuum least square problem formulation. It's known [68]
that a minimizing solution is given by the least square interpolation of the
function Sū at the Gauss-Legendre points in each element of the patch. The
approximation is exact to the order p + 1, if the Gauss points are of order
p. The error on the approximated gradients has therefore order p + 1, the
same order of the errors on the potential. This property is known as su-
perconvergence. For a detailed proof of the superconvergent behavior of the
SPR approximation, see, for example, [69, 70, 71, 72, 73]. It's worth noting
that the error estimate given above is valid for structured meshes. Neverthe-
less, superconvergent behavior for unstructured mesh has also been observed,
and proved in some cases. The SPR method, proposed by Zinkiewicz and
Zhu [74, 75], is at present a widely applied recovery method, and its e�ec-
tivity in terms of performances and computational costs have been proven,
see for example [76], though several improvements have been developed for
particular applications.
The practical implementation of the technique is simple, and it's outlined
below [39]:

1. Identify the Gauss points of order p in each element. The coordinates
of the k-th point are (xk, yk).
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2. Evaluate the FEM gradients components σ̂i(xk, yk) at the Gauss points.

3. For each element patch, build the polynomial:

σ̄∗i = p(x, y)ai (4.56)

where:

p(x, y) = [1, x, y, · · · , yp] (4.57)

ai = [a1, a2, · · · , ap+1]T (4.58)

(4.59)

that minimizes

Π =
1
2

n∑
k=1

[σ̄i(xk, yk)− p(xk, yk)ai] (4.60)

4. The coe�cients ai are obtained as

ai = A−1bi (4.61)

where:

A =
n∑
k=1

pTk pk (4.62)

bi =
n∑
k=1

pTk σ̂i(xk, yk) (4.63)

(4.64)

5. The boundary values are recovered from interior patches, see �gure 4.14.

4.4.2 The Superconvergent Patch Recovery: implementa-

tion.

Figure 4.15 shows the code structure for the Superconvergent Patch Recovery
routines. The procedure is straightforward:

� For linear triangular elements the center of gravity can be identi�ed as
the superconvergent point4

� For each internal element patch, evaluate the least square plane ap-
proximating the Gauss points for the each �eld component (i.e. the x,
y components, for the axial-symmetric �eld con�guration adopted in
the two dimensional model presented in this work).

4The superconvergence of the center of gravity has not been fully proved yet, see for
example [75].
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Figure 4.14: Recovery of boundary gradients.

� Compute the superconvergent nodal values by the plane equations.

� Recover the boundary values from the superconvergent values com-
puted for the connected internal nodes.

� The errors are evaluated as the euclidean norm of the di�erence be-
tween FEM �elds and SPR �elds. The FEM �elds have been obtained
by averaging the FEM gradients computed on each element of the
patch.

For a structured mesh the expected convergence order would be (O(h)2),
where h is the elements size, for an unstructured mesh the convergence order
is greater than 1.5, see [75]. Some details about the calculations are given in
the following.
The least square planes for the x, y �eld components are written as:

E∗x(x, y) = axx+ bxy + cx (4.65)

E∗y(x, y) = ayx+ byy + cy (4.66)

The least square minimization generates a linear system for the determina-
tion of the unknown coe�cients, whose Cramer solution is given by:

ax =
|Nax|
|A|

ay =
|Nay|
|A|

(4.67)

bx =
|Nbx|
|A|

by =
|Nby|
|A|

(4.68)

cx =
|Ncx|
|A|

cy =
|Ncy|
|A|

(4.69)
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Figure 4.15: Code structure for the SPR routine.

Compute the center of gravity.

Evaluate FEM fields at the center of gravity

Update the values of the coefficients at 
each element node.

For each element:

Identify the patch

Compute the SPR planes’ coefficients

Evaluate the SPR field component at node

For each node:

For each boundary node:

Evaluate the fields by averaging SPR field 
at each connected internal node

where:

|Nax| = λβ2 + θµ+ αεγ − λε− θβγ − αβµ (4.70)

|Nbx| = −δµ− λαβ − αθγ + δβγ + λθ + α2µ (4.71)

|Ncx| = −δεγ − θµα− λθβ + δµβ + θ2γ + λεα (4.72)

|A| = δε+ 2αθβ − δβ2 − θ2 − α2ε. (4.73)
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The least square plane coe�cients are functions of the coordinates and of the
�eld values at the superconvergent points. The Greek letters above de�ne
the summations over the patch of the superconvergent points' contribution:

α =
N∑
i=1

xig β =
N∑
i=1

yig γ =
N∑
i=1

Eixg (4.74)

δ =
N∑
i=1

(xig)
2 ε =

N∑
i=1

(yig)
2 θ =

N∑
i=1

xigy
i
g (4.75)

λ =
N∑
i=1

Eixgx
i
g µ =

N∑
i=1

Eixgy
i
g (4.76)

The SPR method has been applied to analyze the outcomes of a 9.2 Mach
simulation of the �ow around a blunt test body. The results are shown
in Fig. 4.16, where the error is mapped as the ratio between the euclidean
norm of the di�erence between FEM �eld and SPR �eld, and the norm of
the SPR �eld itself. By comparing Fig. 4.16 with �gures 4.17 it is apparent
that greater errors arise at the shock layer boundaries, and at the edges of a
mesh re�nement region. The high error percentages observed at the middle
of the rightmost edge are explained by noting that boundary values are
recovered by averaging the SPR values computed at the connected internal
nodes. Since in this case the connected nodes are located in the shock zone,
the discontinuities in the physical quantities result in a poor estimate for
the average on the boundary. This di�culty could be overcome by a overall
mesh re�nement, or by simply assigning to each boundary node the SPR
�eld value computed for the nearest internal node connected with it.

4.5 Performance analysis: code pro�ling.

As a �nal testing step, the code has been analyzed by using a pro�ling tool.
The aim of such analysis is to identify the most time expensive code sections,
and to study the memory usage e�ciency.
The time costs analysis has been performed through gProf, the GNU pro�ling
utility. The outcomes are summarized in Table 4.7. The table shows the
percentage of the total running time spent in each listed function, the number
of calls, and the average time per call spent in the function itself and all its
descendants, for a test run with 6565 nodes.
It can be seen that the most time consuming functions are, as can be ex-
pected, the preconditioner iluk, the solver GMRes and the LU solver lusol,
needed by both the solver and the preconditioner.
The reordering modules that build the mesh edges, sort the nodes and renum-
ber them, respectively, have percentages lower than six, i.e. they have a low
time cost when compared with the signi�cant improvements they induce in
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Figure 4.16: Relative norm of the error in the �elds compu-
tation by comparison with the superconvergent estimate.

(a) (b)

Figure 4.17: Mesh structure and density distribution for the
test case cited in text.

the solver performances. It has also to be noted that nodes are reordered
just one time at the beginning of the simulation, whereas the matrix arising
in the FEM electrodynamic discretization is solved at each �uid-dynamics
time step.
The second phase of the analysis described in this section aimed to test the
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Table 4.7: Time pro�le for the 2D electrodynamic code.

Name % Time Calls Total/Call [ms]

iluk (preconditioner) 29.73 1 220.00
GMRes (solver) 14.86 25 5.19
lusol (LU factors comp.) 10.81 28 2.86
nodes' relabeling 5.41 1 40.00
nodes' sorting 2.70 6565 < 0.01
edges' building 1.35 1 10.00

cache usage e�ciency of the code. A good management of the read/write
operations in the program work �ow maximizes the successful accesses to
the cache (cache hits) and minimizes therefore the execution time by avoid-
ing, as far as possible, frequent data and instructions exchange between the
processor and the RAM, typically slower than cache memories by a factor
100. The compiler itself (e.g. the Intel compiler adopted for this work [77])
provides options to exploit the cache at best(loop unrolling, loop fusion, loop
interchange, cache padding support), but aggressive optimizations produce
larger binaries and could cause unexpected code behaviors. The only reliable
solution is therefore a well structured code, and a cache pro�ling tool helps
identifying the ine�cient code segments that have to be optimized.
The results presented below have been obtained by running Cachegrind with
the Callgrind extensions. Cachegrind is the cache pro�ling tool supplied by
the Valgrind instrumentation framework. It runs the code and tracks the
cache access operations, counting the cache misses for di�erent cache levels
(data and instruction caches for level 1, and the level 2 uni�ed cache). Call-
grind builds a call graph of the program's run, collecting data about the
caller/callee relationships between functions, the number of calls, the num-
ber of instructions, and so on. All these results are linked to the source code
lines and can be grouped by function. Table 4.8 shows the data about the
cache con�guration, automatically detected by Callgrind: the cache size, the
cache line size and the associativity. The machine is equipped with a quad-
core processor, and each couple of cores shares a 6M L2 cache. Cachegrind
detects only a 6MB cache and will therefore simulate this con�guration. It
doesn't constitute a problem, because the code is not engineered for parallel
execution and will therefore exploit only one L2 cache, i.e. the 6M detected
by Callgrind. Tables 4.9, 4.10 report the results obtained for a test run with
2560 nodes, with the same con�guration applied for the time pro�ling.
For each event type, the table shows the most expensive functions (ordered
by decreasing self cost percentage), and the corresponding cost percentage.
Self cost refers to the cost of the function itself (callee costs are not included).
The event types tracked by Callgrind are:
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� Data read misses for level 1 (D1mr) and level 2 (D2mr)

� Data write misses for level 1 (D1mw) and level 2 (D2mw)

Table 4.8: Cache con�guration detected by Callgrind.

Cache Level Dimension Line Associativity

Instruction 1 32KB 64 B 8-way associative
Data 1 32KB 64 B 8-way associative
Uni�ed 2 6MB 64 B 24-way associative

Table 4.9: Cache pro�le for the 2D electrodynamic code: costs
grouped by function, level 1 cache.

D1mr % D1mw %

lusol (LU factors comp.) 42.18 nodes' relabeling 36.10
scalar product 15.04 matrix-vector multiplic. 12.24
GMRes (solver) 13.67 lusol (LU factors comp.) 11.82
iluk (preconditioner) 11.49 iluk (preconditioner) 11.68
nodes' relabeling 5.06 solver initializations 5.06

Table 4.10: Cache pro�le for the 2D electrodynamic code:
costs grouped by function, level 2 cache.

D2mr % D2mr %

lusol (LU factors comp.) 69.05 nodes' relabeling 24.99
scalar product 16.32 iluk (preconditioner) 15.91
matrix-vector multiplic. 10.86 matrix-vector multiplic. 15.43
nodes' relabeling 1.61 lusol (LU factors comp.) 11.60
GMRes (solver) 0.88 solver initializations 7.25

In order to understand the reasons of the detected cache misses, the source
code has to be analyzed.
Cachegrind produces a report of the cache data for each code line. The
source line annotations for the lusol routine are shown in the following for
exampling purpose:
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D1mr D1mw D2mr D2mw

0 28 0 28 subroutine lusol(n, y, x, alu, jlu, ju)

. . . . c

0 0 . . do 40 i = 1, n

112,000 112,000 0 76,369 x(i) = y(i)

112,028 0 . do 41 k=jlu(i),ju(i)-1

1,415,344 0 925,579 . x(i) = x(i) - alu(k)* x(jlu(k))

. . . . 41 continue

0 0 1 . 40 continue

. . . . c backward solve.

. . . . c

28 0 2 . do 90 i = n, 1, -1

108,536 . . . do 91 k=ju(i),jlu(i+1)-1

1,450,400 1 773,310 . x(i) = x(i) - alu(k)*x(jlu(k))

. . . . 91 continue

197,680 0 111,742 . x(i) = alu(i)*x(i)

. . . . 90 continue

. . . . c

. . . . return

. . . . c----------------end

This routine solves the system (LU)x = y. Alu and jlu variables contain the
LU factors stored in CSR format [46]. It can be easily seen by looking at the
highlighted lines that the D1mr misses are mainly due to random accesses to
the x vector, that cannot be avoided, because they depend on the algorithm
structure and on the CSR storage strategy. The same considerations apply
to the nodes' relabeling procedure (the main responsible for D2mr misses,
see Table 4.9), that implies a random access to the node's vector. Similar
analysis have been carried out on the other functions, and the code turned
out to be e�ective in terms of cache accesses.
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CHAPTER 5

SIMULATION RESULTS

Any man who can drive safely while kissing a pretty girl is simply
not giving the kiss the attention it deserves.

Albert Einstein.
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Abstract. This chapter presents the simulations results obtained from the
electrodynamic code. The two dimensional code has been tested by model-
ing the MHD interaction around two axial symmetric blunt body con�gu-
rations, for scalar and tensor conductivity. The shock displacement e�ect,
the pressure distribution modi�cation and the heat �uxes mitigation have
been shown to be of order of 10% in the scalar conductivity case, whereas
they can be hardly appreciated in presence of tensor sigma. For the three
dimensional code, the preliminary testing phase is brie�y overviewed.
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Introduction

The electrodynamic code has been worked out within the CAST1 project,
funded by the Italian space agency (ASI). The project aimed at develop-
ing an integrated experimental-computational environment to explore new
possible con�gurations for aerospace transport. In this context, it has been
studied the MHD interaction between the plasma surrounding a re-entry
vehicle and the magnetic �eld generated by magnets placed on the vehicle
body, in order to evaluate the stagnation heat �uxes reduction and pressure
�eld modi�cation.
The proposed con�gurations have been numerically modeled and then ex-
perimentally tested in the hypersonic nozzles located at the CIRA [78] and
ALTA [79] facilities. The results presented in the following sections simulate
blunt test body con�gurations in di�erent �ow condition.
The last section outlines the preliminary results obtained for the tridimen-
tional code.

5.1 Two dimensional electrodynamics.

This chapter describes the simulations of the MHD interaction in the hyper-
sonic �ow generated by the GHIBLI wind tunnel at CIRA. The chosen work-
ing point for the nozzle is characterized by an enthalpy of H0 = 22MJ/Kg
and P0 = 2atm. The �ow conditions are speci�ed for each presented test
case.

5.1.1 Test cases.

The simulations presented in this chapter have been performed by coupling
the electrodynamic code with a two dimensional �uid-dynamic solver de-
veloped within the magneto-hydrodynamic research group at DIE2 [37]. A
cell-centered �nite volume formulation has been adopted for the spatial dis-
cretization of the �uid dynamics. Di�usive terms are evaluated by means of
a centered scheme based on a standard Galerkin approach. Convective terms
are calculated utilizing a MUSCL [80] approach, in order to get a second-
order accuracy by a combination of upwind and centered discretization of the
gradient. Time integration is performed utilizing an explicit scheme, based
on a fourth-order RungeâKutta method.
The �rst simulation, referred to as test case I, considers a truncated-cone
body geometry, in an hypersonic air �ow. The considered magnetic �eld at
the body surface is shown in �gure 5.1, whereas �gures 5.2 show the the
Mach number distribution and ionization degree as calculated by the CIRA

1New Con�gurations for Aerospace Transport
2Dipartimento di Ingegneria Elettrica

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



64 5.1. Two dimensional electrodynamics.

Figure 5.1: Magnetic �ux density at the test body surface.

�uid-dynamic code. It can be noted by looking at Figure 5.2 that the

(a) Mach number, no MHD. (b) Ionization degree.

Figure 5.2: Flow conditions for test case I.

ionization degree is almost constant on the computation domain. The scalar
electrical conductivity is given by :

σe =
nee

2

meν̄eH
(5.1)

where e is the electron charge, me is the electron mass, and ne/ν̄eH is the
ratio between the electron number density and electron-heavy particles col-
lision frequency, that can be can be assumed to be constant, for a constant
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ionization degree. The electron conductivity has therefore been assumed to
be constant on the domain, whereas the electron mobility has been varied
as the inverse plasma density, since it depends on the inverse of ν̄eH . The
electron collision rate has been evaluated under the assumption of instanta-
neous electrons relaxation from [81]. In Fig 5.3a are shown the results for
the distribution of the Mach number in presence of MHD interaction. A
plot of the azimuthal component of the adimensional current density and of
the B �eld lines are shown in Fig. 5.3b. The expected pro�le of pressure
and temperature gradient on the test body wall with and without MHD
interaction, as well as the computed percentage variations, are shown in
�gures 5.4a, 5.4b, 5.5a, 5.5b and 5.6a, 5.6b, 5.7a, 5.7b.
It's apparent from the calculation the reduction in temperature gradients
expected at the test body �at top, at the order of some percentage. The
pressure reduction can be explained with modi�cation of the momentum
streamlines induced by the interaction.
The second test case presented in this section aims at comparing the Faraday
current densities in di�erent conductivity conditions. Argon has been chosen
as working gas, since the higher electron density provided maximizes the
e�ect under study.
A sketch of the geometry chosen for the comparison is shown in Fig. 5.8. The
B �eld is produced by a 56500 A current �owing on a circular 29 mm radius
winding. With this con�guration, a 1 T magnetic �ux density is obtained.
on the axis of the body faced to the �ow. The assumed free stream conditions
are listed below:

� Mach = 15.7

� p = 2.013603698 [Pa]

� T = 36.098665 [K]

A scalar conductivity has been assumed on the calculation domain. In this
case the only component of the current density is the azimuthal one, and
can be promptly evaluated the cross product between the velocity and the
B �eld times the conductivity. It should also be noted that, under these
assumptions, the MHD source terms appearing in the �uid dynamic equa-
tions depend on the product σB2, which is de�ned and does not vary during
the solution. Each solution can be considered as a family of solutions with
constant MHD interaction parameter (i.e. constant σBeinter2). Thus, the
entire required range of Rem can be explored on a single solution by varying
the conductivity of a factor α and the B �eld of a factor α−

1
2 . The current

density in the plasma will be increased by a α−
1
2 factor, leaving the source

terms unmodi�ed. This expedient can be useful because exploring MHD
regimes with high conductivity will inevitably require large calculation do-
mains, and time expensive computations [82]. The conductivity has been
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(a) Mach number, MHD on.

(b) Azimuthal current density
around the test body (adimen-
sional, Jref = 1415.8A/m2 ),
MHD on.

Figure 5.3: Mach number and azimuthal current density for
test case I.

modeled as a step function, set to zero outside the shock layer. The results
for this condition are reported in �gures 5.9a, 5.9b, 5.9c (σ = 10 S/m) and
in �gures 5.10a, 5.10b (σ = 100 S/m).
The scalar conductivity is increased by an order of magnitude. The shock
is moved away from the test body nose and the increase of this e�ect for
increasing σ by comparing �gures 5.9b and 5.10a. It has to be noted that the
scalar conductivity condition simulated in this test case, is the most favorable
for the MHD e�ects to be appreciated, since no Hall currents are present
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(a) Adimensional pressure on the test body �at top
with and without MHD interaction (pref = 1415.8).

(b) Percentage variation of pressure due to MHD
interaction on the test body �at top.

Figure 5.4: Pressure behavior on the test body top with and
without MHD interaction.

on domain, and the Faraday current sustaining the MHD phenomenon is
maximized.
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(a) Adimensional pressure on the test body
�ank with and without MHD interaction (pref =
1415.8Pa).

(b) Percentage variation of pressure due to MHD
interaction on the test body �ank.

Figure 5.5: Pressure behavior on the test body �ank with and
without MHD interaction.

5.1.2 Integration.

The electrodynamic code described in this work couples with the two di-
mensional �uiddynamics developed at CIRA through data exchange by �le.
The coupling schema is reported in �gure 5.11. The electrodynamic code
ELDYNSOLV interfaces with the �uidodynamical mesh by building the el-
ements onto the the grid points de�ned by the �uidodynamics, in order to
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(a) Adimensional temperature on the test body �at
top with and without MHD interaction (Tref =
22433K).

(b) Percentage variation of temperature due to MHD
interaction on the test body �at top.

Figure 5.6: Temperature behavior on the test body �ank with
and without MHD interaction.

avoid the accuracy loss implied by interpolation.
This section presents the computational analisys of the MHD interaction

around a truncated cone shaped test body, to be tested in the GHIBLI nozzle
with air as working gas [83], at the same conditions adopted for the simula-
tions presented in section 5.1.1.
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(a) Adimensional temperature on the test body �ank
with and without MHD interaction (Tref = 22433k).

(b) Percentage variation of temperature due to MHD
interaction on the test body �ank.

Figure 5.7: Pressure behavior on the test body �ank with and
without MHD interaction.

The magnetic �eld needed for the MHD interaction around the blunt test
body is produced by a single permanent magnet, with 1.4T residual induc-
tion. The height, the minor and the major radius of the truncated cone are
45 mm, 96 mm and 60 mm respectively. The �nal con�guration of the test
body is shown in �gure 5.12. The structured mesh for the �nite element
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Figure 5.8: Sketch of the geometry for the test case II.

computation is shown in �gure 5.13. The magnetic �eld con�guration is the
same given in section 5.1.1 and has been interpolated on the domain. Com-
puted and interpolated �elds are shown in �gures 5.1, 5.14 respectively.
The �rst results presented have been obtained by neglecting the free stream
ionization: the currents are therefore totally contained in the shock region.
The conductivity has been assumed to be scalar; as previously noted, in
such case the only Faraday current is present and the MHD e�ect is there-
fore maximized (see 5.15). By observing �gure 5.15 it is apparent the shock
wave displacement, whereas �gure 5.16 shows a reduction of wall pressure
and a heat �uxes mitigation of about 10% in the stagnation zone [84].

The second test considers a tensor conductivity and a ionized free stream.
The tensor nature of the conductivity has a dampening e�ect on the Faraday
current sustaining the MHD interaction. Just looking at the Faraday current
distribution in �gure 5.17a it can be easily noticed that its module is lower
than in the scalar conductivity case. It can also be noted that a non-zero
value of conductivity in the free stream a�ect the current distribution that
assumes considerable values also outside the shock, as shown in �gure 5.17b.
The Hall currents' magnitude is highly dependent on the electron mobility.
In the simulation presented here, the free stream mobility has been assumed
constant and equal to 29 T−1, and has been estimated as inversely propor-
tional to the mass density inside the shock. The approximate nature of this
assumption a�ects the current densities evaluation. A more accurate value
for this quantity has to be obtained by kinetics models, still under develop-
ment within the CAST collaboration.

The e�ect on the �ow �eld of Hall currents is evident if we compare �gure 5.15
with �gure 5.17: the reduction of the shock displacement e�ect is apparent.
The e�ect on wall heat �uxes and wall pressure, shown in �gure 5.18, are
also less signi�cant with respect to the previous case.
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(a) Mach number(σ=10 S/m in
the shock layer).

(b) Pressure (σ=10 S/m in the
shock layer).

Figure 5.9: Results for the test case II, σ=10 S/m condition.

5.2 Three dimensional electrodynamics.

This section overviews the preliminary testing phase of the three dimen-
sional electrodynamic code. The code has been run in two simple geometric
con�gurations, by imposing a uniform �ow �eld and an uniform magnetic
�ux density. The values of electron density and electron charge, have been
assumed equal to one, as well as the modules of the �ow velocity and of the
magnetic �ux density.
The tetrahedral meshes and the post processing views for the simulations
have been obtained through the open source code Gmesh [85].
The �rst test case is de�ned over the unitary cube shown in �gure 5.19 where
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(c) Current density and B �eld
lines (σ=10 S/m in the shock
layer).

Figure 5.9: Results for the test case II, σ=10 S/m condition.

the imposed boundary conditions are also depicted. The tetrahedral mesh is
shown in �gure 5.21a. The boundary conditions have been chosen in order
to obtain a constant �eld along the y direction. The only non null current
density component allowed by the imposed conditions is along the y direc-
tion. Its module is de�ned by the null x �eld requirement. The assumed
conditions are:

B = (0, 0, B0) (5.2)

β = (0, 0, β0) (5.3)

u = (0, u0, 0), (5.4)

(5.5)

the electrodynamic equation is therefore:

J =
σ

1 + β2
0

 1 −β0 0
β0 1 0
0 0 1 + β2

0

Ex + u0B0

Ey
Ez

 (5.6)

The �rst two equations are therefore:

Jx =
σ

1 + β2
0

(Ex + u0B0 − βEy) (5.7)

Jy =
σ

1 + β2
0

(βEx + βu0B0 + Ey) (5.8)

(5.9)
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(a) Pressure (σ=100 S/m in
the shock layer).

(b) Current density (σ=100
S/m in the shock layer).

Figure 5.10: Results for the test case II, σ=100 S/m condition.

The Jy = 0 together with the Ex = 0 request are satis�ed by imposing
the Jx module equal to σu0B0, as shown in �gure 5.19. Equations 5.7 give
therefore an expected electric �eld in the y direction Ey = −βu0B0, obtained
in the simulation for unitary velocity and magnetic �ux density modules, as
shown in �gure 5.21b. Figure 5.22 shows the analogous results obtained for
a cylindrical ring section of lenght 4 m, constant �ow �eld, and a radial
magnetic �eld B = (B0/r)êr, with boundary conditions given in �gure 5.20.
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Figure 5.11: Coupling schema for the electrodynamic code.
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(a)

(b)

Figure 5.12: Test body con�guration.

Figure 5.13: Triangular structured mesh for the electrody-
namic computations.
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Figure 5.14: Interpolation of the magnetic �eld on the com-
putational domain.

Figure 5.15: Sigma and Faraday current distribution in the
scalar conductivity case.
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(a) Mach number

(b) Pressure

Figure 5.15: Di�erences in terms of Mach (a) and pressure
(b) distributions between magnetic �eld o� and magnetic �eld
on cases (scalar sigma).
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(a) Wall heat �uxes (b) Wall pressure

Figure 5.16: Di�erences in terms of wall heat �uxes (a) and
wall pressure (b) distributions between magnetic �eld o� and
magnetic �eld on cases (scalar sigma).

(a) Mach number (b) Pressure

Figure 5.17: Sigma and Faraday current distribution (a), Hall
currents components and streamlines (b).
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(a) Mach number
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(b) Pressure

Figure 5.17: Di�erences in terms of Mach number(a) and pres-
sure (b) distributions between magnetic �eld o� and magnetic
�eld on cases (tensor sigma).

(a) Wall heat �uxes (b) Wall pressure

Figure 5.18: Di�erences in terms of wall heat �uxes (a) and
wall pressure (b) distributions between magnetic �eld o� and
magnetic �eld on cases (tensor sigma).
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Figure 5.19: Boundary conditions for the test case described
in text, cubic domain.

Figure 5.20: Boundary conditions for the test case described
in text, cylindrical ring section.
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(a)

(b)

Figure 5.21: Tetrahedral mesh (a) and Hall potential (b) for
the cubic domain.
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(a)

(b)

Figure 5.22: Tetrahedral mesh (a) and Hall potential (b) for
the cylindrical ring section.
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CHAPTER 6

CONCLUSIONS

Anyone who tells a lie has not a pure heart, and cannot make a
good soup.

Ludwig van Beethoven



The work presented in this thesis is focused on a numerical investigation of
the shock moving e�ect induced by the MHD interaction between the plasma
�ow around a re-entry vehicle and a magnet �eld produced by a magnet sys-
tem installed on the fuselage. The aim is to provide a computational tool to
quantify the interaction e�ects, supporting the experimental activity both
in the design and in the analysis phase.
Electrodynamics is described by the generalized Ohm law with a tensor con-
ductivity, and by the equations of Maxwell-Faraday and Ampere-Maxwell,
where the displacement current is neglected. In the low magnetic Reynolds
number assumption, the magnetic �eld generated by the current can be ne-
glected too. The magnetic �eld is constant in time, and the electric �eld is
described by a scalar potential.
The numerical solution of the electrodynamic problem is obtained by ap-
plying the �nite element method in the Galerkin weighted residual formu-
lation. In this approach, the nodal values of the scalar potential are given
by a linear system inverted through an ILU preconditioned GMRes. The
high magnetic �elds and high mobilities involved in the presented MHD ap-
plications increase the anisotropic nature of the conductivity tensor. This
anisotropy a�ects the convergence behavior of the solver, that is critical, if
a standard preconditioning is applied. This di�culty has been overcome by
developing a new relabeling strategy for the mesh nodes, sensitive to the
magnetic �eld direction, that is, to the anisotropy of the physical problem.
The procedure is called Weighted Reverse Cuthill-McKee (WRCM), since
it modi�es the bread �rst traversal strategy due to Cuthill and McKee by
assigning a weight to each node connection, conforming to the magnetic �eld
orientation. WRCM improves the preconditioner performances by inducing
an optimal distribution of the position and of the modules of the matrix
elements. The reordering is performed once at the beginning of the compu-
tation, and guarantees the solver convergence and improved performances.
The development of the WRCM procedure is one of the main achievements
presented in this thesis.
The electric �eld is evaluated by computing the gradients of the potential
on each element. Since it is known that the gradients of the �nite element
solution have higher accuracy in the Gauss quadrature points inside the ele-
ments, a better evaluation of the �elds is given if the least square polynomial
approximating the Gauss points is computed on the cluster of elements sur-
rounding each node. This procedure, known as Super Convergent Patch
Recovery, has been implemented. The results have been compared to the �-
nite elements �elds to give an estimate of the errors on the computed values.
Once coupled with the �uid-dynamics, provided by the CAST project col-
laboration, the two dimensional model gives results that can be summarized
as follows: for an electron number density of about 1019 − 1020 m−3, a con-
ductivity of the order of 10 S and magnetic �elds at the order of Tesla, the
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interaction gives a modi�cation of the heat �uxes of about 10%. The results
also highlight the dampening e�ect the Hall di�usion has on the MHD e�ec-
tiveness.
The electrodynamic model assumes to have as an input a reliable estimate
of the electron density and of the conductivity in the interaction region, and
the full implementation of the kinetic model in the CAST framework will
ful�ll this requirement.
Finally, the tridimensional extension of the model has been completed, and
the preliminary testing phase for simple geometries and simple �uid-dynamic
con�guration has been successfully accomplished. The implemented reorder-
ing strategy is an unmodi�ed Reverse Cuthill McKee, and an extension of
the weighted algorithm is planned, once the full �uid-dynamics integration
has been concluded.
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APPENDIX A

ACRONYMS

FEM Finite Element Method

GMRes Generalized Minimum Residual (method)

ILU Incomplete Lower Upper (factorization)

ILUT Incomplete Lower Upper (factorization) with Threshold

LU Lower Upper (factorization)

MUSCL Monotone Upstream-centered Schemes for Conservation Laws

MHD MagnetoHydroDynamics

PDE Partial Di�erential Equation

Rem Magnetic Reynolds Number

RCM Reverse Cuthill McKee

SPR Superconvergent Patch Recovery

WRCM Weighted Reverse Cuthill McKee
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