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The ever-increasing spread of automation in industry puts the electrical engineer in a 

central role as a promoter of technological development in a sector such as the use of 
electricity, which is the basis of all the machinery and productive processes. Moreover the 
spread of drives for motor control and static converters with structures ever more 
complex, places the electrical engineer to face new challenges whose solution has as 
critical elements in the implementation of digital control techniques with the requirements 
of inexpensiveness and efficiency of the final product. 

The successfully application of solutions using non-conventional static converters 
awake an increasing interest in science and industry due to the promising opportunities. 
However, in the same time, new problems emerge whose solution is still under study and 
debate in the scientific community  

During the Ph.D. course several themes have been  developed that, while obtaining the 
recent and growing interest of scientific community, have much space for the 
development of research activity and for industrial applications. 

The first area of research is related to the control of three phase induction motors with 
high dynamic performance and the sensorless control in the high speed range. The 
management of the operation of induction machine without position or speed sensors 
awakes interest in the industrial world due to the increased reliability and robustness of 
this solution combined with a lower cost of production and purchase of this technology 
compared to the others available in the market. 

During this dissertation control techniques will be proposed which are able to exploit 
the total dc link voltage and at the same time capable to exploit the maximum torque 
capability in whole speed range with good dynamic performance. The proposed solution 
preserves the simplicity of tuning of the regulators. 

Furthermore, in order to validate the effectiveness of presented solution, it is assessed 
in terms of performance and complexity and compared to two other algorithm presented 
in literature. The feasibility of the proposed algorithm is also tested on induction motor 
drive fed by a matrix converter. 

Another important research area is connected to the development of technology for 
vehicular applications. In this field the dynamic performances and the low power 
consumption is one of most important goals for an effective algorithm. Towards this 
direction, a control scheme for induction motor that integrates within a coherent solution 
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some of the features that are commonly required to an electric vehicle drive is presented. 
The main features of the proposed control scheme are the capability to exploit the 
maximum torque in the whole speed range, a weak dependence on the motor parameters, 
a good robustness against the variations of the dc-link voltage and, whenever possible, the 
maximum efficiency. 

The second part of this dissertation is dedicated to the multi-phase systems. This 
technology, in fact, is characterized by a number of issues worthy of investigation that 
make it competitive with other technologies already on the market. 

Multiphase systems, allow to redistribute power at a higher number of phases, thus 
making possible the construction of electronic converters which otherwise would be very 
difficult to achieve due to the limits of present power electronics. 

Multiphase drives have an intrinsic reliability given by the possibility that a fault of a 
phase, caused by the possible failure of a component of the converter, can be solved 
without inefficiency of the machine or application of a pulsating torque. 

The control of the magnetic field spatial harmonics in the air-gap with order higher 
than one allows to reduce torque noise and to obtain high torque density motor and multi-
motor applications. 

In one of the next chapters a control scheme able to increase the motor torque by 
adding a third harmonic component to the air-gap magnetic field will be presented. Above 
the base speed the control system reduces the motor flux in such a way to ensure the 
maximum torque capability.  

The presented analysis considers the drive constrains and shows how these limits 
modify the motor performance. 

The multi-motor applications are described by a well-defined number of multiphase 
machines, having series connected stator windings, with an opportune permutation of the 
phases these machines can be independently controlled with a single multi-phase inverter. 
In this dissertation this solution will be presented and an electric drive consisting of two 
five-phase PM tubular actuators fed by a single five-phase inverter will be presented. 

Finally the modulation strategies for a multi-phase inverter will be illustrated. The 
problem of the space vector modulation of multiphase inverters with an odd number of 
phases is solved in different way. An algorithmic approach and a look-up table solution 
will be proposed. The inverter output voltage capability will be investigated, showing that 
the proposed modulation strategy is able to fully exploit the dc input voltage either in 
sinusoidal or non-sinusoidal operating conditions. 

All this aspects are considered in the next chapters. In particular, Chapter 1 
summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of 
art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- 
phase induction machine and compares this solution with two other algorithms presented 
in literature. Furthermore, in the same chapter, a complete electric drive based on matrix 
converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is 
illustrated. 

Chapter 5 describes the mathematical model of multi-phase induction machines 
whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies.   
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Chapter 7 discusses the minimization of the power losses in IGBT multi-phase 
inverters with carrier-based pulse width modulation. 

In Chapter 8 an extended stator flux vector control for a seven-phase induction motor 
is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 
different fault tolerant control strategies are analyzed.  

Finally, the last chapter presents a positioning multi-motor drive consisting of two PM 
tubular five-phase actuators fed by a single five-phase inverter. 
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Mathematical Model of the 
Three-Phase 

Induction Machine 
 
Abstract  
  
Among all types of electrical machines, the induction machines, in particular the cage 
type, is the most widespread in industries. These machines are very economical, reliable 
and rugged and they are available in arrangements of fractional kW power to multi-
Megawatt capacity. In other words the induction motor is the work horse of industry due 
to its quality and the possibility to use it in variable speed drive. In fact thanks to the 
diffusion of power electronics the induction motor can be used in transportations, 
machine tools, robotics, and hybrid or electric vehicle in addition to pumps, 
compressors, ventilators and other fluid transportation. 
This chapter presents a mathematical model of induction motor and the machine 
equations used in the implementations of induction motor electric drives. 
 

 

1.1 A Historical Touch  

Faraday discovered the electromagnetic induction law around 1831 and Maxwell 
formulated the laws of electricity (or Maxwell’s equations) around 1860. The knowledge 
was ripe for the invention of the induction machine which has two fathers: Galileo 
Ferraris (1885) and Nicola Tesla (1886). 

In Ferrari’s patent the rotor was made of a copper cylinder, while in the Tesla’s patent 
the rotor was made of a ferromagnetic cylinder provided with a short-circuited winding. 

Though the contemporary induction motors have more elaborated topologies (Figure 
1.1) and their performance is much better, the principle has remained basically the same. 

That is, a multiphase a.c. stator winding produces a rotanting field which induces 
voltages that produce currents in the short-circuited (or closed) windings of the rotor. The 
interaction between the stator produced field and the rotor induced currents produces 
torque and thus operates the induction motor. As the torque at zero rotor speed is nonzero, 
the induction motor is self-starting. The three-phase a.c. power grid capable of delivering 
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energy at a distance to induction motors and other consumers has been put forward by 
Dolivo- Dobrovolsky around 1880. In 1889, Dolivo-Dobrovolsky invented the induction 
motor with the wound rotor and subsequently the cage rotor in a topology very similar to 
that used today. He also invented the double-cage rotor. 

Thus, around 1900 the induction motor was ready for wide industrial use. No wonder 
that before 1910, in Europe, locomotives provided with induction motor propulsion, were 
capable of delivering 200 km/h. However, at least for transportation, the d.c. motor took 
over all markets until around 1985 when the IGBT PWM inverter was provided for 
efficient frequency changers. This promoted the induction motor spectacular comeback in 
variable speed drives with applications in all industries [1]-[3]. 

  

1.2 Study Hypotheses 

A mathematical model is based on definite assumptions that determine the validity 
area and applicability limits of a study. To define the hypothesis of a problem is essential 
to understand if the mathematical model is suitable to describe the reality. 

Maxwell equations are an instrument able to describe all electromagnetic phenomena 
from the wave theory used in telecommunication systems, to operating principle of a 
compass. The Maxwell equations are used in this dissertation to formulate the 
mathematical models of electrical machines under the electrodynamics quasi-stationary 
hypotheses.  

The first hypothesis is connected to the magnetic field in air-gap, where the magnetic 
lines are assumed parallel each other and they are considered perpendicular to stator and 
rotor surfaces in other words air gap camber is neglected.  

Moreover, in order to simplify the analysis, the magnetic coupling between phases 
caused by leakage flux is neglected. 

The other used assumptions are connected to the problem geometry and material 
characterization. In this study the stator and the rotor slots are consider half-closed with a 
infinitesimal slot opening and all transversal sections are supposed equivalent. These 
geometry hypotheses consider a regular air gap and to neglect the extremity magnetic 
field effects. 

 

Fig 1.1 A state-of-the-art three-phase induction motor 
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Furthermore, for simplicity, a concentrated winding machine is considered. if this 
hypothesis should not be checked, a winding coefficient that takes into account the 
winding typology can be introduced. 

In summary the presented study of electrical machine is based on following 
assumption: 

 
i) The first derivative of electric displacement vector in the time  is considered equal 

to zero  

 
ii) Magnetic coupling between phases caused by leakage flux is neglected 

 
iii) The air gab camber is neglected 

 
iv) The air gap is regular 

 
v) Extremity effects are neglected 

 
vi) The permeability of iron is infinite 

 
 

1.3 The Mathematical Model 

A. Determination of the Stator and Rotor Magnetic Field 
 
Under the assumption discussed in the previous section it is possible to write the 

equations used in modern induction motor drives. 
For this analysis a single pairs of pole machine with wound rotor is considered. This 

hypothesis does not reduce the validity area of this study because it is easily extendable. 
The stator coordinate θs and the magnetic field coordinate generated by stator winding 

k, ψsk in fig. 1.2 are defined. 
Fig. 1.3 shows the stator magnetic field distribution. The amplitude of the magnetic 

 

Fig 1.2 Stator system coordinate description            Fig 1.3 Stator magnetic field distribution 
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field can be obtained due to Ampère's circuital law (1.1)  

 
p

iN
hiNhdlH kS

kkSkk 


4
2  .     (1.1) 

In (1.1) Ns is the number of conductor in series per phase, p the poles pairs, and   the 
air-gap width. During the application of (1.1) a infinite value of iron permeability is 
assumed.  

The magnetic field distribution, as is showed in figure 1.3, is a periodic square wave, 
therefore it can be decomposed in Fourier series.  

Equation (1.2) describe the relationship between the stator current flowed in the k 

winding Ski  and the stator magnetic field Skh . 
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SkS ee
p

iN
th







 .    (1.2)   

In (1.2) the symmetry relationships that exist for odd functions are used. 
In the same way the rotor system coordinate and rotor magnetic field distribution in 

figures 1.4 and 1.5 are described. 

The expression of magnetic field Rkh  produced by the rotor  windings can be obtained 

in the following compact form, in terms of rotor current Rki . 

     
  




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
.

211
,
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jj
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
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


 .    (1.3) 

In (1.2) Nr is the number of rotor conductor in series per phase, R  the coordinate 

integral with the rotor and ψrk the magnetic field coordinate generated by rotor windings. 
The total magnetic field produced by the stator in the stator reference frame is the sum 

of the contributions of the magnetic fields generated by each phase. 

    



3

1

,,
k

SSkSs thth         (1.4) 

 

Fig 1.4 Rotor system coordinate description            Fig 1.5 Rotor magnetic field distribution 
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   .3,2,1
3

2
1  kkSk

       (1.5) 

According to (1.2) ,(1.4) , and (1.5) the follow relationship can be written: 
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The introduction of the symbol 


 3

2
j

e and by means of simple calculations leads to 
(1.7). 

     
  



 


 



odd
SSS

js
SS iiiee

p

N
th S









 2
3

1
2

0
1

21

3

21

2

3
, . (1.7) 

An analogous relationship can be deduced for magnetic field produced by the rotor 
winding: 
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where ψRk is assumed as follows: 

   .3,2,1
3

2
1  kkRk

       (1.10) 

Equation (1.7) and (1.9) describe two important relationships that can be simplified 
due to the introduction of a new powerful mathematical tool, the space vector 
representation.  

 

B. Space Vector Representation 
 
The study of three-phase systems, in steady-state and transient operating conditions, 

takes advantage of the definition of a space vector and a zero sequence component. 
For a given set of 3 real variables (x1, x2, x3) a new  complex variables ( x ) can be 

obtained by means of the following symmetrical linear transformations: 

 



3

1

1

3

2

k

k
kh xx  ,        (1.11) 

where  3/2exp  j . 

Relationships (1.11) lead to a real variable 00 xx   (zero sequence component) and to 

complex variable 1x (space vector).  

The inverse transformations are: 
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 



2
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1

h

k
hk xx  , (k = 1, 2, 3),      (1.12) 

where the symbol “  ” represents the scalar product. 

From (1.11) it can be recognized that the two space vectors are redundant, being 

 *
12 xx           (1.13) 

where the symbol “*” specifies the complex conjugate. 
Owing to this property, only one space vector, besides the zero sequence component, 

is necessary to represent the set of three real variables. 

In this dissertation, only the space vectors 1x  will be utilized.  

As a consequence, the relationships (1.11) and (1.12) can be rewritten as: 

 



M

k

k
kxxx

1

1
1 3

2          (1.14) 

 1
02

1  k
k xxx  ,  (k = 1, 2, 3).      (1.15) 

The space vector can move arbitrarily in the corresponding d-q plane. 
Relation (1.14) can expanded to obtain (1.16)  

  2
3

1
2

0
13

2  xxxx  .       (1.16) 

The equation (1.14) expresses the same relations that appear in (1.7) and (1.9), 
therefore the space vector representation isn’t just a simple mathematical tool, but it is 
strongly connected to physical reality by means of machine equations.  

The reasons for the success of this tool are traceable to the importance it plays in 
mathematical description of electrical machines. 

 

C. Determination of the Magnetic Field in Air-Gap 
 
As a consequence of the introduction of space vector representation, the equations 

(1.8) and (1.9) can be rewritten as: 

     
  







odd

S
js

SS iee
p

N
th S










211

2

3
,     (1.17) 

     
  







odd

R
js

RR iee
p

N
th R










211

2

3
,     (1.18) 

Furthermore, a new notation for the ρ-th harmonic of stator magnetic field produced 
by stator and rotor can be introduced. 



 Mathematical Model of a Three-Phase Induction Motor  

 

13 
 

 
 

 





  S
S

S i
p

N
h

2

1

1

2

3



        (1.19) 

 
 

 





  R
R

R i
p

N
h

2

1

1

2

3



        (1.20) 

Taking (1.17) and (1.18) into account (1.19) and (1.20) can be rewritten as: 

     
odd

j
SSS

Seheth



 ,       (1.21) 

     
odd

j
RSR

Reheth



 ,       (1.22) 

The magnetic-field spatial harmonics of order ( = 3, 9, 15, 21,...,) are stationary  

with variable amplitude. The magnetic-field spatial harmonic of order ( = 1, 7, 13, 

19,...,) rotate with the same direction of Si  but with a speed inversely proportional to the 

order ρ (ωρ= ω/ρ). The magnetic-field spatial harmonic of order ( = 1, 5, 11, 17,...,) 

rotate with the same direction of *
Si  (complex conjugate of Si ) with a speed inversely 

proportional to the order ρ (ωρ= ω/ρ). 
A similar conclusion can be expressed for the rotor magnetic field, therefore in a three-

phase machine the first and the third magnetic-field spatial harmonic can be 
independently controlled. Otherwise the harmonics (ρ>3) have to consider disturbs. These 
harmonics can create torque pulsations and current distortions. 

The magnetic field in the air-gap is the sum of stator and rotor contributions. It can be 
expressed in the stator reference frame as:  

 

 









































S

S

jj
R

R
S

S
e

jj
R

R
S

S
eST

eei
p

N
i

p

N

eei
p

N
i

p

N
th










33
00 22

2

3

2

3
,

   (1.23) 

 


j

R
R

S
SS

T ei
p

N
i

p

N
h

2

3

2

3
1        (1.24) 

 







 


3

003 22
j

R
R

S
SS

T ei
p

N
i

p

N
h      (1.25) 

and in rotor reference frame as: 

 

 









































R

R

j
R

Rj
S

S
e

j
R

Rj
S

S
eRT

ei
p

N
ei

p

N

ei
p

N
ei

p

N
th










3
0

3
0 22

2

3

2

3
,

   (1.26) 
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 R
Rj

S
SR

T i
p

N
ei

p

N
h




2

3

2

3
1         (1.27) 

 







 

0
3

03 22 R
Rj

S
SR

T i
p

N
ei

p

N
h


 .     (1.28) 

 

D. Determination of the Linkage Fluxes 
 
In this section the determination of linkage fluxes with a phase is presented. 
Fig 1.6 and 1.7 show the surface selected in the stator and rotor for the calculation of 

flux. According to this illustration the fluxes can be express as: 

  





2

2

,
2
0
















Sk

Sk

SST
S

STk dth
NL

      (1.29) 

  





2

2

,
2
0
















Rk

Rk

RRT
R

RTk dth
NL

 .     (1.30) 

Taking into account (1.21) and (1.22) the previous equations can be rewritten: 

 
  

  






.

21
0 1

odd

jS
Te

S
STk

Skeh
NL











     (1.31) 

 
  

  






.

21
0 1

odd

jR
Te

R
RTk

Rkeh
NL











 .    (1.32) 

Equation (1.33) describe the relationship between voltage, stator current, and flux for a 
generic phase k.  

 .3,2,1 k
dt

d
iRv Sk

SkSSk


      (1.33) 

It is worthy noting that by means the application of vector representation described in 
(1.11), (1.33) can be expressed as:  

   
Fig 1.6 Surface uses for the calculation of 

linkage flux with a stator phase 
Fig 1.7 Surface uses for the calculation of 

linkage flux with a rotor phase 
 



 Mathematical Model of a Three-Phase Induction Motor  

 

15 
 

 
dt

d
iRv S

SSS
0

00


         (1.34) 

 
dt

d
iRv S

SSS


 .        (1.35) 

In same way it is possible to write the rotor equations as follows: 

 .3,2,1 k
dt

d
iRv Rk

RkRRk


      (1.36) 

 
dt

d
iRv R

RRR
0

00


         (1.37) 

 
dt

d
iRv R

RRR


 .        (1.38) 

The total linkage flux with a generic phase k is the sum of leakage flux and the air-gap 
linkage flux. 

 .3,2,1 kSTkSdkSk        (1.39) 

 .3,2,1 kRTkRdkRk        (1.40) 

The application of the transformation (1.11) to the equations (1.39) and (1.40) permits 
to obtain the following relationships: 

 000 STSdS           (1.41) 

 STSdS           (1.42) 

 000 RTRdR           (1.43) 

 RTRdR   .        (1.44) 

The leakage coefficient Lsd describe the relationship between current and linkage flux 
with phase k. 

 .3,2,1 kiL SkSdSdk        (1.45) 

The introduction of the leakage coefficient Lsd permits to express the (1.41) - (1.45) as: 

 00 SSdSd iL          (1.46) 

 SSdSd iL          (1.47) 

 00 RRdRd iL          (1.48) 

 RRdRd iL .         (1.49) 

Furthermore the application of transformation (1.11) to equations (1.31) and (1.32) 
determine the following relations: 
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  S
Te

S
ST h

NL
3

0
0 3

2





        (1.50) 

 S
T

S
ST h

NL
1

0




          (1.51) 

  R
Te

R
RT h

NL
3

0
0 3

2





        (1.52) 

 R
T

R
RT h

NL
1

0




  .        (1.53) 

 

E. Determination of the Electromagnetic Torque 
 
The electromagnetic torque in electric machines can be determined by means of an 

energy balance. 

 
 

m

mkm
em

iW
T




 

, '

         (1.54) 

where emT  is the torque, m is the mechanical angle, and '
mW  is the magnetic co-energy. 

When the motor is not in magnetic saturation the magnetic co-energy is equal to magnetic 
energy. 

 
 

m

mkm
em

iW
T




 

, 
 .        (1.55) 

The angle m  is related to   with a simple relationship: 

 mp           (1.56) 

 
 



 

, km
em

iW
pT  .        (1.57) 

The initial hypothesis permits to consider the magnetic energy connected to leakage 
fluxes invariant with angular position  . Therefore to determine the torque is sufficient to 
consider the magnetic energy in the air-gap. 

 
 


 , kmT
em

iW
pT  .        (1.58) 

Equation (1.23) describes the magnetic field in the air-gap as sum of the contribution 
of stator and rotor magnetic fields. 

      
.

,
odd

jj
RSeST

Seehhth



 .     (1.59) 

Therefore the torque can be expressed as: 
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   SSTmT dthLpW 





,
2

1 2
0

2

0
       (1.60) 

 
.

*
02

1

odd

S
T

S
TmT hhLpW


       (1.61) 

 
.

2

02

1

odd

S
TmT hLpW


        (1.62) 

where  

 S
T

j
RS hehh 


          (1.63) 

 S
R

j
R heh 


  .        (1.64) 

The torque produced by an induction motor can be rewritten as: 

   
odd

j
RSem ehjhLpT




 2

0 .     (1.65) 

Equation (1.65) describes the torque by means of the magnetic field produced by stator 
and rotor windings, but it can be also related to the currents present in machine. 

   3
3311

2
0 3 j

RS
j

RSem ehjhehjhLpT  .   (1.66) 

where 

 S
S

S i
p

N
h

2

3
1          (1.67) 

 R
R

R i
p

N
h

2

3
1          (1.68) 

 03 2 S
S

S i
p

N
h


         (1.69) 

 03 2 R
R

R i
p

N
h


 .        (1.70) 

If the machine winding are star connected the common mode current is equal to zero, 
and if the rotor is short-circuited, new relationships can be written. 

The introduction of self-inductance coefficients and mutual inductance coefficient 
permits to express the relationships generally used in the control of electric drives. 

 
2

2

2
0

2

3





S

SS

N

p

L
L          (1.71) 

 
2

2

2
0

2

3





R

RR

N

p

L
L          (1.72) 
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22

0

2

3





RS NN

p

L
M         (1.73) 

 11 SSSdS LLL          (1.74) 

 11 RRRdR LLL  .        (1.74) 

Finally the expression of torque can be found as follows.  

  j
RSem eijiMpT  12

3
.       (1.75) 

 

1.4 Machine Equations 

In this section the machine equations of induction motor are summarized.  
The common mode equations are given by: 
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     (1.76) 

whereas the machine equations in d-q plane can be expressed as: 
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
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Finally (1.75) defines the torque delivered to the load. 

 

1.5 From Machine Equations to the Vector Control of an Induction 
Machine 

Taking (1.76) and (1.77) into account it is possible to show how the most important 
machine quantities are connected to the rotor flux.  

The ρ-th rotor flux can be express as: 

 
  j

RR e         (1.78) 

and its derivative is given by: 

  


 
 j

Rr
jRR eje

dt

d

dt

d
       (1.79) 

where 

 
 


Rdt

d
 .         (1.80) 

The relationships among the machine quantities and the rotor flux are resumed in the 
following equations. 
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R

R
Rem R

pT
2

2

3 
 .        (1.84) 

Therefore the rotor and the stator current, the torque and the magnetic field in the air-
gap are strongly connected to the rotor flux. This result suggests the operating principle of 
the vector control i.e. the control of the rotor flux. 

By substituting (1.84) in (1.81) – (1.83) a new set of equations can be obtained. 
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The decomposition of (1.86) in real and imaginary parts discloses that the d-
component of the stator current controls the rotor flux (1.88) whereas the q-component 
controls the machine torque (1.89). 
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The figure 1.8 describe the scheme for a vector control. 
 

1.6 Conclusions 

In this chapter the mathematical model of the induction motor has been presented. The 
hypothesis of study has been discussed and analyzed. The introduced equations will be 
used in the next chapters, and in particular, they have an important role in the description 
of electric drives that will be presented in Chapter 3 and Chapter 4. 

The proposed approach uses the space vector representation. Three-phase electric 
drives take advantage from the introduction of this powerful tool. In the second part of the 
dissertation will be shown that this approach can be extended to multi-phase drives. 
Furthermore it will be shown that the three-phase machines can be considered a particular 
case of multi-phase machines. 

 
 

 

Fig 1.8 basic scheme for induction motor drive 
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Three-Phase Inverter 
 
Abstract  
  
This chapter is a brief state of the art on three phase inverter where the basic structure 
and technology of DC-AC converters are presented. An ample part is dedicated to the 
modulation strategies and to their degree of freedom, and prominence is given to the 
passage from Pulse Width Modulation to Space Vector Modulation. 
 
 

2.1 Introduction 

Power electronics converters are a family of electrical circuits which convert electrical 
energy from one level of voltage/current/frequency to another using semiconductors-
based electronics switches [1]. The essential characteristic of these type of circuits is that 
this type of switch can operate only in two states. These states are called state ON and 
state OFF. When an electronic component is state ON, it can be ideally considered like 
short circuit whereas when the state is OFF the component behave likewise an open 
circuit. 

Figure 2.1 presents a simple categorization of power electronic converters in different 
families according to their type of electrical conversion. This chapter is focus on DC/AC 
energy conversion. The voltage fed inverter are analyzed and discussed by giving 
prominence to different ways of their control. 

hapter  2

 

Fig. 2.1 Power converters classification 
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Fig. 2.2 Three phase inverter scheme 

2.2 Structure of a Three Phase Inverter 

Voltage-fed converters, as the name indicate, receive DC voltage at one side and 
convert it to AC voltage to the other side [2]. The AC voltage and frequency are a degree 
of freedom of the system and they can be variable or constant depending on the 
applications. In fact the general name “converter” is given because it can operate in 
bidirectional way: the same circuit can work as an inverter as well as a rectifier. 

An ideal inverter should have a stiff voltage source at the input, that is, its Thevenin 
impedance should be zero. A large capacitor is usually connected at the input to realize a 
stiff voltage source (Figure 2.2).  

The voltage-fed inverters can be classified according to the number of legs in single-
phase inverters, H-bridge inverters, three-phase inverters and multi-phase inverters. 
According to the structure of the converter is possible to distinguish belong multi-level 
inverters, Z-inverters and others non-traditional converters. 

Multi-phase inverter is the natural extension of a three-phase inverter when the number 
of phases is higher than three. This type of converter has a great relevance in this 
dissertation and to its description will be dedicated the entire chapter 6. However to 
understand multi-phase drives and theirs numerous degrees of freedom is essential to 
clearly comprehend three-phase drive. 

Basically a three phase inverter is composed by 6 electronic components, every 
component is composed by an electronic switch and a diode. There exist many 
technologies developed over time that can perform in an inverter. The most common 
technologies are IGBT (acronym of Insulated Gate Bipolar Transistor), MOSFET (Metal 
Oxide Semiconductor Field Effect Transistor) and SiC (Silicon Carbide). Particular 
attention should be given to this latest technology (SiC). Although it is very recent, it can 
profoundly change the performance of the new generation of inverter[19] and [20]. 

 

2.3 Modulation Strategies 

The process of switching the electronics devices in a power electronic converters from 
one state to another is called modulation. There exists an infinite number of modulation 
strategies due to the degrees of freedom offered by the problem. Parameters such as 
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switching  frequency, harmonic distortion, losses and speed of response are the typical 
issues which must be considered when a modulation strategy is developed.  

In reference to the figure 2.2 the following relationships can be write: 
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If the equations in the set (2.1) are summed together a new relationship can be found:  

nonnn vvvvvvv 3321302010  .     (2.2) 

For a general ohmic-inductive balanced load with a active back electromotive force 
created by an symmetric electrical machine the phase voltages can be expressed by (2.3) 
and (2.4). 
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In a three phase load the sum of the line currents is identically zero likewise the sum of 
the voltages of a symmetric electrical machine.  
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The common mode voltage of the inverter can be seen like the degree of freedom of 
the system. The infinite values of common mode voltage characterize different 
modulation strategies and according to their waveform the modulation strategies can be 
classified in continuous and discontinuous modulations. 

 

A. Space Vector Modulations 
 
The study of three-phase Voltage Source Inverter (VSI) can take advantage of the 

definition of space vectors and zero sequence component. The introduction of the 
vectorial notation is extremely useful to understand the operating principle of a three-
phase inverter and it is deeply related to the model of a three-phase machine (as the 
previous chapter showed)  

For three given pole voltages v10, v20, v30 a new set of variables v0 and v can be defined 

by the following symmetrical linear transformations: 
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where 

 
 1

3

2



kj

k e


 ,  (k=1,2,3).      (2.9) 

The real quantity v0 calculated by (2.7) is the zero-sequence component of the pole 
voltages, whereas the variables, usually called “space vectors”, are complex quantities 
that can be directly related to the load phase voltages (2.10). 
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The quantity Loadv0 is the zero-sequence voltage of the load and for any type of 

symmetrical load it is equal to zero in any instant. So (2.10) concludes that the voltage 
space vector of the load is equal to the pole-voltage space vector of inverter (2.11). 

 kNLoad vv  .         (2.11) 

The goal of the modulation process is to determine how to control the inverter 
switches, so that the mean values of the space vectors v  over a switching period Tsw are 

equal to the reference values refv . 

This problem can be solved by calculating the duty-cycles mk (k=1, 2, 3) of each 
inverter branch as follows: 
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Fig. 2.3 Inverter leg state 



Three Phase Inverter 

 

27 
 

where Sk (k=1,2,3) describes the inverter leg state (fig. 2.3). Its values are 0 and 1. 
The final relationships can be found by combining (2.12) and (2.11). 

  2
3

1
2

0
13

2  SSSEv DC        (2.13) 

Since the load common mode voltage is always zero, (2.13) implies that the load 
voltages are not dependent on the common mode component of the inverter voltages; in 

other words each set of voltages 1v , 2v and 3v applied by the inverter has the same effect 

on the load. Anyway, different sets of voltages may have different effects on the sources 
or on the converter components. The zero sequence voltage v0 is a degree of freedom that 
the designer can choose to improve the performance of the modulation strategy. 

The equation (2.13) correlates the load phase voltage with the inverter leg state.  
There are eight (namely 23) possible configurations for a three-phase inverter, 

depending on the states of the three switch commands S1, S2 and S3. Six configurations 
correspond to voltage vectors with non-null magnitudes. These vectors, usually referred 
to as active vectors, are represented in Fig. 2.4. Beside each vector there is also its 
configuration expressed in the form (s3,s2,s1). Two configurations, i.e. (s3,s2,s1)=(0,0,0) 
and (s3,s2,s1)=(1,1,1), lead to voltage vectors with null magnitudes, usually referred to as 
zero vectors. 

The Space Vector Modulation (SVM) selects two active vectors and applies each of 
them to the load for a certain fraction of the switching period. Finally, the switching 
period is completed by applying the zero vectors. 

The active vectors and their duty-cycles are determined so that the mean value of the 
output voltage vector in the switching period is equal to the desired voltage vector. 

The best choice for the active vectors is given by the two vectors delimiting the sector 
in which the reference voltage vector lies. The concept of sector is one of the most 
important ideas that the space vector modulation introduced and differentiates this type of 
modulation from the Pulse Width Modulation (PWM). Since two consecutive vectors 
differ only in the state of one switch, this choice allows ordering the active and the zero 
vectors so as to minimize the number of switch commutations in a switching period. 

For example, if the desired voltage vector lies in sector 1, as shown in Fig. 3, the two 
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Fig. 2.4 - Voltage vectors used in SVM technique, represented in d-q reference frame. 
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adjacent voltage vectors are 1v  and 2v , whose configurations (0,0,1) and (0,1,1) differ in 

only one bit. After the active vectors have been chosen, the requested voltage can be 
expressed as a linear combination of them as follows: 

 2211 vvvref           (2.14) 

where δ1 and δ2 are the duty-cycles of 1v  and 2v  in the switching period. 

The explicit expressions of δ 1 and δ 2 can be easily calculated evaluating the following 
dot products: 
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Once δ1 and δ2 have been calculated, the designer can still choose in which proportion 
the two zero vectors are used to fill the switching period. 

It is worth noting that (2.15)-(2.18) have an interesting graphical meaning, which is 
shown in Fig. 2.5. The duty-cycles δ1 and δ2 can be interpreted as the projections of refv  

on the new vectors )1(w  and )2(w  that form a non-orthogonal vector basis. This result is 
well-known in tensor analysis, where the duty-cycles δ1 and δ2 are usually referred to as 

contra-variant components of refv , and )1(w  and )2(w  are referred to as reciprocal 

vectors.[3]. 
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Fig. 2.5 - Decomposition of the reference vector on the reciprocal vectors and calculation of the duty-cycles
(contra variant components) in the three-phase case. 
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B. Duty Cycle Space Vector Modulation 
 
The Duty Cycle Space Vector (DCSV) is based on the representation of the duty 

cycles of the inverter legs with space vectors. In this case, likewise SVM, the goal is to 
feed the load with a voltage which have the same mean value in a switching period of the 
voltage reference vector. 

Equation (2.13) suggests the possibility to introduce the concept of a new space vector 
as follows: 
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where S  can assume seven value. The voltage reference can be written as the mean value 
of the inverter voltage vector. 
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The quantity m  is the duty cycle space vector and it can be related to the inverter state 

with simple equations: 
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The following equations are the direct and inverse transformation to determine the 
elements of the duty cycle Clarke’s transformation. 
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Equations (2.28) show that a modification of 0m determines a “rigid translation” of the 

modulating signals, but it does not  change the application time of the active inverter 

configurations. The quantity 0m  is a real degree of freedom and its adjustment affect the 

time division between the null-configurations. 
The degree of freedom of SVM, i.e. the possibility of dividing the duty cycle of the 

zero vector arbitrarily between two null-configurations corresponds to the degree of 
freedom of the DCSV strategy, which allows to translate the modulating signals. Hence it 
is possible to conclude that SVM and DCSV are completely equivalent. 

 

C. Continuous Modulation 
 
The DCSV modulation is a useful tool to analyze different type of modulation 

presented in literature [4]-[6]. These modulation strategies differ from each other by the 
different use of the null-configurations. In [4]-[6] are presented  many types of 
modulation are presented. They are characterized by different type of common mode duty 

cycle 0m  and are resumed in table I. 

In the continuous PWM (CPWM) methods, the modulation waves are always within 
the triangle peak boundaries and within every carrier cycle triangle and modulation waves 
intersect, and, therefore, on and off switchings occur (Fig 2.6-2.9). 

Table I - Definition of the Zero Sequence Voltage for Some Modulation 
Strategies
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In the discontinuous PWM (DPWM) methods, the modulation wave of a phase has at 
least one segment which is clamped to the positive or negative dc rail for at most a total 
of 120: Therefore, within such intervals the corresponding inverter leg discontinues 
modulation. Since no modulation implies no switching losses, the switching loss 
characteristics of CPWM and DPWM methods are different. Detailed studies indicated 
the waveform quality and linearity characteristics are also significantly different. 
Therefore, this classification aids in distinguishing the differences. 

The modulation strategy referred to as SPWM is the traditional sinusoidal PWM, and 
its zero sequence duty cycle is always ½ (Fig 2.6). 

The SPWM method is the simplest modulation with limited voltage linearity range and 
poor waveform quality in the high-modulation range. [7] 

The zero sequence voltage of DPWMMIN is selected so that the minimum duty-cycle 
among m1, m2, m3 is always zero, whereas the maximum duty-cycle of DPWMMAX is 
always 1. As a consequence, when these strategies are used, in every switching period 
there is an inverter branch that does not commutate (Fig 2.7, 2.8). 

Note that the DPWMMAX and DPWMMIN methods have nonuniform thermal stress 
on the switching devices and in DPWMMAX the upper devices have higher conduction 
losses than the lower ones, while in DPWMMIN the opposite is true [7]. 

The use of these last two modulation techniques reduces the commutation losses of the 
inverter but they increase the ripple of load line current. These results further demonstrate 
the influence of common mode voltage on the inverter behavior. 

The strategy SVPWM is often referred to as "symmetric modulation". In this case the 

 

Fig 2.6 PWM modulating signal of phase 1 and zero‐sequence duty cycle  

 

Fig 2.7- 2.8 DPWMMIN  and DPWMMAX  modulating signal of phase 1 and zero-sequence duty cycle  
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signal m0 can be calculate on basis of to the average value of the values of m0  obtained 
for DPWMMAX and DPWMMIN. 

SVPWM uses in any commutation period both the switching configurations (0, 0, 0) 
(1, 1, 1) to generate the zero vector. The name SVPWM is caused by symmetric 

distribution of space vector in reference to the middle period 2swT . 

Due to the simplicity of algebraically defining their zero-sequence signals, THIPWM 
(Fig 2.10, 2.11) modulators have been frequently discussed in the literature. The zero-

sequence signal is    )3cos(41 tEVm DCMo   for THIPWM1/6 [8], and 

   )3cos(41 tEVm DCMo   for THIPWM1/4 [9].  

In the past, both methods suffered from implementation complexity determined by the 
utilization of trigonometric identities. Nowadays this problem is outdated due to  Digital 
Signal Processor (DSP) of new generation. 

Although the THIPWM1/4 has theoretically minimum harmonic distortion, it is only 
slightly better than SVPWM and has narrower voltage linearity range [10], [11], [12]. 
With their performance being inferior to SVPWM and implementation complexity 
significantly higher, both THIPWM methods have academic and historical value, but 
little practical importance. 

 
 
 

 

Fig 2.9 2.10 THIPWM1/6 and THIPWM1/4  modulating signal of phase 1 and zero-sequence duty 
cycle 

 

Fig 2.11 SVPWM modulating signal of phase 1 and zero-sequence duty cycle 
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D. Discontinuous Modulations 
 
DPWM0 [13], [14], DPWM1 [15], [16], and DPWM2 [13], [17] are three special cases 

of a generalized DPWM (GDPWM) method [19] (Fig 2.12-2.15). 
The discontinuous modulation strategies avoid the commutation in a inverter branch, 

as the previous techniques DPWMMIN and DPWMMAX, but they change the null-
configuration (0, 0, 0) or (1, 1, 1) according to the position of the vector voltage 
reference. 

The positioning of reference vector in sector influence the modulation behavior. 
In Figure 2.16 - 2.28 are illustrated this concept for discontinuous modulation 

technique present in literature.  
 

2.4 Conclusions  

In this chapter a brief state of the art of three phase inverter is presented. The most 
important modulation strategies are illustrated. 

The choice of the modulation technique can influence the current ripple, inverter 
efficiency, maximum modulation index and the over-modulation behavior.  

the choice of modulation technique is therefore very important, because it influence 
the converter design and so the entire drive.  

 
 
 

 

Fig 2.12 DPWM0 modulating signal of phase 1 and 
zero-sequence duty cycle 

Fig 2.13 DPWM1 modulating signal of phase 1 
and zero-sequence duty cycle 

Fig 2.14 DPWM2 modulating signal of phase 1 and 
zero-sequence duty cycle 

Fig 2.15 DPWM3 modulating signal of phase 1 
and zero-sequence duty cycle 
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Stator Flux Vector Control 
of Induction Motor Drives 

in the Field-Weakening 
Region

 
Abstract  
  
The control scheme of a speed-sensorless induction motor drive fed by a three phase 
inverter is presented. The proposed scheme allows the motor to exploit the maximum 
torque in the whole speed range, and shows a reduced dependence on the motor 
parameters.  
Furthermore, to validate the effectiveness of the presented algorithm it is assessed in 
terms of performance and complexity and compared with two other algorithm presented 
in literature. 
The flexibility and the effectiveness of the Stator Flux Vector Control is also tested an 
induction motor drive fed by a matrix converter. The experimental results confirm the 
feasibility of this solution. 
 
 

3.1 Introduction 

When the induction motors are used for applications at high speed, it is desirable to 
retain the maximum torque capability in the field weakening region. The torque capability 
of an induction motor is limited by the maximum current and the maximum voltage that 
the inverter can apply to the motor. Several papers were presented in order to achieve the 
maximum torque capability of the machine over the whole field weakening region [1]–
[4]. According to these field weakening algorithms, the optimal flux value of the motor 
should be updated by means of look-up tables or explicit expressions containing the 
motor parameters and quantities such as the motor speed, the motor currents, the dc-link 
voltage and the requested torque. However, the performance of these algorithms is strictly 
related to the accuracy by which the parameters are known.  

hapter  3 
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A further problem is represented by the variable value of the leakage and magnetizing 
inductances, to which the rotor-flux-oriented scheme is particularly sensitive [5]. In 
addition, the drive performance in the high speed range may depend on the correct 
determination of the base speed, which is function of the actual dc-link voltage and the 
overload capability. 

As a consequence, new methods to compensate the parameter variations and the 
uncertainties of the models have been investigated. Among these, some adaptive schemes 
have been proposed in order to provide a suitable estimation of the varying parameters 
[6]–[8]. These methods provide good drive performance to the detriment of the 
complexity of the control scheme and the tuning of the regulators.  

For the reasons stated above, the stator-flux-oriented drive, more insensitive to 
parameter variations than the rotor-flux-oriented one, has received an increasing attention 
for field weakening applications [9]–[11]. In particular, [10] presents a robust method for 
field weakening operation of DTC induction motor drives where the flux reference is 
adjusted on the basis of the torque error behavior. In fact, a suitable method for robust 
field weakening is to determine the optimal flux level using closed-loop schemes that 
analyze the motor behavior, rather than look-up tables or explicit expressions containing 
the motor parameters.  

From this point of view, interesting contributions towards robust field weakening 
strategies were proposed in [12], [13] for stator-flux-oriented induction motor drives and 
in [14]–[18] for rotor-flux-oriented induction motor drives. According to these papers, the 
flux is adjusted on the basis of the supply voltage requested by the regulators. If this 
voltage is greater than the available one, the field weakening algorithm reduces the flux. 
Furthermore, employing a suitable voltage control strategy allows the motor to exploit the 
maximum torque in the whole speed range.  

The traditional field-oriented control utilizes the stator current components as control 
variables. The d-component of the stator current acts on the rotor flux, whereas the q-
component is proportional to the motor torque. As the control of the motor flux is 
obtained indirectly by controlling the motor currents, the algorithm presented in [14] for 
achieving the maximum torque is rather complex, requiring the tuning of several PI 
regulators (two PI regulators are used for the current regulation, two PI regulators for the 
field weakening and another one for the speed regulation). The stator-flux field oriented 
control presented in [13], similarly, uses the same number of PI regulators. This makes 
difficult to obtain an optimal motor behavior, especially for drives with low inertia. 

In this chapter, a novel field weakening scheme for induction motor drives is presented 
[19]. In the proposed rotor-flux-oriented control scheme the main control variables are the 
stator flux components instead of the stator current components. This basic choice 
simplifies the control scheme, exhibits a fast torque response and reduces the number of 
PI regulators. In addition, the proposed scheme allows the motor to exploit the maximum 
torque capability in the whole speed range. 

In order to verified if the feasibility of the field weakening technique is confirmed, 
simulations and experimental tests are presented. Furthermore a comparison between the 
control schemes showed in [13], [14] and [19] offer the possibility to analyze three 
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control strategy in terms of number and type of regulators, complexity of implementation 
and transient behavior. 

For the comparison, the three control schemes have been implemented on the same 
experimental platform, i.e. the same DSP, power inverter and induction motor, and use 
the same basic functions, such as the voltage modulator.  

Finally the control scheme illustrated in [22] for a speed-sensorless induction motor 
drive fed by a matrix converter is presented. The experimental evidences permit to 
conclude that the control algorithm is totally general and it is applicable to different 
converter structures with the same effectiveness.  

 

3.2 Machine Equations and Maximum Torque Capability 

In the traditional Field Oriented Control for induction machines the main control 
variables are the stator current components. In a reference frame synchronous with the 
rotor flux vector, the d component of the stator current vector establishes the rotor flux 
level, whereas the motor torque is proportional to the q component. 

The behavior of the induction machine can be described in terms of space vectors by 
the following equations written in a reference frame synchronous with the rotor flux. This 
approach is described in Chapter 1, where the mathematical machine model was 
presented. 

dt

d
jiRv s

ssss


         (3.1) 

 
dt

d
jiR r

rmrr


 0       (3.2) 

rsss iMiL          (3.3) 

srrr iMiL          (3.4) 

rr jipT 
2

3
.        (3.5) 

where p is the pole pairs number,  is the angular speed of the rotor flux vector, m is the 
rotor angular speed in electric radians, and “·” denotes the scalar product. 

Solving (3.3) and (3.4) with respect to si  and ri , and substituting in (3.2) and (3.5) 

yields 
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where the parameter   is defined as follows: 
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rs LL

M 2

1  .        (3.8) 

The reference frame orientation is chosen so that the d-axis has the direction of the 
rotor flux vector. Hence (3.6) can be rewritten in terms of d and q components as follows: 

sd
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r
r
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M
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        (3.9) 

  sq
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
  .       (3.10) 

Also (3.7) can be rewritten as follows 

sqr
rs LL

M
pT 
2

3
  .       (3.11) 

As can be seen, these equations are quite similar to the corresponding equations of the 
traditional field oriented control based on d-q stator current components. In fact the rotor 

flux depends only on sd , whereas the motor torque is proportional to sq . 

In steady-state operation, (3.1), (3.3) and (3.9) become 

ssss jIRV           (3.12) 

sdssd IL           (3.13) 

sqssq IL            (3.14) 

sd
s

r L

M   .         (3.15) 

These steady-state equations will be utilized for the analysis of the maximum torque 
capability. In the high-speed range the motor performance is limited by the maximum 
inverter voltage, the inverter current rating and the machine thermal rating. 

The maximum voltage magnitude Vs,max that the inverter can apply to the machine is 
related to the dc-link voltage EDC and the modulation strategy. Using Space Vector 
Modulation (SVM) the maximum magnitude of the stator voltage vector is 

 DCs,max EV
3

1
 .        (3.16) 

The voltage limit and the current limit can be represented by the following 
inequalities: 

 vs ≤ Vs,max          (3.17) 

 is ≤ Is,max .         (3.18) 

Inequalities (3.17) and (3.18) sensibly influence the motor behavior, especially at high 
speed. It is known that the operation of an induction motor can be divided into three 
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speed ranges, namely the low speed range (region I), the constant-power speed range 
(region II) and the decreasing-power speed range (region III). 

In region I, the current limit and the rated flux level determine the operating point 
corresponding to the maximum torque. 

The beginning of region II is defined as the voltage required to inject the maximum 
current reaches Vs,max. In region II, it is necessary to reduce the stator flux magnitude to 
keep the back emf approximately constant. Therefore the operating point corresponding 
to the maximum torque requires a rotor flux magnitude lower than the rated one, and the 
magnitudes of the stator current vector and stator voltage vector are equal to the limit 
values Is,max and Vs,max respectively. As the torque is inversely proportional to the rotor 
speed, the power delivered to the load is nearly constant.  

Finally, in region III the available dc-link voltage is not sufficient to inject the 
maximum current and the power delivered to the load decreases nearly proportionally 
with the rotor speed. 

It is evident that the maximum torque capability is a consequence of the voltage and 
current limits. 

In order to determine the operating point corresponding to the maximum torque, when 
the stator voltage is equal to Vs,max, it is opportune to introduce the angle α between the 
stator flux vector and the rotor flux vector, as follows: 

 φsd = φs cos α         (3.19) 

 φsq = φs sin α.         (3.20) 

Combining (3.11), (3.15), (3.19) and (3.20), it is possible to express the motor torque 
as follows 

 


2sin
4

3 2

2

2

s

rs LL

M
pT   .       (3.21) 

At high speed, the voltage drop on the stator resistance is small and (3.12) can be 
approximated as 

 ss,maxV   .         (3.22) 

Combining (3.22) and (3.21) leads to the following expression of the torque in the high 
speed region: 
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From (3.23) it is clear that, for any value of ω, the maximum torque is produced when 
the stator flux and the rotor flux vectors are delayed by an angle of 45°, i.e. sq  is equal 

to sd . 

However, when the maximum torque is delivered to the load, the current could be 
greater than Is,max. In fact, according to (3.13) and (3.14), the stator current components 
are related to the corresponding stator flux components. 
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Since the magnitude of the stator current vector must not exceed the maximum current 
Is,max, a limitation strategy should be present to prevent the flux request φsq,req from 
reaching too high values. 

If isd is the d-component of the current corresponding to the flux φsd, in order to 
guarantee that the current limit (3.18) is satisfied, the absolute value of isq cannot be 
greater than the following value: 

 22
,, sdmaxsavailablesq iIi  .        (3.24) 

As a consequence, due to (3.14), the flux component φsq cannot be greater than the 
following limit value: 

 φsq,available = σLs isq,available.       (3.25) 

In conclusion, the maximum torque compatible with the constraints (3.17) and (3.18) 
is given in any operating condition by the following value of φsq: 

  availablesqsdsq,max ,,min    .      (3.26) 

This fundamental relationship will be used by the field weakening algorithm to 
achieve the maximum torque operation. 

 

A. Control Algorithm  
 
The torque control block diagram, including the proposed field weakening strategy, is 

shown in Fig. 3.1. It is worth noting that the subscript "req" in Fig. 3.1 is used for the 
output quantities of the regulators, whereas the subscript "ref" denotes the reference 
signals at the input of the regulation loops. 

The control scheme is implemented in a reference frame synchronous with the rotor 
flux vector, as traditional field oriented controls. It is assumed that a suitable observer 

estimates s , r , and the angular frequency  of the rotor flux vector. 
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Fig 3.1 Block diagram of the torque control scheme, including the field weakening strategy. 
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B. Torque Control 
 
The motor torque is controlled by comparing the torque reference Tref with the 

estimated torque T. On the basis of the torque error, the PI regulator (a) produces a torque 
request by adjusting the q-component of the stator flux, according to (3.11). Therefore, if 
the reference torque is higher than the actual torque, the PI regulator (a) tends to increase 

the q,req, otherwise it tends to decrease it. 
 

C. Control of Stator and Rotor Fluxes 
 
The rotor flux is controlled by adjusting the d-component of the stator flux, according 

to (3.9). 
In region I, the d-component of the stator flux is constant and has the rated value 

ratedsd , . At higher speeds, instead, it is reduced by the field weakening algorithm, as 

described in section 3.4.  
The stator flux regulator behaves as a proportional controller, with some additional 

terms compensating the stator back-EMF and the voltage drop caused by the stator 
resistance. The stator flux regulator equation can be expressed as follows:  

 



 srefs

sssreqs jiRv


 ,

,       (3.27) 

where 1/ represents the gain of the controller.  

Combining (3.27) and (3.1), i.e. reqss vv , , leads to the following equation, expressing 

the dynamic behavior of the stator flux vector: 

 refss
s

dt

d
,


   .        (3.28) 

According to (3.28), in order to obtain fast flux transients, and consequently a high 

torque dynamic, it is necessary to adopt small values of .  
The limitation block (d) ensures that the voltage reference satisfies the voltage 

constraint (3.17), namely the voltage reference vector lies inside a circle with radius 
Vs,max. 

The behavior of the limitation block (d) is described by the following equation: 
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According to (3.29), if the requested voltage is greater than Vs,max the limitation block 
(d) performs a proportional reduction of its magnitude, but preserves the angular phase. 

Finally, the reference voltage vector in the stator reference frame is calculated by 

means of the operator je  , where  is the phase angle of the rotor flux vector with 
respect to the stationary reference frame. 
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D. Maximum Torque Capability 
 
In order to guarantee the maximum torque capability, the flux request has to be lower 

than φsq,max given by (3.26). This task is performed by the limitation block (b), shown in 
details in Fig. 3.2. At low speed this block does not limit φsq for usual overload 
conditions.  

It is interesting to note that, at high speed, the limitation block (b) prevents instability 
phenomena by limiting the torque reference (i.e. φsq,ref) to values lower than the maximum 
achievable torque, according to (3.26). In fact, without the limitation block (b), an 
excessive torque request causes an increase of the requested voltage, which in turn yields 
to a reduction of φsd and the produced torque. This behavior leads to a progressive 
reduction of the stator flux until the motor stops.  

 

E. Field Weakening Algorithm 
Several field weakening strategies are possible for induction motor drives, as reported 

in the introduction. However, the best results are obtained using closed-loop controllers 
based on the principle of reducing the flux reference as soon as the voltage request 
becomes greater than the available voltage. The algorithms presented in [13] and [14] are 
based on the same principle. They are described in section 3.6, where they are compared 
with the control strategy illustrated in [19].  

This principle can be implemented according to the block diagram shown in Fig. 3.3. 
As can be seen, the stator flux regulator compares the flux reference with the 

corresponding estimated value and establishes the voltage that has to be applied to the 
motor. When the motor operating point is very close to the field weakening region, the 
voltage request may become greater than the limit voltage Vs,max. A negative difference 

maxsq,

reqsq,

refsq,

maxsq,
 

Fig. 3.2 Limitation block (b) for the q-component of the stator flux vector. 
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Fig 3.3 Block diagram of the field weakening controller based on the saturation of the voltage regulator. 
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between the limit voltage and the amplitude vs,req of the requested voltage means that the 
back-emf is too high and the flux level should be reduced. This task is performed by the 
PI regulator (e), that integrates the difference s,reqs,max vV  . If this difference is negative, 

the flux request decreases; otherwise, the flux level increases up to the rated value defined 
in the limitation block (f). Fig. 3.4 shows the behavior of the limitation block (f) in 

details, where sd,rated and sd,min are the rated and the minimum admissible value of the d-
component of the stator flux, respectively. 

It is worth noting that in the field weakening region, owing to the integral part of the 
regulator (e), the amplitude of the voltage request tends to equal the limit voltage. From 
this point of view, the field weakening control scheme is very similar to an anti-windup 
scheme preventing a voltage request greater than the available voltage. 

Although the scheme of Fig. 3.3 allows the motor to fully utilize the supply voltage, it 
has an inherent drawback related to the fact that fast variations of the torque demand in 
region II and III lead to undesired flux transients, that delay the torque response. In fact 

this scheme is based on selecting sd,ref so that the voltage required to produce the 
demanded torque satisfies the voltage limit. For example, when a torque variation is 
required in region II or III, the control system, as a consequence of the corresponding 

variation of the requested voltage, changes sd,ref, thus causing undesired transients. 
To avoid this problems, the scheme of Fig. 3.3 should be modified in order to change 

the basic principle for the selection of the flux level. In particular, the flux level should be 
always set to the value required to generate the maximum achievable torque at any 
operating speed. In this way any demand of torque variations within the admissible values 

is achieved without changing sd but only sq. This new field weakening strategy is 
implemented as shown in Fig. 3.1. 

For a given value of the d-component of the stator flux, and consequently of the rotor 

flux, the maximum torque is achieved when sq,ref = ±sq,max. Taking this equation into 
account, the voltage required to generate the maximum torque can be determined from 
(3.27) as follows: 

 
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 sdrefsd

maxsqsqmaxsdsreqmaxsd iRv


 ,

,, sign .   (3.30) 
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where isq,max is defined as follows: 
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Fig. 3.4 Limitation block (f) for the d-component of the stator flux vector. 
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and ωmax is the corresponding angular frequency of the rotor flux, expressed by 
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It is worth noting that in practical applications it is possible to approximate ωmax with 
ω and therefore the knowledge of the rotor parameters are not necessary. 

The main advantage of the proposed field weakening scheme is the independence of 
the base speed and a fast torque response in the field weakening region. 

 

3.3 Flux and Torque Observers 

A. Flux Observer 
 
The aim of the flux observer is the determination of stator flux and phase angle of the 

rotor flux, which are necessary for the field oriented control of the induction machine. 
The flux observer operates in the stator reference frame. In the following the subscript “s” 
will be used to identify quantities expressed in the stator reference frame. 

The stator flux is determined integrating the stator voltage: 

    dtiRv s
ss

s
s

s
s  .        (3.34) 

The rotor flux can be estimated as follows 

  s
ss

s
s

rs
r iL

M

L
   .       (3.35) 

The phase angle  of the rotor flux vector, necessary for the field oriented control, can 
be derived from (3.35) as follows 

  s
ss

s
s

s
r iL  argarg  .      (3.36) 

It is evident from (3.34) that the estimation of the stator flux vector can be affected by 
stator resistance mismatch, sensor offsets and the inverter non-linearity (inverter dead-
times, voltage drop on the conducting switches, etc.). However, at high speed, and hence 
in the field weakening region, the estimation error is lower than that at low speed, 
because the input voltage becomes the most relevant term in the second member of 
(3.34). 

The estimation error on the phase angle  depends on the stator flux estimation error, 

the mismatch on the leakage inductance Ls and the offset of the current sensors. The 
leakage inductance shows moderate variations with the stator currents and it will be 
assumed practically constant. 

In conclusion, the stator flux observer depends only on two machine parameters, 

namely Rs and Ls, but the effects of this dependence can be considered negligible in the 
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high speed range. On the contrary, in order to obtain good performance at low speed, it is 
preferable to adopt a closed-loop flux estimator, that could reduce the effect of parameter 
mismatch and sensor offsets [4], [20] and [21]. 

 

B. Estimation of the Angular Frequency of the Rotor Flux Vector 
 
The angular frequency ω needed in (3.27) and (3.33) is obtained by means of the 

following equation: 
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The angular frequency ω is insensitive to disturbance and noise that usually affect the 
stator flux and the stator currents, owing to the filtering action applied to the rotor flux. 
When this action is not adequate, an additional low-pass filter can be applied to (3.37). 

 

C. Torque Estimation 
 
The torque can be estimated from the measurements of the stator current and the 

estimation of the stator flux, as follows: 

  ss jipT 
2

3
        (3.38) 

As can be seen, the torque estimation does not require explicitly any motor parameters, 
excepts the pole pairs.  

 

3.4 Simulations and Experimental Results 

Preliminarily, some numerical simulations have been carried out to confirm the 
effectiveness of the field weakening strategy. The motor parameters are reported in Tab. 
I, and the load is supposed to be only inertial. 

 
Fig. 3.5 shows the motor behavior in response to a 25 Nm step command of the motor 

torque (the figure does not include the end of the transient). Vertical dash-dotted lines 
delimit the three regions of operation of the induction motor. Initially, the torque 
delivered to the load is zero, the motor is at standstill and the stator flux corresponds to 
the rated value. As the torque command is applied, the motor starts up. The q-component 

TABLE I – MOTOR PARAMETERS 

Prated = 4 kW  Rs = 0.45 
Is, rated = 16 Arms  Rr = 0.44  
Vs,rated = 110 Vrms  Ls = 56 mH 
s = 250 rad/s  Lr = 56 mH 
J = 0.03 Kg m2  M = 53 mH 
Jtot = 0.22 Kg m2  p = 2 
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of the stator flux requested by the PI regulator (a) is limited by the value sq,max, 
corresponding to a stator current equal to Is,max.  

As soon as vs,max req reaches the  voltage limit, the field weakening algorithm decreases 
the d-component of the stator flux. As a consequence of the reduction of the magnetizing 

current, the q-component of the stator current, proportional to  sq,ref,  increases, making it 
possible to keep the stator current equal to the limit current in region II. As soon as the 

motor enters in region III, the current decreases and the maximum value of sq,ref is set 

equal to sd,ref.  
Fig. 3.6 shows the motor behavior after a torque reduction from 25 Nm to 5 Nm in 

region II. As can be seen, immediately after the torque decreases, the voltage delivered to 

the loads is lower than Vs,max, but this voltage margin does not cause the increase of sd. In 

fact, the motor continues accelerating and sd decreases without unwanted transients. This 
behavior could not be achieved without changing the basic scheme of the field weakening 
strategy of Fig.3.3 as proposed in Fig. 3.1. 

A complete drive system has been realized to verify the feasibility of the proposed 
control scheme. The experimental set-up consists of an IGBT inverter and a 4 kW, 4-pole 
squirrel cage induction motor. The motor parameters are the same ones reported in Tab. I. 
The test motor is coupled to a separately excited DC machine, 18.4 kW, 3000 rpm. The 
control algorithm is implemented on a Digital Signal Processor (DSP) TMS320C28. The 

cycle period of the control scheme, including the field weakening algorithm, is 100 s. 
Some tests have been carried out to investigate the drive performance in the field 

weakening region. In order to limit the test bench speed to safe values, the motor has been 
fed with a reduced voltage, i.e. 50% of the rated voltage, so leading to a rated speed of 
about 700 rpm. 
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Fig. 3.5 Computer simulation. Starting transient from 0% up to 700% of the base speed after a torque step 
of 25 Nm. Main motor quantities. 1) Torque reference. 2) Estimated torque. 3) φsd,ref. 4) φsq,ref.. 5) Vs,max. 6) 
Vs, max req.  
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Fig. 3.7 shows the motor behavior during a transient from 0% up to 700% of the rated 
speed (the figure does not include the end of the transient) after a torque step of 20 Nm. 
As can be seen, the motor behaves as expected, namely the current is constant in region II 
and decreases in region III. The experimental results are in good agreement with the 
computer simulations shown in Fig. 3.5. In particular φsq,ref, constant in region I, slightly 
increases in region II, keeping the stator current equal to the limit value. 

 Some tests were carried out to assess the dynamic performance of the motor drive. In 
Fig. 3.8, the motor behavior  in region I during a 20 Nm torque reversal is shown. As can 
be seen, the motor behavior is not affected by the field weakening algorithm and a torque 
dynamic is achieved.  

Fig.3.9 shows the motor behavior in region II during a fast variation of the torque 
command form 20 Nm to 5 Nm during an acceleration transient. As can be seen, the 
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Fig. 3.6 Computer simulation. Torque reduction from 25 Nm to 5 Nm in region II during an acceleration 
transient. Main motor quantities. 1) Torque reference 2) Estimated torque. 3) φsd,ref. 4) φsq,ref.. 5) Vs,max. 6) 
vs,max req. 6’) vs. 7) Stator current. 8) Motor speed. 
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Fig. 3.7 Experimental test. Starting transient from 0% up to 700% of the base speed. Main motor quantities.
1) Estimated torque (20 Nm/div). 2) φsd,ref (0.2 Wb/div). 3) φsq,ref. (0.2 Wb/div). (4) Stator current (20
A/div). 
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behavior of the motor is similar to that of Fig. 3.6, namely φsd,ref is not affected by the 
torque transient. In response to the torque variation only φsq,ref changes and consequently 
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Fig. 3.8 Experimental test. Torque reversal from 20 Nm to -20 Nm starting from 70% of the base speed. 1)
Estimated torque (20 Nm/div). 2) Speed (700 rpm/div). 3) φsq,ref. (0.2 Wb/div). 4) Stator current (20A/div). 
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Fig. 3.9 Experimental test. Torque variation in region II from 20 Nm to 5 Nm during an acceleration
transient. Main motor quantities. 1) Estimated torque (20 Nm/div). 1’) Torque command  (20 Nm/div). 2)
φsd,ref (0.2 Wb/div). 3) φsq,ref (0.20 Wb/div). 4) Stator current (20A/div). 
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Fig. 3.10 Experimental test. Deceleration transient from 600% to 80% of the base speed. Main motor
quantities. 1) Estimated torque (20 Nm/div). 2) φsd,ref. (0.2 Wb/div). 3) φsq,ref.(0.2 Wb/div). 4) Stator 
current (20A/div). 



 SFVC of Induction Motor Drives in the Field-Weakening Region 

51 
 

the stator current amplitude shows a corresponding reduction. Finally, some tests have 
been carried out to evaluate the capability of the control system to increase the flux 
during a deceleration transient. Fig. 3.10 shows the motor behavior when the speed 
decreases from about 600% to 80% of the base speed. The deceleration is obtained by 
increasing the breaking torque generated by the DC machine operating as a load. It can be 
verified that, as the speed decreases, the control algorithm increases smoothly the flux 
reference φsd,ref up to the rated value. 

 

3.5 Field-Weakening Control Schemes for High-Speed Drives Based 
on Induction Motors: a Comparison 

According to verified the effectiveness of control algorithm presented three sensorless 
control schemes for the operation of induction motors in the field-weakening region are 
compared and assessed in terms of performance and complexity.  

These three control schemes fully utilize the available inverter voltage and the 
maximum inverter current for steady-state torque production at any speed, and thus 
provide the maximum possible torque in the entire field weakening region. In addition, all 
these control algorithms are insensitive to changes of the machine parameters and to 
variations of the dc link voltage. 

The performance of the three schemes seems quite alike but the operating principles of 
the three control schemes are indeed different in terms of number and type of regulators, 
complexity of implementation and transient behavior. It is rather difficult to assess the 
performance of different control schemes, since they are often presented with reference to 
different experimental set-up. For the comparison, the three control schemes have been 
implemented on the same experimental platform, i.e. the same DSP, power inverter and 
induction motor, and use the same basic functions, such as the voltage modulator. In this 
way, it is possible to judge not only the performance of each solution, but also its 
requirements in terms of computational burden, calibration complexity, parameter 
requirements and operating stability. 

 

3.6 Description of the Control Schemes 

In this section three robust field weakening control schemes for induction motors are 
compared. 

The first one (scheme A) is suitable for a stator-flux oriented drive and its basic 
principle was presented in [13], the second one (scheme B) and the third one (scheme C) 
are rotor-flux oriented drives and their basic principles were presented in [14] and [18] 
respectively. 

These control scheme were selected because they are relatively recent and are based on 
the common principle of analyzing the motor voltage to adjust the flux level. 
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A. Control Scheme (A) 
 
The block diagram of control scheme (A) is shown in Fig. 3.11. The control scheme is 

implemented in a reference frame synchronous with the stator flux vector. The main 
control variables are the stator flux magnitude φs and the q component of the stator 
current isq. 

The speed is adjusted by PI regulator (a), that generates the request of torque-
producing current, isq,req. The current reference is tracked in its turn by the PI regulator 
(d). Due to the action of the saturation block (g), isq,ref is limited so that the stator current 
magnitude cannot exceed Is,max in region I and II. In this case, the maximum value for 
isq,ref depends on the current isd used for the generation of the flux. The greater is isd, the 
lower is isq,max. In region III PI regulator (e) further decreases isq,max  until the angle 
between the stator and rotor flux vectors is 45°, i.e., the maximum torque condition is 
reached. 

The stator flux command is generated by the PI regulator (b) on the basis of the 
voltage request. If this request is greater than the available voltage, the field weakening 
algorithm reduces the flux, otherwise the flux is increased, but not beyond its rated value. 

Finally, the switch (s) can create a temporary voltage margin to enable a fast reaction 
of the current controller, in order to improve the transient behavior. If the requested 
voltage is greater than the available voltage, i.e., the flux is being decreased, the switch 
(s) is closed and the angle θs of the reference frame is modified by adding a small quantity 
Δθs proportional to the speed error. As a consequence, this small rotation of the reference 
frame is applied to the stator voltage and has the effect to improve the torque production 
to the detriment of the flux especially in the beginning of the speed transient  

Although this last algorithm has the aim of improving the behavior of the motor during 
the speed transients in the field weakening speed range, actually it is not essential for the 
field weakening operation. Hence for the sake of simplicity the effects related to the 
switch (s) have not been considered in this analysis 
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Fig. 3.11 Block diagram of the control scheme (A). 
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B. Control Scheme (B) 
 
The block diagram of the control scheme (B) is shown in Fig. 3.12. The control 

scheme is implemented in a reference frame synchronous with the rotor flux vector. 
The motor currents, which are the main control variables, are adjusted by PI regulators 

(c) and (d). The d component of the stator current is used to regulate the rotor flux, 
whereas the q component is used to vary the motor torque. 

To adjust the field level, the scheme uses the same method proposed in scheme (A), 
namely the reference value for isd is set by the PI regulator (b) on the basis of the voltage 
request. If the voltage request is greater than the available voltage, the flux level is 
reduced, otherwise it is increased to the rated value.  

The speed is controlled by the regulator (a), that generates the reference value for isq. 
The limitation block (g) ensures that the constraint on the stator current is satisfied in 
region I and II, and also the exploitation of the maximum torque capability in region III. 

In fact the output signal isq,max of the limitation block (g) is equal to 22
sds,max iI  in region I 

and II, whereas in region III it is decreased until the absolute value of the vsd is equal to 

2
s,maxV

. As explained in section 3.2, this condition means that, under the assumption that 

the maximum voltage is applied to the motor, the phase angle of the voltage vector in the 

rotor-flux oriented reference frame is 90°45°. 
 

C. Control Scheme (C) 
The block diagram of the control scheme (C) is shown in Fig. 3.13. In this rotor-flux-

oriented control scheme the main control variables are the stator flux components instead 
of the stator current components. The scheme (C) corresponds to the same control 
strategy described in sections 3.3 and 3.4 except for the fact that the input reference is a 
speed instead of a torque.  
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Fig 3.13 Block diagram of the torque control scheme, including the field weakening strategy. 

PI (c) 

PI (d)



refsqi ,



sqi






m

refm,
maxsqi ,

PI (a) 

maxsqi ,

SVM 

IM

dq 
abc r

s
si

Observer for 
stator and 

rotor fluxes, 
angular 

frequency  
and motor 
speed m 

s,maxV

Limitation (i) 

s,maxV



| · | 
ABS 

reqsv ,

PI (b) 

Limitation (f) 

22 )(s,maxI

PI (e) 

Limitation (h) 

 
2

s,maxV

|vsd,req| 
maxsqi ,

isd,ref
ratedsdi ,

rje 

rje sdi

sdi

vsd,req 

vsq,req 

Limitation (g)

availableqi ,

reqsqi ,

Back-emf 
compensation 

availableqi ,

Anti-windup 

Anti-windup 

Anti-windup 

Fig. 3.12 Block diagram of the control scheme (B). 
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3.7 Flux Observers 

The control schemes (B) and (C) are implemented in a reference frame synchronous 
with the rotor flux vector whereas scheme (A) is described in a reference frame 
synchronous with the stator flux. Hence, the same flux observer, described in section 3.3, 
is used for the schemes (B) and (C) whereas the scheme (A) uses a different solution.  

to obtain good performance at low speed, all the schemes adopt a closed-loop flux 
estimators, that could reduce the effect of parameter mismatch and sensor offsets. 

A closed-loop estimator is based on the principle that feeding back the difference 
between the measured output of the observed system and the estimated output, and 
continuously correcting the model by the error signal, the error should be minimized. In 
the case of a flux estimator, the motor flux cannot be directly measured, but the idea of 
realizing a closed-loop system is still applicable if the difference between a signal 
representing the steady-state value of the reference flux and the signal of the estimated 
flux vector is used as feedback signal. 

Let us denote with θs and θr the phase angle of s
s  and s

r  in the stator reference 

frame. Hence, (3.34) is replaced for scheme (A) by the following equation: 
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   ,      (3.39) 

and for schemes (B) and (C) by the following equation: 
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The quantities Gs and Gr in (3.39) and (3.40) are the gains of the flux observers. The 
reference flux vector can be calculated for scheme (B) as 

 rj
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Fig. 3.13 Block diagram of the control scheme (B). 
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and for scheme (C) as 

 rj
refsd

s

s
refr e

L

M  ,,          (3.42) 

The performance of these observers at low speed is not equal. Furthermore they 
require the knowledge of different motor parameters. Therefore it could seem unfair the 
use of different observers for the comparison of three different control schemes. 

These solutions have been adopted mainly for the sake of simplicity. Nevertheless, it is 
opportune to recall that the purpose of this analysis is to compare the field-weakening 
algorithms of the three control schemes and it is sufficient that the observers present 
approximately the same behavior before entering the field weakening speed range. In fact, 
at high speed, the integration of the voltage back-emf provides an estimation of the stator 
flux vector that is sufficiently reliable for all the three observers, and the effect of the 
feedback signal is less important. 

 

3.8 Tuning of the Control Schemes 

The three schemes presents a different complexity in terms of tuning of the regulators. 
In total, scheme (A) requires 5 PI regulators (two PI regulators are used for the flux and 
current control, one for the speed control and the other two for the robust field-weakening 
algorithm), and if a fast torque response is needed, it is necessary to tune also the two 
constant gains shown in block (m). 

Scheme (B) requires 5 PI regulators (two PI regulators are used for the current control, 
one for the speed control and the other two for the robust field-weakening algorithm). 

Finally, scheme (C) requires two PI regulators (the first one for the speed control and 
the second one for the robust field-weakening control),  and two gain constants for the 
flux regulator (7) and (8). 

For the regulators of the inner loops, i.e., regulators (d) and (e) in scheme (A), 
regulators (c) and (d) in scheme (B) and the stator flux regulators in scheme (C), some 
simple design rules can be derived, generally based on zero-pole cancellations.   

The tuning of the other regulators, instead, is more difficult, because the drive 
dynamics depends on the motor inertia and on the field-weakening algorithm. So the 
tuning of these regulators has been initially faced by means of numerical simulations, and 
then it has been refined during the experimental tests by using a trial-and-error procedure. 

 

3.9 Experimental Results 

A complete drive system has been realized to verify the performances of the control 
schemes. The experimental set-up is the same described in section 3.6. The sampling 

period (coinciding with the switching period) is 100 s. 
The parameters of the electric drive are shown in Table I and the rated speed is about 

700 rpm. 
It is important to note that the performance of each control scheme depends on many 

factors that are not directly related to the field-weakening control scheme, such as the use 
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of fixed-point or floating-point math, the compensation for the inverter dead-time, or just 
the skill of the programmer. 

Therefore, the results stated in this Section should be considered with care, as a 
particular case, which depends on the adopted experimental set-up. 

 

A. Comparison of The Steady-State Behavior 
 
From the analysis of the experimental tests, it is possible to note that the three control 

schemes have practically the same performance in terms of speed response and field-
weakening speed range. Each of them have reached a maximum speed that is about seven 
times the base speed (the maximum speed is practically imposed by the friction torque of 
the inverter bench). 

However, each control scheme has shown its own advantages and disadvantages, that 
are presented hereafter. 

REGION II REGION III
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Fig. 3.14 Behaviour of the Scheme (A) during a speed step change from 0 to 700% of the base speed (500
ms/div). From top to bottom: angular speed (2000 rpm/div), stator flux (0.6 Wb/div), q component of the
stator current (10 A/div), motor current (20 A/div).  
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Fig. 3.15 Behaviour of the Scheme (B) during a speed step change from 0 to 700% of the base speed (500
ms/div). From top to bottom: angular speed (2000 rpm/div),  d component of the stator current (10 A/div),
q component of the stator current (20 A/div), phase current (20 A/div). 
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Figs. 3.14, 3.15 and 3.16 show the behavior of the three control schemes during a 
speed step command up to 700% of the base speed. Each figure shows the speed response 
(at the top) and the corresponding phase current waveform (at the bottom). The two 
intermediate traces of each figure show the waveforms of the main control variables of 
each control scheme, i.e., the stator flux and the current isq for scheme (A), the stator 
current components for scheme (B) and the stator flux components for scheme (C). 

In Figs. 3.14, 3.15 and 3.16 the speed ranges of region II and region III are also 
represented. 

The main comments that can be done are as follows: 
 

i. The speed responses of schemes (B) and (C) are quite similar, whereas the one of 
scheme (A) shows some small oscillations in region III. 
 

ii. The best quality of the motor current is obtained by scheme (B), since the stator 
current components are the main control variables. The current quality can be 
seen also during the transition from Region I to Region II and from Region II 
to Region III. 

 
iii. The best flux quality is obtained by scheme (C), since the stator flux components 

are the main control variables 
 

B. Tuning the Regulators and Robustness 
 
As expected, the tuning of scheme (C) is simpler than that of other ones, whereas the 

tuning of scheme (A) is more complex, especially for the flux regulators (b) and (c) of 
Fig. 3.12, in order to avoid flux and torque oscillations during the transition from Region 
II to Region III. 

As far as the robustness against parameter uncertainties is concerned, the performance 
of the three control schemes is affected mainly by mismatching of the leakage inductance 
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Fig. 3.16- Behaviour of the Scheme (C) during a speed step change from 0 to 700% of the base speed (500 
ms/div). From top to bottom: angular speed (2000 rpm/div),  d component of the stator flux (0.25 Wb/div),
q component of the stator flux (0.25 Wb/div), phase current (20 A/div). 
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σLs and of the stator resistance Rs. The parameter σLs is important for orientation of the 
reference frame in schemes (B) and (C), that are rotor flux-oriented controls, whereas 
scheme (A), which is a stator flux-oriented control, is sensitive mainly to Rs. 

A mismatching on Rs could reduce the torque in scheme (C), since the flux regulators 
(3.30)-(3.31) do not include an integral term and present the feed-forward compensation 
of the voltage drop on the stator resistance. 

A mismatching on σLs causes a reduction of the maximum torque that can be delivered 
by all control schemes in Region III, since it is related with the angle θ between the rotor 
flux vector and the stator flux vector, as shown in (3.23). 

 

C. Stability of the Control System 
 
Figs. 3.17, 3.18 and 3.19 show the behavior of the three control schemes during a 

sequence of speed step changes from the base speed to 2000 rpm (about 300% of the base 
speed). As can be seen, the behavior of the three control scheme is comparable. However, 
Figs. 3.20, 3.21 and 3.22, that show the waveform of some inner variables such as the 
flux level, reveal that the behavior of schemes (A) and (B) is quite different from that of 
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Fig. 3.17 Behaviour of the Scheme (A) during a sequence of speed step changes from 0 to 300% of the base
speed (500 ms/div). From top to bottom: reference angular speed (2000 rpm/div), angular speed (2000
rpm/div), estimated torque (20 Nm/div), phase current (20 A/div).  
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Fig. 3.18 Behaviour of the Scheme (B) during a sequence of speed step changes from 0 to 300% of the base
speed (500 ms/div). From top to bottom: reference angular speed (2000 rpm/div), angular speed (2000
rpm/div), estimated torque (20 Nm/div), phase current (20 A/div).  
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scheme (C). While the flux level of scheme (C) tends to decrease as expected, the flux 
level of scheme (A) and (B)  presents a short undershot after each speed step. The reason 
is that these control schemes are based on different operating principle. In fact, as 
explained in section 3.8, the scheme (C) keeps the rotor flux almost constant during the 
torque transient, in order to achieve the fastest torque response, whereas the other control 
schemes adjust the flux level after any torque variation. These flux oscillations are 
undesired and could prevent the correct operation of the control scheme at high speed. To 
limit their effect, the designer is forced to tune carefully the speed regulators and to 
reduce the bandwidth of the whole control system. 

 

D. Comparative Table 
 
Table II shows the main results of the comparison of the three control schemes. 
The properties that are compared in Table II are the easiness of tuning of the 

regulators, the quality of the motor currents, the torque dynamic, the independence of the 
motor parameters and the stability of the control system at high speed. 

A grade has been given for each of them based on the results obtained from the 
experimental tests. This grade is qualitative and varies from "+" (lowest performance) to 
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Fig. 3.19 Behaviour of the Scheme (C) during a sequence of speed step changes from 0 to 300% of the
base speed (500 ms/div). From top to bottom: reference angular speed (2000 rpm/div), angular speed (2000
rpm/div), estimated torque (20 Nm/div), phase current (20 A/div).  
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Fig. 3.20- Behaviour of the Scheme (A) during several step changes from 0 to 300% of the base speed (500
ms/div). From top to bottom: reference and actual angular speed (2000 rpm/div), stator flux magnitude
(0.25 Wb/div), motor current (20 A/div).  
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"+++" (best performance). It is important to point out that this grade has not an absolute 
meaning but it refers only to the comparison of the selected control schemes, 
implemented on the same experimental platform, available in laboratory 

The results cannot be generalized, since they depend on the specific DSP, inverter and 
motor used to carry out the experimental tests. Nevertheless, they suggest some practical 
rules that can be useful to select which control scheme is the most suitable for an 
application. 

The control scheme (A) should be preferred when the robustness to variations of the 
motor parameters could be crucial for the drive performance. The control scheme (B) 
should be preferred for a specific application when the quality of the motor currents plays 
a key role. Finally the control scheme (C) is preferable when the application requires a 
fast torque response in the field-weakening region or the tuning of the regulators has to be 
as simple as possible 
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Fig. 3.22- Behaviour of the Scheme (C) during several step changes from 0 to 300% of the base speed (500
ms/div). From top to bottom: angular speed (2000 rpm/div), d and q components of the stator flux (0.25 
Wb/div), motor current (20 A/div).  
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Fig. 3.21- Behaviour of the Scheme (B) during several step changes from 0 to 300% of the base speed
(500 ms/div). From top to bottom: angular speed (2000 rpm/div), d and q components of the stator flux
(0.25 Wb/div), motor current (20 A/div). 
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3.10 Extension of Stator Flux Vector Control to Non Conventional 
Converter Structure 

In this and the follow sections an application of control strategy for an induction motor 
to a electric drive fed by a matrix converter is described. In order to verify the 
effectiveness and the flexibility of the proposed strategy several experimental results are 
illustrated. 

 Induction motor drives fed by Matrix Converter (MC) can theoretically offer better 
performance than traditional drives based on voltage source inverters [23]. The 
advantages that are often cited are the compactness, the bidirectional power flow and the 
higher current quality. The input currents are sinusoidal and the power factor is near 
unity. Furthermore, braking resistances are not necessary from a theoretical point of view, 
since the power flow during braking can be reverted, thus leading to a regenerative 
operation.  

However, the use of MC poses some problems. First of all, to obtain a good quality of 
the output currents, the input voltages should be constantly measured in order to adapt the 
duty-cycles of the output voltages in presence of input voltage harmonics or disturbances, 
thus risking system instability, [24], [25]. Secondly, MC bidirectional switches cause an 
higher voltage drop compared to VSI power switches, since the output current has to pass 
through two components in series, usually an IGBT and a diode. In addition, the switch 
commutation is a complex process that introduces dead-times similar to those of voltage 
source inverters. These converter nonlinearities, together with the sensor offsets, could 
affect the estimation of the voltage applied to the load [26], [27]. 

Finally, some studies have shown that the quality of the input current deteriorates if the 
source voltage is unbalanced or distorted. The same happens if the load currents are 
unbalanced or distorted [28]. 

All these aspects should be taken into account when assessing the performance of an 
electric motor drive fed by a MC. Some papers describing drives based on MC have 

TABLE II 

COMPARISON OF THE THREE CONTROL SCHEMES 

 Scheme 
A 

Scheme 
B 

Scheme 
C 

No. of regulators  5 PI  5 PI  2 PI  
and 2 P  

Easiness of tuning  + ++ +++ 

Quality of motor 
currents 

+ +++ ++ 

Torque dynamic in 
field weakening 
region  

++ ++ +++ 

Independence of 
motor parameters 

+++ ++ + 

Stability at high 
speed 

+ ++ +++ 
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already been presented. Some studies have been made to transfer the existing control 
techniques for voltage source inverters to MCs, such as constant V/Hz, field-oriented 
control and direct torque control [29]-[34]. 

Electric drives are often requested to deliver constant power at speed higher than the 
rated one. However so far the performance of drives fed by MC and operating in the 
field-weakening region has not been examined in details.  

When the induction motors are used for applications at high speed, it is desirable to 
retain the maximum torque capability in the field weakening region. Several papers about 
this issue were presented for drives fed by traditional VSI [35]-[40]. According to these 
field weakening algorithms, the optimal flux value of the motor should be updated by 
means of look-up tables or explicit expressions containing the motor parameters and 
quantities such as the motor speed, the motor currents, the dc-link voltage and the 
requested torque. However, the performance of these algorithms is strictly related to the 
accuracy by which the parameters are known. In addition, the drive performance in the 
high speed range may depend on the correct determination of the base speed, which is 
function of the actual dc-link voltage and the overload capability. 

 

3.11 Simulations and Experimental Results 

Preliminarily, some numerical simulations have been carried out to confirm the 
effectiveness of the field weakening strategy. The motor parameters are reported in Table. 
III, and the load is supposed to be only inertial. 

Fig. 3.23 shows the motor behavior in response to a step command of the motor torque 
(the figure does not include the end of the transient). Vertical dash-dotted lines delimit the 
three regions of operation of the induction motor. Initially, the torque delivered to the 
load is zero, the motor is at standstill and the stator flux corresponds to the rated value. As 
the torque command is applied, the motor starts up. 

The q-component of the stator flux requested by the PI regulator (a) is limited to the 
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Fig. 3.23 – Computer simulation. Starting transient from 0% up to 600% of the base speed after the 
application of the rated torque. Main motor quantities. 1) Torque reference. 2) Estimated torque. 3) �sd,ref. 
4) φsq,ref.. 5) Rotor flux. 6) Motor speed. 7) Stator current. 
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value φsq,max, corresponding to a stator current equal to Is,max.  As soon as vs,req,max reaches 
the voltage limit, the field weakening algorithm decreases the d-component of the stator 
flux. As a consequence of the reduction of the magnetizing current, the q-component of 

the stator current, proportional to sq,ref, slightly increases, making it possible to keep the 
stator current equal to the limit current in region II. As soon as the motor enters in region 

III, the current decreases and the maximum value of sq,ref is set equal to sd,ref. 
A complete drive system has been realized to verify the feasibility of the proposed 

control scheme. The experimental set-up consists of a prototype of MC and a 0.25 kW, 2-
pole squirrel cage induction motor. The MC, shown in Fig.3.24, is realized using the 
FM35E12KR3 IGBT module produced by EUPEC. A L-C filter is connected at the input 
side of the converter. The inductors and the capacitors of the filter are rated 0.8 mH and 

 

 Fig 3.24 Photography of the matrix converter prototype. 
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Fig. 3.25 – Experimental test. Speed transient from 90% to 600% of the base speed. 1) Estimated speed
(1500 rpm/div). 2) φsd,ref. (0.25 Wb/div). 3) φsq,ref. (0.25 Wb/div). 4) Stator current (1.5 A/div). 
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20 F respectively.  
The motor parameters are the same ones reported in Table. III. The test motor is 

coupled to a separately excited DC machine, which can operate up to 3000 rpm. 
The control algorithm is implemented on a Digital Signal Processor (DSP) 

TMS320C28. The cycle period of the control scheme, including the field weakening 
algorithm, is 125 μs. 

Some tests have been carried out to investigate the drive performance in the field 
weakening region and to assess the dynamic performance of the motor drive. In order to 
limit the test bench speed to safe values, the motor has been fed with a reduced voltage, 
i.e. 25% of the rated voltage, so leading to a rated speed of about 700 rpm. 

Fig. 3.25 shows the motor behaviour during a transient from 90% up to 600% of the 
rated speed (the figure does not include the end of the transient). As can be seen, the 
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Fig. 3.26 – Experimental test. Starting transient from 0% up to 600% of the base speed. Main motor
quantities. 1) Estimated speed (1500 rpm/div). 2) φsd,ref (0.25 Wb/div). 3) φsq,ref. (0.25 Wb/div). 4) Stator
current (1.5 A/div). 
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Fig. 3.27 – Experimental test. Starting transient from 0% up to 600% of the base speed. Main motor
quantities. 1) Estimated speed (1500 rpm/div). 2) φsd,ref (0.25 Wb/div). 3)T Estimated torque (0.8 Nm/div). 
(4) Stator current (1.5 A/div). 
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motor behaves as expected, namely the current is constant in region II and decreases in 
region III 

In Figs. 3.26 and 3.27 the behaviour during a transient after a torque step is shown. 
The experimental results are in good agreement with the computer simulations shown in 
Fig. 3.26 In particular φsq,ref, constant in region I, slightly increases in region II, keeping 
the stator current equal to the limit value. 

Fig. 3.28 shows the motor behaviour when the speed decreases from about 500% to 
90% of the base speed. The deceleration is obtained by increasing the braking torque 
generated by the DC machine operating as a load. It can be verified that, as the speed 
decreases, the control algorithm increases smoothly the flux reference φsd,ref up to the 
rated value. 

Finally, the quality of the input and output currents has been assessed. Although the 
load current, whose typical waveform is shown in Fig. 3.29, is always sinusoidal and its 
harmonic content is negligible, the input current is particularly sensitive to the input 
voltage distortion and unbalance. Table IV reports the main harmonic magnitude of the 
input voltage vector, normalised with respect to the magnitude of the fundamental 
component. As can be seen, distortion harmonics of order -1,+2, +3, 5 , and +7, which 
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Fig. 3.28– Experimental test. Braking transient from 500% down to 90% of the base speed. Main motor
quantities. 1) Estimated speed (1500 rpm/div). 2) φsd,ref (0.25 Wb/div). 3) φsq,ref. (0.25 Wb/div). (4) Stator
current (1.5 A/div). 

Tab. IV Normalised magnitude of the main harmonic components 
of the Input voltage vector 

Harmonic  Magnitude 
(%) 

‐1  1,29 

+2  0,72 

+3  0,48 

‐5  1,87 

+7  0,58 
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are very common in industrial applications, are superimposed on the fundament 
component. 

Almost all these harmonics can be found also in the line currents, as can be seen from 
Table V, that reports the spectral content of the line current vector. It's worth noting that 
this behaviour does not depend entirely on the MC, but also on the passive input filter, 
that could amplify the current components with frequency near the resonant frequency 

For a fair assessment of the current quality, the MC has been fed also by an AC power 
source presenting a very low distortion. In this case, the behaviour of the MC has 
improved drastically. As can be seen comparing Table V and Table VI, the harmonic 
content of the input currents is very small and their waveforms, shown in Fig. 3.30 for 
two different load conditions, are practically sinusoidal. 

Another important remark concerns the input power factor. In fact, the power 
delivered to the load tends to decrease in region III, whereas the reactive power absorbed 
by the input filter is constant. As a consequence, in this operating condition, the input 
power factor could decrease to unacceptable values, according to the specific application, 
if the input filter is not correctly designed.  

 

3.12 Conclusions 

A control strategy for field weakening operation of speed-sensorless induction motor 
drives is analyzed in this chapter. The control system scheme utilizes the stator flux 
components as control variables and decreases the d-component of the stator flux as the 
voltage corresponding to the maximum torque achievable at a given speed tends to 
exceed the maximum voltage. 

The control scheme allows a smooth transition into and out of the field weakening 
mode, exploiting the maximum torque capability of the machine over the whole operating 
speed range. 

The main advantages of proposed field weakening algorithm are:  
i) reduced dependence on machine parameters 

Tab. V Normalised magnitude of the main 
harmonic components of the line current  

vector (with distorted supply voltage) 

Harmonic  Magnitude 
(%) 

+2  2.46 

‐5  6.91 

+7  3.57 

‐9  1.08 

+13  1.69 

‐17  1.62 

+19  1.73 

 

Tab. VI Normalized magnitude of the main 
harmonic components of the line current 
vector (with undistorted supply voltage). 

Harmonic  Magnitude 
(%) 

+2  0,41 

‐5  1.38 

+7  1.32 

‐9  1.51 

+13  1.68 

‐17  1.08 

+19  0.73 
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ii) no need of calculation of the base speed, which in general depends on the machine 

parameters, motor current and DC-link voltage 
 

iii) fast torque response, also in the field weakening region. 
 

In order to compare the effectiveness of control strategy three control scheme that 
feature a robust field-weakening algorithm have been compared. Although the 
performance are very much alike, each control scheme presents some advantages and 
some disadvantages regarding the complexity of tuning, the quality of the load currents, 
the robustness against the parameter uncertainties and the operation stability, as 
summarized in Table II. 

The results cannot be generalized, since they depend on the specific DSP, inverter and 
motor used to carry out the experimental tests. Nevertheless, they suggest some practical 
rules that can be useful to select which control scheme is the most suitable for an 
application. 

The control scheme (A) should be preferred when the robustness to variations of the 
motor parameters could be crucial for the drive performance. The control scheme (B) 
should be preferred for a specific application when the quality of the motor currents plays 

 
 

Fig. 3.29 – Experimental test. Load currents (0.75 A/div). 

 

a) 

 

b) 

Fig. 3.30 – Experimental test. Line input currents for two different load conditions (2.5 A/div). Motor 
operating at the base speed, at 30% of the rated torque (a) or at the rated torque (b). 
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a key role. Finally the control scheme (C) is preferable when the application requires a 
fast torque response in the field-weakening region or the tuning of the regulators has to be 
as simple as possible 

Furthermore the algorithm is applied to speed-sensorless induction motor drives fed by 
matrix converter. The experimental results confirm the feasibility of the proposed 
solution. 
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Control Scheme 
With Energy Saving 
For Electric Vehicles 

 
Abstract  
  
A control scheme for induction motor that integrates within a coherent solution some of 
the features that are commonly required to an electric vehicle drive is presented. The 
main features of the proposed control scheme are the capability to exploit the maximum 
torque in the whole speed range, a weak dependence on the motor parameters, a good 
robustness against the variations of the dc-link voltage and, whenever possible, the 
maximum efficiency. The performance of the control scheme is verified by experimental 
tests. 
 
 

4.1 Introduction 

Electric vehicles (EVs) are seen as a possible step toward the solution of the pollution 
problem in urban environment. With the growing interest in EVs, much effort is 
demanded for the development of efficient, reliable and economical ac drives. Both 
induction motor (IM) drives and permanent magnet brushless motor drives have been 
applied to EVs. This chapter is focused on induction motors because, although they have 
generally lower efficiency and power density than synchronous motors, they can offer 
higher reliability, overload capacity, maximum speeds and - last but not least – a 
reasonable cost [1]. 

The control system of an induction motor for EV has to face several problems. First of 
all, the drive train of an EV has to deliver constant torque at low speed, whereas a torque 
decrease at constant power is requested at medium and high speed. Another problem of 
the control system is the complete exploitation of the battery voltage, that is indispensable 
to improve the range of the EV or to increase the motor performance. In addition, the dc-
link voltage of EVs shows large variations as fast accelerations and decelerations are 
requested, that can trouble the control system. During the acceleration the available 
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voltage at the motor terminals tends to decrease because of the unavoidable voltage drop 
on the battery internal resistance, whereas during the braking the voltage across the dc-
link capacitors can raise very quickly. 

At present, the most common control methods of high performance induction motors 
are the conventional field-oriented vector control and direct torque control.  

In literature it is possible to find papers focused on the specific problems of EVs or on 
the optimization of general-purpose control schemes but suitable also for EVs. In the first 
case, the contributions are mainly about energy-saving control strategies, that can give 
remarkable results provided that the motor parameters are known with sufficient accuracy 
[2]-[3]. In the second case, the control schemes are usually aimed to achieve the 
maximum torque capability of the machine over the whole flux weakening region [4]-[7]. 
According to these flux weakening algorithms, the optimal flux value of the motor should 
be updated on the basis of look-up tables or explicit expressions of quantities such as the 
motor speed, the motor currents, the dc-link voltage and the requested torque. However, 
these algorithms rely on a good knowledge of several machine parameters and the drive 
performance in the high speed range may depend also on the correct determination of the 
base speed, which is function of the actual dc-link voltage and the overload capability. 

Only in the last ten years some important contributions toward a robust field 
weakening strategy for induction motors have been presented [8]-[14]. The basic idea is 
that the demand of field-weakening can be derived from the voltage requested by the 
current/flux regulators. If this voltage is permanently greater than the available voltage, it 
means that the torque command cannot be tracked at the present flux level and the flux 
has to be reduced. As far as the efficiency of the electric drive is concerned, the 
techniques that can be found in literature can be divided into two categories. The first 
category is referred as to loss-model based approach [15]-[19]. It consists in computing 
the losses by using the machine model and selecting a flux level that minimizes these 
losses. The second category is the search based approach [20]-[22]. According to this 
method the flux is decreased until the electrical input power settles down to the lowest 
value for a given torque and speed. 

The main contribution of this analysis is the proposal of a complete control scheme in 
which all these aspects are treated in a coherent and unitary way. The proposed control 
scheme is based on the well-known rotor field-oriented control, where the currents are the 
main control variables. However, the control scheme is modified  

 
i) to increase the robustness against the variations of the motor parameters,  

 
ii) to reduce the effect of the fluctuations of the dclink  

 
iii)  to improve the overall efficiency by adjusting the flux level at low speed using a 

loss-model-based approach. 
 

In this chapter it will be shown how the different subsystems of a modern electric drive 
for automotive applications can work together satisfactorily. These systems are the 
current control loop, the robust field-weakening control loop, the overvoltage dc-link 
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control loop and the minimization of the power losses. This chapter shows which signal 
saturations and PI anti-windup regulators should be taken into account, and proposes a 
solution for their tuning. 

Experimental results demonstrate the effectiveness of the proposed approach. 
 

4.2 Basic Ideas Behind the Control Strategy 

A. Rotor Flux Oriented Control 
 
As known, the basic equations for the torque control of induction motors, written in a 

rotor-flux oriented reference frame, are as follows: 

 sdr
r

r

r Mi
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        (4.1) 
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         (4.2) 

where r is the rotor flux, sdi and sqi are the d-q components of the stator current, Ls, Lr 

and M are the motor inductances and p is the pole pairs. Equation (4.1) states that the 

rotor flux depends only on sdi , whereas (4.2) shows that the torque is proportional to the 

product of the rotor flux and the current isq. 
 

B. Minimum Motor Losses 
 
In order to optimize the power consumption of the motor, it is necessary to express the 

motor torque as function of the stator currents in steady-state condition. 
 Substituting in (4.2) the steady-state value of the rotor flux, which is obtainable from 

(4.1), leads to the following expression of the motor torque: 

 sqsd
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M
pT

2

2

3
 .        (4.3) 

Equation (4.3) suggests that the motor can produce the same torque for different 

combinations of sdI and sqI , and therefore it is opportune to find which couple of values 

corresponds to the maximum efficiency. 
The Joule losses can be expressed as the sum of the contributions due to the rotor and 

the stator windings, as follows: 

  2222

2

3
rqrrdrsqssdsJouule IRIRIRIRP  .     (4.4) 

whereas the iron losses due to magnetic hysteresis and eddy currents can be approximated 
with the following expression: 
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  222

2

3
sdhystsdecIron IKIKP         (4.5) 

where Kec and Khyst are constants depending on the motor, and ω is the angular frequency 
of the input voltage. 

The iron losses in (4.5) are supposed to depend only on the current sdi , i.e. on the flux-

producing component of the stator current. This is equivalent to assume that the iron 
losses are related to the rotor flux, whereas it should be more precise to assume that they 
depend on the air-gap flux. In addition, the iron losses due to the current ripple are not 
considered, since the control system is not able to control the current ripple, but evaluates 
only the mean value of the currents over a switching period. 

Nevertheless, the expression (4.5) of the iron losses is acceptable for the calculation of 
the minimum power losses, which is an approximated process for its own nature. 
Furthermore, (4.5) has the advantage of being relatively simple, compared to other 
models that are more accurate but require an higher number of motor parameters [18]. 

If a rotor-flux oriented reference frame is used, it can be demonstrated that the rotor 
currents have a very simple form in steady-state condition: 

 0rdI          (4.6) 
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Summing (4.4) and (4.5), together with (4.6) and (4.7), leads to the following 
expression of the total power losses of the motor, which can be written as a function of 
the stator current components only: 
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where, for sake of compactness, the new coefficient Kiron has been introduced: 

  hystecIron KKK  2)( .       (4.9) 

The minimum of (4.8) subject to the constraint that the torque, expressed by (4.3), is 
assigned, can be found using the method of Lagrange multipliers. It is straightforward to 

verify that the minimum of (4.8) occurs when the ratio of sdI  to sqI is equal to a precise 

quantity that depends on the motor parameters as well as on the input angular frequency. 

The optimal value for sdI turns out to be as follows: 
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It is worth noting that, at low speed, Kiron is negligible and Kopt is little sensitive to 
temperature variations, since it is practically a ratio of resistances, and to the motor speed. 
At very high speed, instead, the term Kiron becomes dominant in the denominator of (4.11) 
and the coefficient Kopt tends to zero. This behavior is very important in the field-
weakening speed range, since it can be the cause of an erroneous operation of the motor 
drive. This problem will be discussed further in section 4.3. 

Finally, readers interested in the method used for the determination of the motor 
parameters can find further details in section 4.6. 

 

4.3 Maximum Torque Capability 

 
In the high-speed range, the motor operation is limited by the maximum inverter 

voltage, the inverter current rating, and the machine thermal rating. The maximum 
voltage that the inverter can apply to the machine is defined by the dc-link voltage and by 
the PWM strategy. In any operating condition, the magnitude of the stator voltage vector 
must satisfy the following equation: 

 2
max,

22
ssqsd Vvv  .        (4.12) 

Without overmodulation, if the output voltage vector is synthesized using Space 
Vector Modulation (SVM) or PWM with 3rd harmonics injection, the maximum 
magnitude of the phase voltage vector is: 
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V  .         (4.13) 

It is opportune to find the maximum torque that the motor, subject to the constraint 
(4.12), can deliver to the load. For this purpose, it can be verified that the stator windings 
equations in steady-state operation are [6]: 

sqssdssd ILIRV         (4.14) 

sdssqssq ILIRV          (4.15) 

where σis the leakage coefficient. 
Introducing (4.14) and (4.15) in (4.12), and taking into account that the voltage drop 

caused by the stator resistance is negligible for high-speed operation, leads to the 
following equation: 
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The maximum value of the torque subject to the constraint (4.12) can be found again 
with the method of the Lagrange multipliers, and occurs when (4.16) becomes an equality 
and sqI is equal to the quantity max,sqI defined as: 
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If both the numerator and the denominator of the right-hand term are multiplied by Ls, 
it is possible to re-write (4.17) in terms of the steady-state value of the stator flux d-
component [12], [14]: 
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where σLs is the leakage inductance. Since the q-component of the stator flux is equal to 

sqs IL , (4.18) states that the maximum torque takes place when the d-component of the 

stator flux is equal to the q-component of the stator flux. 
This expression is usually more useful than (4.17) because the stator flux is usually 

calculated by a low-pass filtering estimator, which is less affected by ripple and 

disturbances than the current sdi . In addition, σLs is generally provided by the motor 

manufacturers or can be easily determined with sufficient accuracy with a locked-rotor 
test. 

The current limit is defined by the inverter current rating or by the machine thermal 
rating. In the plane d-q, this limit corresponds to a circle described by the following 
inequality: 

2
max,

22
ssqsd III          (4.19) 

It is also possible to find the maximum torque that the motor, subject to the constraint 
(4.19), can deliver to the load. With a similar reasoning, under the assumption that the 
magnetic saturation is negligible, it turns out that the maximum torque is delivered when 
(4.19) becomes an equality and 

sqsd II           (4.20) 

However, when the motor absorbs the maximum current, the condition (4.20) cannot 

be generally reached, since it implies that the flux-producing current sdI is about 70% of 

max,sI , a value that is usually not compatible with the motor design. For this reason, the 

condition (4.20) will not be considered in the control scheme presented hereafter.  
With reference to the maximum torque, the constraints (4.12) and (4.19) generate three 

speed ranges: 
 
i) the low speed range (region I), where the output current of the inverter is equal to 

the limit value, but the output voltage is lower 
 

ii) the constant-power speed range (region II), where the output voltage and the 
output current of the inverter are equal to the limit values 
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iii) the decreasing-power speed range (region III), where the voltage applied to the 
motor is equal to max,sV , whereas the motor current is lower than max,sI  (the high 

back-emf prevents the inverter from injecting the maximum current into the 
motor). 

 
The goal of the control system is to exploit the maximum torque in each of the 

aforementioned speed ranges. 
 

4.4 Graphic Representation of the Motor Behavior 

In steady-state operating conditions the motor operation is strictly related to the values 

of sdI and sqI , i.e. to the flux-producing component and to the torque-producing 

component of the stator current vector. As a consequence, it is very useful to represent the 

constraints (4.12) and (4.19) in the plane sdI - sqI . In this plane, (4.12) represents an 

ellipse whose semi-axes depend on the motor inductances and the angular frequency of 
the rotor flux vector, whereas (4.19) represents a circle whose radius is proportional to the 
maximum current max,sI . This circle does not change with the motor operating conditions, 

whereas the ellipse becomes smaller as the angular frequency increases. Finally, a 
constant-torque curve in the d-q plane is represented by an hyperbola, as can be deduced 
from (4.3). 

Using this graphical representation, one can easily understand the correspondence 
between speed regions and values of the stator current vector. This correspondence is 
shown in Fig. 4.1. 

In order to satisfy both the current and the voltage limit, the current vector should 
remain inside the common area of the ellipse and the circle. 

 

Fig 4.1 Representation of the motor operating conditions in the plane Isd-Isq. 
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When the motor operates in Region I, the speed is lower than the base speed and the 
limit ellipse is larger than the limit circle. The operating states of the motor are those 
represented in Fig. 4.1 by the points of the segment O-A, whose equation is given by 
(4.10). For the drawing of this segment, the speed has been assumed the same for all the 

points. In the point A the current sdI  has the rated value ratedsdI , ; hence a torque increase 

can be obtained only by increasing sqI  along the segment A-B until the magnitude of the 

stator current vector is equal to max,sI , in the point B. 

When the operating condition is that of the point B, the motor produces the maximum 
torque and the rotor flux has the value  

ratedsdratedrd MI ,,          (4.21) 

However, this operating condition can be reached by the motor only if the actual speed 
is lower than the base speed, because the more the speed increases, the smaller the ellipse 
becomes. When the angular frequency is equal to the rated value, the ellipse passes 
through the point B.  

At higher speeds, the reduction of the ellipse forces the operating point corresponding 
to the maximum achievable torque to move from B to C, while the magnitude of the 
stator current remains constant. The point C is the one corresponding to the maximum 
achievable speed without reducing the magnitude of the current injected in the motor, and 
it can be found imposing the condition that the ellipse is tangent to the constant-torque 
hyperbola. It is straightforward to recognize that the points of the arc B-C corresponds to 
Region II. 

Finally, when the back-emf becomes too big and it is not possible to inject the 
maximum current in the motor, the motor enters into Region III. This operating condition 
is represented by the points of the segment C-O, whose equation is given by (4.18). 

In the graphical representation of Fig. 4.1 the segment O-A is drawn supposing that the 
motor speed is lower than the base speed. The slope of the segment O-A has a behavior 
that is opposite of the coefficient Kopt, i.e. it tends to increase with the speed. This 
behavior can potentially interfere with the exploitation of the torque capability of the 

 

Fig 4.2 –Representation of the motor operating conditions in the plane Isd-Isq. Maximum torque that 
can be obtained while minimizing the power losses. 
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motor in the field weakening speed range, as explained hereafter. 
Let's consider Fig. 4.2, where the motor speed is supposed to be equal to the base 

speed. The slope of the segment O-A has been exaggerated for the sake of clearness and 
is supposed greater than the slope of the segment O-B. In this case the maximum torque 
could be produced in both the operating points A' and B. The operating point A' is on the 
segment of the minimum losses but it is not practically achievable, because it is outside 
the current circle. The maximum torque that can be produced without violating the 
constraint of minimum losses is the one of the point A, but this torque value is lower than 
that of the point B. 

In other words, when the motor operates in the field weakening speed range, the 
requirement of exploiting the torque capability is not compatible with that of minimizing 
the power losses. 

It is useful to calculate the value of the coefficient Kopt that makes the slope of the 
segment O-A equal to that of the segment O-B. It is straightforward to verify that this 
value is: 

2
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This equation will be used in the control scheme to guarantee a correct operation of the 
motor in the field-weakening speed range. 

 

4.5 Control Scheme 

The block diagram of the control scheme based on the previous considerations is 
shown in Fig. 4.3.  

As can be seen, the control scheme is composed by three different parts. The first one 
is the control loop of torque and flux, the second one manages the field weakening 

Fig 4.3 Block diagram of the control scheme 
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operation, whereas the third one minimizes the effect of fast fluctuations of the dc-link 
voltage. 

 

A. Torque and Flux Control Scheme 
 
The motor torque is adjusted by the PI regulator (d) that compares the reference torque 

with the actual torque. The output of this regulator is the torque-producing current reqsdi , , 

that tends to increase when the requested torque is greater than the estimated torque, and 
to decrease in the opposite case. 

Two PI regulators, (a) and (b), are used to track the reference signals refsdi , and refsqi , . 

As usual, the output signals of these regulators are compensated for the back 
electromotive forces. The reference voltages, synthesized by the inverter, are kept in the 
linear modulation range by the limitation block (c), whose explicit expression is as 
follows: 
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This block ensures that the magnitude of the reference voltage vector is not greater 
than the maximum voltage max,sV at disposal, that depends on the adopted modulation 

strategy and on the dc-link voltage. 
 

B. Robust Field Weakening 
 
The maximum torque that the motor can produce is limited by the maximum current 

Is,max in region I and II, and by the available voltage Vs,max in region III. 
The limitation block (f) indirectly assures that the two aforementioned constraints are 

satisfied in any speed region. In fact, the absolute value of the current isq is bounded by 
isq,max, which makes the stator current equal to Is,max or φsq equal to φsd, depending on which 
one is the most restrictive constraint at the present speed. The behavior of the limitation 
block (f) is shown in details in Fig. 4.4. 

The rotor flux is indirectly controlled by the PI regulator (e), which adjusts the d 
component of the stator current isd,req, according to (4.1). When the motor operating point 
is very close to the flux weakening region, the stator current error can lead to a voltage 

 

maxsqi ,

reqsqi ,

refsqi ,

maxsqi ,
 

Fig. 4.4 Limitation block (f) for the torque-producing component of the stator current. 
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request greater than a limit voltage Vs,lim. For sake of simplicity, Vs,lim can be assumed 
equal to the maximum voltage Vs,max at present, but it will be shown in the next section 
that this equality is true only in steady-state operating conditions. 

A positive difference between the amplitude of the requested voltage reqsv , , and the 

limit voltage means that backemf is too high and the flux level should be reduced. This 
task is executed by the PI regulator (e), that integrates the difference reqss vV ,lim,  . If this 

difference is negative, the d-component of the stator current decreases; otherwise, it 
increases up to the threshold value max,sdi   shown in the limitation block (g). This 

threshold value is the minimum between the rated current ratedsdI , and the current optsdi , that 

minimizes the motor losses. Fig. 4.5 shows the behavior of the limitation block (g) where 

max,sdi  and min,sdi  are the maximum and the minimum admissible values of the d 

component of the stator current, respectively. 
The value of optsdi ,  can be obtained by (4.10) but the gain Kopt has to be kept within the 

lower bound Kopt,min, as shown in the limitation block (l). This expedient avoids that the 
motor behaves incorrectly at high speed as described in section 4.3. 

The main advantage of the proposed field weakening scheme is that it is independent 
of the base speed and the motor parameters, except for the leakage inductance σLs, which 
is generally used in the state observer. In addition, it does not require any complex 
calculation of the flux level or look-up tables. 

 

C. Fluctuation of DC-Link Voltage 
 
In the previous section the new quantity lim,sV

 
has been introduced. In steady-state 

conditions lim,sV is equal to max,sV . However, as can be seen in Fig. 4.3, lim,sV  can be lower 

than max,sV  during transient operation because of the low pass filter (m). This low pass 

filter and the limitation block (i) have the aim to make the control system reactive to a 
fast reduction of the available voltage, but little sensitive to a fast increase. This increase, 
usually due to regenerative braking, could compromise the performance of the field-
weakening algorithm when the vehicle slows down. In fact, although the rise in the dc-
link voltage is transitory, the control system is deceived and untimely increases the flux 
level causing torque and current oscillations. 

To avoid this behavior, when the actual dc-link voltage is greater than the rated value 

rateddcE , , the limit voltage lim,sV  is calculated using a filtered value, which is less sensitive 

 

reqsdi ,
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minsdi , maxsdi ,

maxsdi ,

 

Fig. 4.5 Limitation block (g) for the flux-producing component of the stator 
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to fast variations. For simplicity, in the scheme of Fig. 4.3 it is supposed that the adopted 
modulation strategy is SVM, and hence the constant of proportionality between the dc-

link voltage and the limit voltage is 31  

It is worth noting that, although the proposed scheme temporarily hides an increase of 
the dc-bus voltage to the control system, it immediately detects the reduction of the 
available voltage, and this selective behavior ensures robust performance of the field 
weakening operation. 

 

4.6 Tuning the Regulator and Dynamic Behavior 

It is opportune to recall some transfer functions that are particular important for the 
analysis of the motor drive. For sake of simplicity, in the following, the angular frequency 
of the rotor flux and motor speed are supposed to vary very slowly, i.e. their time constant 
is much greater than the duration of the other electrical transients. 

These relationships are as follows: 
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Equations (4.24) and (4.25) describes the behavior of the rotor flux and the d-

component of the stator flux vector as functions of the current sdi . 

Equations (4.26) and (4.27) express stator currents as functions of the stator voltages. 
The poles of (4.26) are approximately placed at the following angular frequencies: 
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In other words, the pole 1p  depends on the time constant of the stator and the rotor 

windings, whereas the pole 2p  depends also on the leakage coefficient. 
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A. Tuning of the Current Regulators 
 
The tuning of the regulators (a) and (b) is usually made with zero-pole cancellations. 

The zero of the PI regulator (a) of the q-axis current is selected so that it cancels the pole 
of (4.27) at frequency -1/στs, due to the stator resistance and the leakage inductance. The 

zero of the PI regulator (b) of the d-axis current is selected so that it cancels the pole 2p  

of (4.26), since the effect of 1p  is mitigated by the zero at angular frequency 

r

z

1

          (4.30) 

The integral gains of both regulators are selected in order to guarantee a sufficient 
phase margin (>75°), keeping in mind that there are certainly other poles at high 
frequency, due to the inverter and the limited band-width of the sensors. 

As a conclusion, the closed-loop expressions of the current sdi  and sqi can be 

approximately expressed with first-order relationships: 
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where d   and q   are the crossover frequencies resulting from the choice of the regulator 

integral gains. 
 

B. Tuning of the Torque Regulator 
 
The relationships (4.31)-(4.32) can be used to tune the torque regulator (d), under the 

assumption that the motor operates in Region I and that the current sdi  is selected 

according to the optimization law (4.11). The expression of the torque (4.3) is nonlinear. 
Therefore, it is opportune to linearize it around a steady-state operating point. One 
obtains: 
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where the operator Δ is used to distinguish small-signal variables from large-signal 
variables. 

By using (4.10), (4.31) and (4.32), which are linear equations and hence are valid also 
for the small-signal analysis, it is possible to rewrite (4.33) as follows: 
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An immediate interpretation of the behavior of (4.34) is possible after expanding the 
second term inside the brackets in partial fractions, as follows: 
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where: 
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Since r  is usually much greater than d  and q , i.e. 01 c  and 12 c  , the torque 

response is dominated by the time constant r  and (4.35) can be approximated by a first-

order transfer function: 

 
s

i
K

L

M
pT

r

refsq
optr

r 







12

3 , .       (4.38) 

Therefore, the torque regulator can be tuned by cancelling the dominant pole of (4.38) 
and adjusting the integral gain to achieve a sufficient stability margin in the whole speed 
range. 

 

C. Tuning the Voltage Regulator 
 
In this section some hints about the tuning of the voltage regulator (e) will be given. 
For sake of simplicity let's suppose that, when the motor operates in the field-

weakening speed range, the stator voltage magnitude can be approximated as: 

 sdv  .         (4.39) 

Then, substituting (4.25) in (4.39) and using (4.31), the output voltage can be 
expressed as follows: 
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The regulator (e) can be tuned by selecting the position of its zero so that it cancels the 

low frequency pole r1  of (4.40).  

The zero of (4.40) is related to the leakage inductances, whereas the second pole, at 

higher frequency, is due to the control loop of the current sdi . It is worth noting that the 

more the speed increases, the more the back-emf increases. This causes an increase of the 
open-loop gain, that is proportional to ω, as can be seen from (4.40). 
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As a consequence the integral gain of the PI (e) has to be selected sufficiently small to 
ensure a good damping of the voltage response also at high speed and possibly a phase 
margin greater than 75 degrees. 

 

4.7 Power Measurement 

This section is dedicated to the methodology used to calculate and measure the 
mechanical and electric power and to the determination of machine parameters. This 
section is important to explain the way used to validate the proposed model. 

Nowadays several manufactures commercialize instruments for electric power 
measurement with highly-distorted voltages. However, the determination of the electric 
power is still a complex problem when the motor is fed by an inverter. 

The method that has been used for the measurement of the motor power is described 
hereafter.  

It is worth noting that the motor currents are nearly sinusoidal, except for a little ripple 
due to the switching. On the contrary, the voltages are discontinuous signals. 

The power measurement is based on the sampling of the motor currents and of the 
phase voltages [23]. The phase voltages can be measured directly, because the neutral 
point of the prototype is available. 

The samples of the motor power are evaluated by multiplying the current samples and 
the voltage samples together, and then the products are numerically averaged to extract 
the bias component . 

It is well-know that the overall accuracy achievable in electric drive measurements is 
mainly due to the transducers used to convert the current and voltage signals compatible 
with the input stage of the acquisition board. So, suitable transducers have been used, 
characterized by both large bandwidth and high accuracy. 

The current transducers are three Hall-effect sensors LEM LAH50P, with a nominal 
current of 50 A(rms), an accuracy of 0.25%, a linearity uncertainty less than 0.1%, and a 
bandwidth of 200 kHz (-1dB). 

The voltage transducers are three Hall-effect sensors LEM CV3 1000, with a nominal 
voltage of 700 V, an accuracy of 0.2 % and an offset voltage of 5 mV at 25°C, and a 
bandwidth of 500 kHz (-1 dB). 

The load resistors of the current and voltage transducers have an accuracy of 0.25%. 
The acquisition board is the model NI PXI-5105 produced by TI, that features eight 

12-bit channels with a sampling frequency up to 60 Ms/s. 
To avoid aliasing in the spectrum of the power (whose bandwidth is generally double 

than that of current and voltage signals), the sampling frequency was 2 Ms/s, i.e. four 
times the voltage bandwidth. The use of 12-bit A/D converters allows to keep the 
quantization error within acceptable limits. The correct determination of the mean power 
requires that the averaging period is an integer multiple of the fundamental period. This 
condition can be strictly met only if the sampling rate is synchronized to the signal 
fundamental frequency (synchronous sampling condition). Since the sampling condition 
during the experimental tests was generally asynchronous, to reduce the leakage and the 
truncation errors, a very long averaging window was adopted. 
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In conclusion, taking into account all the causes of error, it is possible to believe that 
the total uncertainty of the electric power measurement is lower than 4%. 

The mechanical power has been measured by means of a suitable torque and speed 
sensor, model Buster 8651-100. The accuracy of the torque sensor is 0.15%, whereas the 
resolution of the encoder is 1 degree. Taking into account that these quantities are 
elaborated and displayed by a conditioning device, it is possible to suppose that the rated 
mechanical power can be measured with an uncertainty lower than 2%. 

As a conclusion, the motor efficiency can be evaluated with an uncertainty of about 
6%. 

The calculation of the parameter Kopt requires the knowledge of several machine 
parameters. 

By means of a locked-rotor test, it is possible to determine the leakage inductance and 
the sum of the stator and rotor resistances. 

The stator resistance is usually determined directly by a dc measurement of the 
winding resistance, and hence it is possible to separate the contribution of the stator 
resistance from that of the rotor resistance in the result obtained in the locked-rotor test. 

The mutual inductance M can be found by a no-load test when the motor is fed by the 
grid, under the assumption that the motor rotates at the synchronous speed. Generally, this 
can be achieved by dragging the motor with another speed-controlled electric drive. 

For the determination of the core losses, several no-load tests at synchronous speed 
have been carried out by feeding the motor with an inverter at different frequencies and 
for different values of the current refsdI , . During each test the electric power, practically 

consisting of the motor iron power losses given in (4.5), has been measured. The 
parameters Kec and Khyst have been found by means of the method of least squares. 
According to this method the values of Kec and Khyst in (4.5) have been adjusted to best fit 
the data set of the power measurements. 

 
 

4.8 Experimental Results 

A complete drive system has been realized to verify the feasibility of the proposed 
control scheme. The experimental set-up consists of an IGBT inverter and a 4 kW, 4-pole 
squirrel cage induction motor. The motor parameters are given in Table I. 

Fig. 4.6 shows the behavior of the motor during a start-up transient when the torque 
reference is equal to the rated torque. Initially, the motor is at standstill and the stator 
current is nearly zero (in order to avoid useless waste of energy). After the application of 

TABLE I – MOTOR PARAMETERS 

Prated = 4 kW  Rs = 0.4 
Vs,rated = 110 Vrms Rr = 1  
Is, max = 20 Apeak Ls = 32.6 mH 
sd,rated = 7.2 Apeak  Lr = 32.6 mH

s = 250 rad/s  M = 29.9 mH 
J = 0.03 Kg m2  Kec = 5·10-5 WA-2(rad/s)-2 

Jtot = 0.22 Kg m2  Khyst = 6·10-4 WA-2(rad/s)-2 
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the rated torque command, the motor starts up, and the current reaches its maximum value 
(regions I). In region II the flux weakening algorithm automatically modifies both the d-q 
components of the stator current with the aim to exploit the rated current (region II). As 
soon as the motor enters in region III, the current decreases and the refsq ,  becomes equal 

to refsd , . 

Figs. 4.6 and 4.8 show the behavior of the control system when the torque reference is 
very small, about 20% of the rated torque. The current refsdi ,  is selected on the basis of the 

energy optimization strategy as far as this is possible, then the current injected in the 
motor tends to increase up to its maximum value for keeping the torque constant in region 

II, and finally the current magnitude decreases in region III. In Fig. 4.7, the current sdi has 

been normalized by dividing by Kopt. For this reason, in region I its trace follows exactly 
that of the current sqi . 

 

Fig.4.6 Start-up transient with rated torque (500 ms/div). 1) Motor speed (2000 rpm/div), 2) stator flux 
φsd (0.25 Wb/div), 3) stator flux φsq (0.25 Wb/div), 4) phase current (20 A/div). 

 

Fig.4.7 Start-up transient with 20% of the rated torque (500 ms/div). 1) Motor speed (2000 rpm/div), 2) 
current isd/Kopt (20 A/div), 3) stator current isq (20 A/div), 4) line current (20 A/div). 
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Fig. 4.9 shows a torque reversal from -40% to +40% of the base speed, and the motor 
speed operates in the constant-power speed region. As can be seen, the current isq 

reverses quickly and the current sdi  changes accordingly, i.e. it is proportional to the 

absolute value of sqi , so it firstly decreases nearly to zero, then it increases up to the rated 

value ratedsdi , , that is greater than the value of the current at the beginning of the torque 

reversal. Finally, when the motor speed exceeds the base speed, the current sdi decreases 

again to allow the field weakening operation. As can be seen, although the torque reversal 
takes place in about 100 ms, the torque goes to zero much more quickly, and this could be 
important for a vehicle braking. 

Fig. 4.10 shows the same situation of Fig. 4.9 but in this case the motor speed and dc-
link voltage are shown instead of the motor torque and the line current. It can be noted 
that the dc-link voltage increases during the motor braking. This increment is transitory 

 

Fig.4.9 Motor behavior during a torque reversal from -40% to +40% of the rated torque (200 ms/div). 1) 
Estimated torque (10 Nm/div), 2) line current (10 A/div), 3) stator current isd (20 A/div), 4) stator  
current isq (20 A/div). 
 

 

Fig.4.8 Start-up transient with 20% of the rated torque (500 ms/div). 1) Motor speed (2000 rpm/div), 2) 
magnitude of the stator current (20 A/div), 3) estimated torque (5 Nm/div), 4) line current (20A/div). 
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and lasts about 200 ms. However, this time interval is sufficient to deceive the field 
weakening algorithm, that could try to increase the flux level, hence triggering a sequence 
of voltage and current oscillations. The low pass filter (m) prevents this from happening 
and, as can be seen, the estimated torque remains unperturbed. 

The behavior of the control scheme during a fast speed deceleration from 150% to 0% 
of the base speed is illustrated in Figs. 4.11 and 4.12. As can be seen in Fig. 4.11 the 
filtered dc-link voltage, which is used for the calculation of Vs,lim, is little sensitive to the 
fast rise of the dc-link. As a result, the waveforms of currents, fluxes and speed are 
smooth, without neither overshoot nor undershoot. 

The results of Figs. 4.11 and 4.12 can be compared with those of Figs. 4.13 and 4.14, 
which show the behavior of the drive when the low-pass filter (m) is disabled. In this 
case, there is a counter-reaction in the current isd, that triggers some large oscillations in 
the current isq and, consequently, in the speed. 

 

Fig.4.10 Motor behavior during a torque reversal from -40% to +40% of the rated torque (200 ms/div). 
1) Motor speed (2000 rpm/div), 2) dc-link voltage (100 V/div), 3) stator current isd (20 A/div), 4) stator 
current isq (10 A/div). 
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Fig 4.11 Experimental test. Behaviour of the control scheme during a speed deceleration from 150% to 
0% of the base speed (200 ms/div). 1) Motor speed (1000 rpm/div). 2) Dc-link voltage (200 V/div). 3) 
Filtered dc-link voltage (200 V/div). 4) Stator current (20 A/div). 
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To assess the effectiveness of the power optimization, Figs. 4.15 and 4.16 show the 
motor efficiency as functions of the motor torque and speed. In Fig. 4.15 the power 
optimization is used, whereas in Fig. 4.16 it is not used, i.e. the saturation introduced by 

optsdi , in the saturation block (g) has been removed. 

For a better interpretation of these results, Fig. 4.17 shows the increment of efficiency 
due to the power optimization. As can be seen, the advantages are evident in particular at 
low speed and torque values (e.g. the vehicle is at a stand-still), where the improvement is 
about 20%. The optimization method does not offer any particular advantage when the 
motor torque is greater than 50% of the rated torque. 

 

4.9 Conclusions 

A control scheme for induction motor drives suitable for electric vehicles is analyzed 
in this chapter. The proposed scheme is based on a traditional rotor field-oriented control, 
improved in terms of robustness and efficiency. 

The proposed control scheme allows a smooth transition into and out of the field 
weakening mode, exploiting the maximum torque capability of the machine over the 
whole operating speed range. 

Whenever possible, the power losses are minimized by adjusting the flux level. 
The main advantages of proposed field weakening algorithm are: 
 

i) reduced dependence on machine parameters and no need of calculation of the 
base speed, which in general depends on the machine parameters, motor 
current and DC-link voltage 
 

ii) increase in the motor efficiency, useful specially when the motor operates at 
low speed 
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(2) 
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Fig 4.12 Experimental test. Behaviour of the control scheme during a speed deceleration from 150% to 
0% of the base speed (200 ms/div). 1) Motor speed (1000 rpm/div). 2) Stator flux φsd (0.25 Wb/div). 3) 
Stator flux φsq (0.25 Wb/div). 4) Stator current (20 A/div). 
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iii) good performance also in presence of large voltage variations of the dc-link 

 
The effectiveness of the proposed control scheme has been verified by experimental 

tests carried out on a prototype of the motor drive built in laboratory. 
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Fig 4.13 Experimental test. Behavior of the control scheme during a speed deceleration from 150% to 
0% of the base speed without filtering the dc-link voltage (200 ms/div). 1) Motor speed (1000 rpm/div). 
2) Stator flux φsd (0.25 Wb/div). 3) Dc-link voltage (200 V/div). 4) Stator current (20 A/div). 
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Fig 4.14 Experimental test. Behavior of the control scheme during a speed deceleration from 150% to 
0% of the base speed without filtering the dc-link voltage (200 ms/div). 1) Motor speed (1000 rpm/div). 
2) Current isd (20  A/div). 3) Current isq (20 A/div). 4) Stator current (20 A/div). 
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Abstract  
  
Nowadays variable speed ac drives are usually fed by power electronic converters. 
Although three-phase drives dominate the market, since the converter acts as an 
interface that decouples the three-phase voltage source from the motor, the number of 
phases may not be limited to three anymore.   
The advantages of multiphase drives over the traditional three-phase drives, such as 
improvement of the torque quality, reduction of the stator current per phase, 
improvement of torque density, and increase of the fault tolerance have drawn the 
attention towards this technology. 
The second part of this thesis is dedicated to the study of the multi-phase machine and 
multi-phase drives. This machine is characterized by a number of phases greater than 
three. 
In this chapter the mathematical model of a multi-phase induction machine is presented. 
The analysis is focused on machines with an odd number of phases.  
 

 

5.1 Introduction  

Multiphase motor drives offer a greater number of degrees of freedom compared to 
three-phase motor drives. In the following chapters it will be shown that the full 
exploitation can be used to improve the drive performance [1]. An interesting possibility, 
offered by multiphase machines, is the independent control of the low order spatial 
harmonic components of the magnetic field in the air gap of the machine. If the harmonic 
components of order greater than one are set to zero, the torque pulsation can be strongly 
reduced. On the other hand, if all the spatial harmonics are synchronized, the torque 
production capability of the machine can be increased [2], [3]. 

Another possibility is related to the so-called multi-motor drives. A well-defined 
number of multiphase machines, having series connected stator windings, with an 
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opportune permutation of the phases, can be independently controlled with a single 
multiphase inverter [4], [5]. 

Finally, the multiphase drive offers better reliability against inverter faults, since it can 
operate even with a reduced number of active phases [6], [7]. 

It is worth noting that it is not possible to analyze the behavior of a multiphase motor 
drive using the space vector representation in a single d-q plane. In fact, to completely 
describe a multiphase electromagnetic system, it is necessary to adopt the space vector 
representation in multiple d-q planes (multiple space vectors) [8]. 

In order to introduce the multi-phase drives that use all the degrees of freedom of this 
technology, the mathematical model of a multi-phase induction motor is presented. 

Furthermore this approach shows that three-phase machine can be considered a 
particular case of multi-phase machines. 

 

5.2 The Mathematical Model 

Under the same assumption discussed in the first chapter it is possible to describe the 
equations of a multi-phase induction machine. 

In figure 5.1 the coordinate reference frame for a five-phase machine is illustrated. 
This model can be easily extended to a generic M-phase machine. In figure 5.2 and 5.3 
the stator and the rotor magnetic field distribution produced by a generic phase k is 
showed.  

The amplitude of the magnetic field can be obtained due to Ampère's circuital law 
(5.1): 
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In (5.1) Ns is the number of conductors in series per phase, p the pairs of poles and   
the air-gap width. For the application of (5.1) a infinite value of iron permeability is 

 

Fig 5.1 stator and rotor coordinate systems description 
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assumed.  
Equation (5.1) can be expressed as a Fourier series. Equation (5.2) describes the 

relationship between the stator current Ski  flowing in the k-th winding Ski  and the stator 

magnetic field Skh , whereas (5.3) shows the expression of magnetic field Rkh  produced 

by the rotor  windings in terms of rotor current Rki : 
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where Nr is the number of rotor conductor in series per phase, R  the coordinate of the 

rotor reference frame. 
The variables ψsk and ψrk are magnetic field coordinates generated by the rotor and the 

stator windings. They can be expressed as: 
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The total magnetic field produced by the stator in the stator reference is the sum of the 
contributions of the magnetic field generated by each phase. 
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Taking (5.4) and (5.6) into account and by means of a substitution in (5.2), the stator 
magnetic field can be written as: 
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 Fig 5.2 stator magnetic field distribution  Fig 5.3 stator magnetic field distribution 
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The introduction of the symbol 


 M
j

e
2

 leads to (5.8). 
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211
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An analogous relationships can be deduced for magnetic field produced by the rotor 
windings: 

    
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RRkRR thth
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,,         (5.9) 
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 )1(

1

211
, .   (5.10) 

Equations (5.10) and (5.8) describe two important relationships, which can be 
simplified by means of the  space vector representation.  

 

5.3 Multiple Space Vector Representation 

The space vector representation was introduced in 1918 by Fortescue with a paper 
“Method of Symmetrical Co-ordinates Applied to the Solution of Polyphase Networks” 
[9]. The Fortescue studies were connected to the analysis of power network and they 
represent the first important publication where the space vectors were introduced for a 
generic M-phase system. However only in the 1929, Park with the paper “Two-Reaction 
Theory of Synchronous Machines“ [10] applied this approach to the study of three phase 
electrical machine. Furthermore in 1943 and 1950 Edith Clarke published two-volume 
edition of “Circuit Analysis of A-C Power Systems” where the space vector approach was 
extended for the analysis of every three-phase electrical machines. In 1926 Edith Clarke 
became the first woman to deliver a paper at the American Institute of Electrical 
Engineers.  

In this section the concept of multiple space vector representation is introduced. This 
powerful tool is strongly connected to the machine behavior.  

For a given set of M real variables x1 ,..., xk ,..., xM a new set of complex variables 

Mh xxxx ,...,,...,, 10 can be obtained by means of the following symmetrical linear 

transformations: 

  



M

k

kh
kh x

M
x

1

12  , (h = 0, 1, ..., M-1).    (5.11) 

The relationships (5.11) lead to a real variable 00 xx   (zero sequence component) and 

M-1 complex variables 11 ,...,,..., Mh xxx  (multiple space vectors). 

The inverse transformations are: 

  





1

0

1

2

1 M

h

kh
hk xx  , (k = 1, 2, ..., M),    (5.12) 
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where the symbol “  ” represents the scalar product. 

From (5.11) it can be recognized that the M-1 space vectors are redundant, being 

*
hhM xx  ,       (h = 1, 2, ..., M-1),       (5.13) 

where the symbol “*” specifies the complex conjugate 
Owing to this property, only (M-1)/2 space vectors, besides the zero sequence 

component, are necessary to represent the set of M real variables. 
In this dissertation, only the space vectors having an odd subscript   

( 2531 ,...,,...,,, Mh xxxxx ) will be utilized. The motivation of this particular choice is 

connected to the strict correlation existing between spatial harmonics and space vectors of 
odd order. 

As a consequence, the relationships (5.11) and (5.12) can be rewritten as: 

 



M

k

kh
kh x

M
x

1

12  ,   (h = 0, 1, 3, 5, ..., M-2),   (5.14) 

 





2

,...5,3,1

1
02

1 M

h

kh
hk xxx  ,  (k = 1, 2, ..., M).    (5.15) 

In general, each one of the (M-1)/2 space vectors can move arbitrarily in the 
corresponding d-q plane, independently of the others. 

 

5.4 Determination of the Magnetic Field in Air-Gap 

The introduction of multiple space vectors permits to rewrite (5.8) and (5.10) as 
follows: 
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,     (1.17) 
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211
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, .    (1.18) 

The stator magnetic field in air-gap can be expressed as: 

     
odd

j
SeSS

Sehth



 ,       (1.19) 

where 
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 .       (1.20) 

Furthermore the rotor magnetic field in air-gap is defined as: 

     
.

,
odd

j
ReRR

Rehth



       (1.21) 
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Note that the magnetic-field spatial harmonic of order ( = 1, 3, 5, ..., M-2) depends 
only on the corresponding current space vector Si . In particular, its amplitude is 

proportional to the magnitude of Si  and its angular speed (in electrical radians per 

second) is h =  / , where is the angular speed of Si . 

The presence of these magnetic-field spatial harmonics can be utilized for improving 
the torque density of the machine. Of course, this result is of interest when achieved 
under the same rms value of the stator current and the maximum air-gap flux density. 

In order to obtain this result it is necessary to synchronize, in terms of angular speed 
and position, the spatial harmonics on the basis of the following constraints [2]: 

 1  ,  (ρ = 1, 3, 5, ..., M-2).      (5.23) 

The spatial harmonics of order ( = M, 2M, 3M,…,kM) are stationary and their 
amplitude are proportional to the zero sequence component iS0 (usually null). 

The spatial harmonics of order ( = 1, 2M+1, 4M+1, 6M+1,…, 2kM+1) rotate in the 

same direction of 1Si with an angular speed  

The spatial harmonics of order ( = 1, 2M-1, 4M-1, 6M-1,…, 2kM-1) rotate in the 

same direction of *
1Si  (in other words they have a rotation verse opposite to 1Si ). 

The spatial harmonics of order ( = 1, 2M+3, 4M+3, 6M+3,…, 2kM+3) rotate in the 

same direction of 3Si . 

The spatial harmonics of order ( = 1, 2M-3, 4M-3, 6M-3,…, 2kM-3) rotate in the 

same direction of *
3Si . 

According to the number of phases several space vectors 5Si , 7Si  , 9Si ,..., )2( MSi  can 

be introduced. 
In a M-phase machine with sinusoidally distributed windings only the stator current 

space vector 1Si  contributes to the air gap magnetic field, and then to the torque 

production process. If the stator windings of (M-1)/2 machines are series connected, with 
an opportune permutation of the phases, each one of the (M-1)/2 current space vectors of 
the system can perform a high dynamic control of torque and flux in the corresponding 
machine, following the well-known Field Oriented Control (FOC) principle [11]. Note 
that the independent control of the (M-1)/2 M-phase machines can be obtained using only 
one M-phase VSI. To obtain the current space vectors required by this “Extended” FOC a 
very flexible modulation strategy must be adopted. 

Otherwise to achieve the improvement of the machine torque density the principle of 
FOC can be applied separately to each field spatial harmonics, acting independently on 
the (M-1)/2 current space vectors, according to (5.23). 

Once again, to obtain the current space vectors required by the “Extended” FOC a 
powerful VSI modulation strategy must be used. In the next chapter the multi-phase 
modulation strategies will be analyzed. 
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It is obvious that the same conclusion can be achieved for the rotor magnetic field. 
The magnetic field in the air-gap is the sum of contributions of stator and rotor. It can 

be expressed in stator reference as:  
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The magnetic field in the air-gap can also be expressed in the rotor reference frame as: 
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 (5.28) 
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5.5 Determination of the Linkage Fluxes 

In this section the determination of linkage fluxes with a phase is presented. 
The linkage flux with a phase can be expressed as: 

  
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Taking (5.20) and (5.22) into account leads to the following relationships:
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Equation (5.32) describes the relationships among voltage, stator current, and flux for 
a generic phase k.  

 .,...,2,1 Mk
dt

d
iRv Sk

SkSSk 


     (5.32) 

It is worthy noting that by means of the vector representation given in (5.11), (5.32) 
can be expressed as:  
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d
iRv S

SSS
0

00
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         (5.33) 

 )2,...,5,3,1(  M
dt

d
iRv S

SSS 
 

 .     (5.34) 

In the same way it is possible to write the rotor equations 

 Mk
dt

d
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d
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 )2,...,5,3,1(  M
dt

d
iRv R

RRR 
 

      (5.37) 

The total linkage flux with a generic phase k is the sum of the leakage flux and the air-
gap linkage flux. 

 .,...,3,2,1 MkSTkSdkSk        (5.38) 

 .,...,3,2,1 MkRTkRdkRk        (5.39) 

The application of the transformation (5.11) to (5.38) and (5.39) permits to obtain the 
following relationships: 

 )2,...,3,1,0(  MSTSdS        (5.40) 

 )2,...,3,1,0(  MRTRdR   .     (5.41) 

The leakage coefficients Lsd and Lrd describe the relationship between stator and rotor 
current and the linkage flux with phase k. 

 .,...,3,2,1 MkiL SkSdSdk        (5.42) 

 .,...,3,2,1 MkiL RkRdRdk        (5.42) 

The introduction of the leakage coefficient Lsd and Lrd permits to express (5.40) - (5.41) 
as: 
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 )2,...3,1,0(  MiL SSdSd         (5.43) 

 )2,...3,1,0(  MiL RRdRd   .      (5.44) 

Furthermore the application of transformation (5.11) to equations (5.30) and (5.31) 
leads to the following relationships. 
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5.6 Determination of the Electromagnetic Torque 

The electromagnetic torque in electric machine can be determine by means of an 
energy balance. 
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         (5.49) 

where emT  is the torque, m is the mechanical angle, and '
mW  is the magnetic co-energy. 

When the motor is not in magnetic saturation, the magnetic co-energy is equal to 
magnetic energy. 
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         (5.50) 

The angle m  is related to   by the following simple relationship: 

 mp           (5.51) 

 
 
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pT  .        (5.52) 

The initial hypotheses permit to consider the magnetic energy of the leakage fluxes 
invariant with the angular position  . Therefore to determine the torque is sufficient to 
consider the magnetic energy in the air-gap. 
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The equation (5.28) describe the magnetic field in the air-gap as sum of the 
contribution of stator and rotor magnetic field. 
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Therefore the Torque can be expressed as: 
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where  
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 S
R

j
R heh 
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The torque produced by an induction motor can be rewritten as: 
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Equations (5.64) describes the torque by means the magnetic field produced by stator 
and rotor windings, but it can be related to the currents present in machine. 
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If the machine windings are star connected of the common mode currents are equal to 
zero, and if the rotor is short-circuited, new relationships can be written. 

The introduction of self-inductance coefficients and mutual inductance coefficient 
permits to express relations generally used in the control of electric drives. 
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 )2,...,3,1(  MLLL SSSdS       (5.69) 

 )2,...,3,1(  MLLL RRRdR  .     (5.70) 
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Finally the expression of torque can be achieved.  
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5.7 Machine Equations 

In this section the machine equations of induction motor are resumed.  
The common mode equations are given by: 
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Whereas the machine equation in dρ-qρ  plane can be express as: 
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      (5.73)

 

The equation (5.71) define the electromagnetic torque produced. 
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5.8 From Machine Equations to the Extended Vector Control of a 
Multi-Phase Induction Machine 

By taking (5.72) and (5.73) into account it is possible to show that the most important 
machine quantities are connected to the rotor flux.  

The rotor flux can be express as: 

  j
RR e          (5.74) 

and its derivative is given by: 
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d
       (5.75) 

where 

 Rdt
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 .         (5.76) 

The relationships between the machine quantities and rotor flux are resumed in the 
following equations: 
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Therefore the rotor and the stator current, the torque and the magnetic field in the air-
gap are strongly connected to the rotor flux. This assumption suggests the operating 
principle of the vector controls, i.e. the control of the rotor flux. 

Substituting (5.80) in (5.77) – (5.79) leads to a new set of equations. 

 


 

 j

R

emR

R
R e

T

pM
j

dt

d

R
i

































21
     (5.81) 

 





















 jj

R

em
R

R

R

R
RS ee

T
L

p
j

dt

d

R

L

M
i



































3

21
  (5.82) 

 






 





j

R

em
Rd

R

R

Rd
R

SR
T e

T
L

pM
j

dt

d

R

L

Mp

MN
h



































2

2 1

. (5.83) 



Mathematical Model of a Multi-Phase Induction Motor 

 

107 
 

The decomposition of (5.82) in real and imaginary part discloses that the d-component 
of the stator current controls the rotor flux (5.84) whereas the q-component controls the 
machine torque (5.85). 
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Fig. 5.4 shows the scheme for the multi-phase vector control of an induction motor. 

 

5.9 Conclusions 

In this chapter the mathematical model of a multi-phase induction motor has been 
derived. 

The equations presented have shown that the three-phase machine is a special case of a 
more general multi-phase machine, where only the fundamental harmonic is responsible 
for the production of torque. In a multi-phase machine, instead, there are several degrees 
of freedom that can be successfully used for various applications. 

In this dissertation four different applications of a multi-phase machine will be 
analyzed. In Chapter 8 an extended stator flux vector control for seven-phase induction 
motor will be introduced. In this situation the spatial harmonics of order (ρ=3,5) will be 
set to zero to improve  the torque quality. 

 

 
Fig 5.4 Basic scheme for multi-phase induction motor drive. 
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In Chapter 9 a high density torque application will be considered. In this case the 
spatial harmonic of order 3 will be successfully used in order to increase the torque of the 
motor in accordance with the constraints imposed from the drive. 

In Chapter 10 different fault tolerant drives will be introduced and finally the chapter 
11 the multi-motor application will be presented.  

The multi-phase machines, due to their qualities, stand as a valid alternative to 
standard three-phase machine. 
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Multi-Phase Inverter 
 
Abstract  
  
Since late 1990s multiphase drives have become a serious alternative to three-phase 
drives in some particular applications such as electric ship propulsion, locomotive 
traction, electric vehicles and high power industrial applications. Nowadays the 
research activity is focused on the development of control strategies that can exploit the 
degrees of freedom that exist in multiphase machines. As known, a multiphase motor 
cannot be analyzed using the space vector representation in a single d-q plane, but it is 
necessary to introduce multiple d-q planes. 
In this chapter the structure of a multi-phase inverter is described and the degrees of 
employment of DC link is analyzed. The problem of the space vector modulation of 
multiphase inverters with an odd number of phases is solved in different way. An 
algorithmic approach and a look-up table solution are proposed. 
The validity of the analytical approach and the feasibility of the proposed solution are 
confirmed by several experimental tests. 
 
 

6.1 Introduction 

It is worth noting that it is not possible to analyze the behavior of a multiphase motor 
drive by using the space vector representation in a single d-q plane. In fact, to completely 
describe a multiphase electromagnetic system, it is necessary to adopt the space vector 
representation in multiple d-q planes (multiple space vectors). 

In order to fully exploit the potential of M-phase motor drives, a suitable and flexible 
modulation strategy for M-phase voltage source inverters (VSIs) has to be defined. 

Two different methods are usually adopted, i.e., space vector modulation (SVM) [2]–
[6], and carrier-based pulsewidth modulation (PWM) [7]–[12]. For three-phase VSIs, the 
equivalence of the two methods has been proved, and they can be interchangeably 
implemented. 

On the contrary, in the case of multiphase VSIs, the carrier-based PWM method seems 
the most feasible, due to its inherent simplicity. The reason is that PWM focuses the 
attention on the control of each inverter branch, and this task is relatively simple if 
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compared with the aim of SVM, i.e., the determination of the switching pattern, which 
involves all the branches of the inverter. 

For all these reasons, carrier-based PWM is considered more promising than SVM 
owing to its inherent simplicity in the case of multiphase VSIs.  

The theory of carrier-based PWM for multiphase VSIs was presented in general terms 
in [8], but even before several remarkable contributions can be found in literature. The 
leading idea was usually to adapt the methods used for three-phase inverters to 
multiphase systems. Accordingly, modulation strategies with harmonic injection or 
discontinuous modulating signals were presented in [9]-[11]. Afterwards the research 
focused on the usage of carrier-based PWM for specific applications, such as multi-motor 
drives, five-phase or seven-phase motor drives [7], [16] 

In this chapter the problem of the modulation strategy of M-phase inverters is 
completely solved using the Duty-Cycle Space Vector (DCSV) approach [17]–[18], 
which combines the multiple space vector representation, useful in modeling and 
controlling multi-phase machines, with traditional carrier-based PWM principle, suitable 
for multi-phase VSIs. 

The DCSV approach, based on a space vector representation of the switch states, leads 
to the definition of a very flexible carrier-based PWM strategy that allows the full 
exploitation of the dc input voltage, and the independent control of fundamental and low 
order harmonics of the spatial field distribution. This modulation technique can be also 
employed for the control of multi-motor drives. 

Furthermore, using the DCSV approach it is possible to predict the inverter voltage 
limit, which is very crucial for to the drive performance in the high-speed range [8]. 

Moreover SVM technique is also presented. The main reason of this choice is that 
SVM is well known for three-phase inverters, and it has been integrated in a number of 
logic devices that can manage the turn-on and turn-off of the inverter switches, such as 
field-programmable gate arrays (FPGAs) and complex programmable logic devices. For 
reasons related to the technical experience or just for economic convenience, a company 
could find preferable to update the available SVM algorithms for three-phase inverters 
rather than to completely renounce to its previous know-how. In addition, the definition 
of new methods for SVM could avoid potential patent violations. 

To understand the basics of a M-phase system, the traditional space vector 

representation in a single d–q plane is not sufficient, but it is necessary to use (M − 1)/2 

d–q planes. 
The research activity for the definition of a general SVM in multiple d–q planes has 

led to some remarkable results. 
Only recently some new approaches to SVM have led to general-purpose modulation 

strategies based on iterative procedures, such as sorting or searching algorithms [15],[19]. 
These strategies are more flexible than the previous ones but have higher computational 
costs. 

The first proposals [2]–[5],[20] have indeed the merit of demonstrating the feasibility 
of multiphase drives (in particular five-phase motor drives) but do not exploit all the 
available degrees of freedom. For example, the SVM techniques proposed in [13] and 
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[19] require the second voltage space vector to be always zero. The SVM technique 
defined in [3] and [7] considers the modulation of the first voltage space vector and 
allows also the modulation of the second voltage space vector with small magnitude. 
Finally, the SVM techniques presented in [17] and [18] can independently synthesize 
voltage vectors in more than one d–q plane, but they cannot ensure to fully utilize the dc 
input voltage. 

Only recently some new approaches to SVM have led to general modulation strategies 
for multiphase inverters [14]–[15],[19]. 

Whereas the approaches proposed in [15] and [19] can be considered somehow a 
generalization of the traditional SVM for three-phase inverters, the approach presented in 
[14] adopts a different point of view. In that paper, the authors do not use the concept of 
space vector and the reference voltages are directly expressed in terms of phase voltages. 
In this way, they could obtain a very general solution, valid for M-phase electric systems, 
which is applicable also to multilevel inverter. 

Nevertheless, the concept of space vector is particularly useful in motor control, and it 
is of interest to recover it, generalizing the traditional SVM theory of three-phase VSI. 
For this reason, in this chapter, it is proposed an alternative approach to space-vector 
modulation, derived from the method proposed in [15] for five-phase inverters, which is 
further developed and extended to multiphase inverters. 

All proposed approaches lead to the definition of a very flexible modulation strategies 
that allows the full exploitation of the dc input voltage, and the simultaneous modulation 
of voltage space vectors in different d-q planes. 

This last property allows one to synthesize the voltage vectors required by a 
multiphase system, either based on a multiphase motor with high torque density or on 
multi-motor drives. The proposed modulation theories are confirmed by several 
experimental tests 

 

6.2 Multiple Space Vector Representation 

The study of three-phase systems, in steady-state and transient operating conditions, 
takes advantage of the definition of a space vector and a zero sequence component. This 
powerful tool can be usefully extended, and then adopted, for the analysis of multi-phase 
systems [1]. 

For a given set of M real variables Mk xxx ,...,,...,1  a new set of complex variables 

10 ,...,,..., Mh xxx  can be obtained by means of the following symmetrical linear 

transformations: 

  



M

k

kh
kh x

M
x

1

12  ,     (h = 0, 1,..., M-1),     (6.1) 

where  Mj /2exp   . 

Assuming M an odd number, the relationships (6.1) lead to a real variable 00 xx   

(zero sequence component) and M-1 complex variables 11 ,...,,..., Mh xxx  (multiple space 

vectors).  
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The inverse transformations are 

  





1

0

1

2

1 M

h

kh
hk xx  ,     (k = 1, 2,..., M),     (6.2) 

where the symbol “  ” represents the scalar product. 
From (6.1) it can be recognized that the M-1 space vectors are redundant, being 

 *
hhM xx  ,       (h = 1, 2,..., M-1),      (6.3) 

where the symbol “*” specifies the complex conjugate. 
Owing to this property, only (M-1)/2 space vectors, besides the zero sequence 

component, are necessary to represent the set of M real variables. 
In following analyses, only the space vectors having an odd subscript 

),...,,...,,,( 2531 Mh xxxxx  will be utilized.  

As a consequence, the relationships (6.1) and (6.2) can be rewritten as: 
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M

k

kh
kh x

M
x

1

12  ,     (h = 0, 1, 3, 5,..., M-2),     (6.4) 

 





2

,...5,3,1

1
02

1 M

h

kh
hk xxx  ,      (k = 1, 2,..., M).    (6.5) 

In general, each one of the (M-1)/2 space vectors can move arbitrarily in the 
corresponding d-q plane, independently from the others. 

In the particular case of M-phase systems in balanced and sinusoidal operating 

conditions, the space vector 1x  assumes a special relevance being the only one space 

vector different from zero. 
On the other hand it is opportune to emphasize that, in the general case, all the (M-1)/2 

space vectors and the zero sequence component are necessary to completely describe the 
M-phase system, and therefore they have to be absolutely taken into account. 

In Chapter 8 it is shown that M-phase machines are capable of developing more torque 
for the same amount of copper and iron than equivalent three-phase machines. This 
improvement of the torque density can be achieved injecting third harmonic current 
components. It should be noted that these current components, producing a third space 
harmonic of magnetic field in the air gap that rotates synchronously with the fundamental 
space harmonic, are described by a current space vector with index h different from 1. For 
instance, in five-phase machines the third space harmonic component is related to the 
current space vector with h = 3. 

 

6.3 Duty Cycle Space Vector Approach 

In order to implement any type of control strategy it is necessary to determine a VSI 
modulation technique able to synthesize, in each cycle period, (M-1)/2 arbitrary and 
independent voltage space vectors. This problem is completely solved in this Section 

A schematic drawing of an M-phase VSI supplying a star connected balanced load is 
presented in Fig. 6.1. 
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The proposed approach is based on the direct determination of the switching signal kS  

of each inverter leg (Fig. 6.1), according to the well known carrier-based PWM approach. 
The calculation of the switching signals is repeated in each cycle period Tc, allowing 

any voltage waveform to be easily synthesized. 

The switching signals kS  (k = 1, 2, ..., M) are obtained comparing a triangular carrier 

signal c, varying within the interval [0, +1], with M regular-sampled (i.e. assumed 

constant in each cycle period) modulating signals km  (k = 1, 2, ..., M), as shown in Figs. 

6.2 and 6.3.  
 
It should be noted that the modulating signals represent also the duty-cycles of the 

inverter legs, and they must satisfy the following constraints: 

  1,0km  (k = 1, 2, ..., M).      (6.6) 

Assuming the input/output quantities of the inverter represented by their average 
values over the cycle period cT , the value of the modulating signals mk (k = 1, 2, ..., M), in 

each cycle period, can be obtained by the following procedure, according to the DCSV 
approach. 

Edc 

1 0 k M 

N 

sk s1 sM 

 

Fig. 6.1.  Structure of a multiphase VSI. 
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Fig. 6.2. Carrier and modulating signals.
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Fig. 6.3. Switching signals generation. 
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6.4 Relationship between Pole and Load Voltages 

For each inverter leg, the following general relationships can be written: 

 00 NkkN vvv  ,       (k = 1, 2, ..., M),     (6.7) 

where kNv and 0kv are the load and the pole voltages of the k-th phase, respectively. 

From the point of view of the multiple space vector representation, according to (6.4), 
(6.7) become 

 000 2 N
PL vvv  ,        (6.8) 

 P
h

L
h vv  ,  (h = 1, 3, 5,..., M-2)      (6.9) 

where Lv0  and Pv0  are the zero sequence components of the load and pole voltages, 

respectively, whereas L
hv  and P

hv  are the corresponding h-th space vectors. 

Owing to the assumption of a balanced load, Lv0  is zero, then (6.8) can be rewritten as 

 00 2 N
P vv  .         (6.10) 

As can be seen, the zero sequence component of the pole voltages does not affect the 

load voltages, but determines the voltage 0nv . 

On the other hand, (6.9) emphasizes that the space vectors of the load voltages 
coincide with the corresponding space vectors of the pole voltages. 

 

6.5 Definition of Duty Cycle Space Vectors 

The pole voltage 0kv  can be written directly as function of the modulating signals, 

leading to 

 kdck mEv 0 , (k = 1, 2, ..., M),      (6.11) 

being dcE  the voltage of the dc source. 

Applying the transformation (6.4) to (6.11) yields 

 00 mEv dc
P           (6.12) 

 hdc
P

h mEv  ,       (h = 1, 3, 5,..., M-2),     (6.13) 

where 
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


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        (6.14) 
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12  , (h = 1, 3, 5,..., M-2).    (6.15) 
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The quantity 0m  is the zero-sequence component of the duty-cycles, whereas hm  

represents the h-th DCSV of the M-phase VSI. 
Using (6.9) and (6.13) leads to: 

 hc
L

h mVv  , (h = 1, 3, 5,..., M-2).      (6.16) 

Note that the (M-1)/2 space vectors of the line-to-neutral load voltage are directly 
proportional to the corresponding DCSVs. 

On the other hand, substituting (6.10) in (6.12) yields 

 
2

0
0

mV
v c

N  .         (6.17) 

As can be seen from (6.16) and (6.17), the zero sequence component of the duty-cycles 

does not affect the load voltages, but determines the voltage 0nv . 

The duty-cycle zero sequence component 0m does not affect the load voltage and then 

can be used to determine different modulation strategies and to optimize the input voltage 
utilization. 

 

6.6 Generalized Modulation Strategies for M-Phase VSI 

The general solution to the modulation problem of an M-phase inverter can be readily 
obtained by using the previous relationships. 

Let us consider the load voltage space vectors refhv ,   (h = 1, 3, 5, ..., M-2) known as 

reference quantities, i.e. generated by the control algorithm in each cycle period. 
Using (6.5) and (6.26) leads to the following fundamental equations: 

  
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


2

,...5,3,1

1
,0

1

2

1 M

h

kh
refh

c
k v

V
mm  , (k = 1, 2, 3,..., M).   (6.18) 

Equations (6.18) allow the calculation of the modulating signals of all the inverter legs 
in each cycle period, following the procedure shown in Fig. 6.4. All the possible PWM 
techniques for M-phase VSIs can be derived from (6.18), with an opportune choice of the 
zero sequence component m0, which represents a degree of freedom. The selection of m0, 
in each cycle period, should be carried out in order to fully utilize the dc voltage and to 
optimize some characteristics of the modulation law, such as the switching frequency and 
the output voltage spectrum. 

 

6.7 Voltage Limits 

The duty-cycle constraints, given in (6.6), introduce complicated limitations on the 
possible values of  refMrefrefrefref vvvvv ,2)1(,5,3,1 ,...,,,   that can be properly synthesized, 

in each switching period. In three-phase inverters, this problem involves only the space 
vector refv ,1 , and it has been already completely solved. 
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The duty-cycle constraints are satisfied (i.e., the reference output voltage space vector 
can be synthesized) if refv ,1  lies within a prefixed hexagonal region, whose dimension 

depends on the dc input voltage. 
In multi-phase inverters the general solution of this problem represents a challenging 

task, because it concerns all the voltage space vectors refMrefrefref vvvv ,2)1(,5,3,1 ,...,,,   at the 

same time. A possible simplification is to consider as variables of the problem only the 
magnitudes of the vectors, disregarding the phase angles (i.e., allowing them to assume 

any value in the range [0, 2π]). 

Taking into account the degree of freedom constituted by 0m , the modulation 

constraints expressed in (6.6) can be rewritten as 

 1 hk mm , (k=1,2,…,M-2)  (h=1,2,…,M)   (6.19) 

Substituting (6.18) in (6.19) and taking into account (6.13), it is possible to transform 

the voltage limit problem in the DCSV limit problem, which is independent of dcE , 

leading to 

  )1()1(

,...,5,3,1





 ihkh

Mh
hm  ,  (i=1,2,…,M).    (6.20) 

Using the polar representation, the DCSVs can be expressed as follows: 

hj
hh eMm  , (h=1,3,5,…,M-2).      (6.21) 

Taking into account (6.19), after some manipulations, (6.20) can be rewritten as: 

    
2

1
sin2sin

,...,5,3,1
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
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

 


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h
ik
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h
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Mh
hh

 .   (6.22) 

The analysis of (6.22), written for each couple (k, i) (k = 1, 2,…,M and i =1,2,…,M), 
allows the determination of the voltage limit in an explicit form. Taking the worst case 
scenario as the reference case allows (6.22) to be rewritten as: 

 

m0 

Edc 

m1 

mk 

mM 

Leg modulating 
signals 

Eq. 
(6.18) 

PWM 
M-phase 

VSI

Extended
FOC 

vM-2,ref 

v1,ref 

vh,ref 

m0 selection 
algorithm

 

Fig. 6.4.  Determination of the inverter leg modulating signals on the basis of the DCSV approach. 
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  
2

1
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,...,5,3,1





 



ik
M

h
M

Mh
h


, (k,i=1,2,…,M).   (6.23) 

Due to the inherent symmetry, the constraint conditions (6.23) can be summarized in 
different forms according to number of phases. 

The inequality (6.23) is a exhaustive relationship, it is able to describe the voltage 
limits of any type of multi-phase inverter with odd number of phases. 

The following sections give prominence to the five and seven phase inverter. This 
choice is justified to the fact that five and seven phase systems are the first multi-phase 
system with odd number of phase over three. And they are the subject of numerous and 
most important study in this sector. Furthermore when the number of phase is very high 
the possibility of describing graphically the solution of voltage limits is lost. 

 

6.8 Five-Phase Inverter 

For a five phase inverter the modulation constraints expressed in (6.19)-(6.23) become: 

 1 ik mm ,  (k = 1, 2, ..., 5),  (i = 1, 2,..., 5)    (6.24) 

       1
31

11 




,h

ihkh
hm , (k = 1, 2,..., 5), (i = 1, 2,..., 5). (6.25) 

 hj
hh emm  , (h = 1, 3).       (6.26) 

Finally equation (6.22) can be write as: 
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           (6.27) 

The analysis of (6.27), written for each couple (k, i) (k = 1, 2,..., 5 and i = 1, 2,..., 5), 
allows the determination of the voltage limit in each switching period. 

In order to clarify the application of (6.27), the analysis will be focused on some 
relevant operating conditions. 

 

A. Motor Drives without Third Spatial Harmonic 
In this case the third spatial harmonic of magnetic field in the air gap is not utilized 

and the five-phase VSI has to generate balanced and sinusoidal output voltages. 
The corresponding DCSVs can be expressed as follows: 

 tjeMm 
11  ,         (6.28) 

 03 m .         (6.29) 

Substituting (6.28) and (6.29) in (6.27) yields 
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           (6.30) 

Taking the worst condition into account leads to 

   526.0
52sin2

1
1 


M .       (6.31) 

The relationship (6.31) represents the well-known voltage limit that can be achieved 

provided that an opportune choice of the zero-sequence 0m  in each switching period, is 

taken. If 0m  is simply fixed to 21  (sinusoidal PWM) the voltage limit becomes 

 5.01 M .         (6.32) 

 

B. Motor Drives with Third Spatial Harmonic 
 
When the third spatial harmonic of magnetic field in the air gap is considered, the VSI 

has to generate balanced but non-sinusoidal output voltages. 
The corresponding DCSVs, which must ensure the synchronization of the first and 

third spatial harmonics, can be described by the following general expressions: 

 tjeMm 
11  ,         (6.33) 

 
tjj eeMm  3

33 .        (6.34) 

Substituting (6.33) and (6.34) in (6.27) leads to 
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           (6.35) 

In this case, the analytical determination of the DCSV limit in explicit form, taking 
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Fig 6.5 Validity domains of M1 and M3 as function of the phase angle φ 
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into account the parameter φ, is not so easy.  
The results obtained using a numerical procedure are summarized in Fig. 6.5. In this 

figure the validity domains of M1 and M3 are shown, for different values of the phase 
angle φ. The range of variation of φ is [0°, 180°], because the behavior of M1 and M3 is 
the same for positive and negative values of φ. 

Note that, when M3 = 0, the maximum value of M1 is equal to the value predicted by 
(6.32). This operating condition is represented by the point A in Fig. 6.5. 

For small values of the phase angle φ, an increase in the value of M3 causes a reduction 
of the maximum achievable value of M1. On the other hand, if φ is close to 180°, it is 
possible to increase the maximum achievable value of M1 up to nearly 0.6 (point C). It is 
worth noting that in this operating condition a third harmonic component is present and 
cannot be avoided. 

 

C. Multi-Motor Drives 
 
In this case, the DCSVs must be completely independent, with arbitrary behavior, 

being related to the first spatial harmonics in the two different machines. In general, they 
can be described as follows: 

 1
11

jemm  ,         (6.36) 

 3
33

jemm  .         (6.37) 

It is very interesting to derive the validity domain of 1m  and 3m  regardless of the 

values of the phase angles β1 and β3. 
Taking into account the worst condition for β1 and β3 allows (6.27) to be rewritten as 
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           (6.38) 

The five inequalities in (25) can be summarized by the two following simultaneous 
constraints: 
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       (6.39) 

The corresponding validity domain of 1m  and 3m is represented by the shaded area 

in Fig. 6.6. 
As can be seen, the validity domain of Fig. 6.6 is the intersection of all the validity 

domains shown in Fig. 6.5, for different values of the phase angle φ. 
Note that the square region with dashed boundary represents the validity domain 

obtained when using the SVM technique proposed in [7]. 
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This result shows that, using the carrier-based PWM technique together with DCSV 
approach makes it possible to extend significantly the voltage limit. 

 

D. Experimental Results 
 
In order to verify the effectiveness of the proposed modulation strategy and to validate 

the consistency of the voltage limit analysis some experimental tests have been 
performed. 

The experimental setup consists of a custom-designed five-phase voltage source 
inverter feeding a five-phase symmetrical series-connected R-L passive load (R = 22 Ω, L 
= 1.15 mH). The IGBTs are rated at 30A and 630 V and the dc bus voltage is around 100 
V.  The control algorithm is implemented in a Digital Signal Processor (DSP) 
TMS320F2812. The switching period is 250 μs, corresponding to a switching frequency 
of 4 kHz.  

The particular modulation strategy adopted for the experimental tests can be 
considered as a generalization of the well-known symmetric modulation used with three-

phase inverters. The zero sequence component 0m  is selected in order to maintain the five 

modulating signals centered within the interval [0,1], according to the following 
relationship: 

    1,...,min,...,max 5151  mmmm .      (6.40) 

The experimental tests have been carried out in four different operating conditions, 

 Case 1) Case 2) Case 3) Case 4) 

tjeMm 1
11

  
M1 = 0.526 

ω1 = 2π 50 rad/s
M1 = 0.6 

ω1 = 2π 50 rad/s
M1 = 0.6 

ω1 = 2π 50 rad/s 
M1 = 0.326 

ω1 = 2π 50 rad/s 

tjj eeMm 3
33

 M3 = 0 M3 = 0 
M3 = 0.15 

ω3 = 2π 150 rad/s
φ= π rad 

M3 = 0.326 
ω3 = 2π 20 rad/s 

φ = 0 rad 

TABLE I OPERATING CONDITIONS CONSIDERED IN THE EXPERIMENTAL TESTS 
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Fig 6.6 Validity domain of 1m  and 3m  
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named Case 1), Case 2), Case 3) and Case 4), as defined in Table I 
 
Case 1) is referred to a five-phase drive without third spatial harmonic, and 

corresponds to the point A in Fig. 6.5, which lies on the voltage limit. The results 
obtained in the experimental tests are shown in Figs. 6.7 

As can be seen in Fig. 6.7 (a), the modulating signal m1 remains within its validity 
domain, whose boundaries are emphasized by the two horizontal dashed lines. Fig. 6.7 (b) 
illustrates the waveforms of the load currents i1, i3 and i5, having sinusoidal shape and the 
right displacement. The waveforms of the load currents have been filtered using a low 
pass filter with a cut-off frequency of 500 Hz in order to cancel the current ripple due to 
the switch commutations, and to emphasize the harmonic content in the low frequency 
range. 

 
Case 2) corresponds to the point B in Fig. 6.5, which exceeds the voltage limit, as 

predicted by the theoretical analysis. The results of the experimental tests are shown in 
Figs. 6.8 

As expected, the modulating signal m1, shown in Fig. 6.8 (a), exceeds the validity 

 

Fig 6.7 Experimental test a)Modulating signal m1 (5 ms/div), b)filtered load currents i1, i3 and i5 (2 
ms/div 1 A/div).) 

 

Fig 6.8 Experimental test a) Modulating signal m1 (5 ms/div), b)filtered load currents i1, i3 and i5 (2 
ms/div 1 A/div).) 
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domain and then, the inverter operates out of the linear modulation region. As can be seen 
in Fig. 6.8 (b), the filtered load currents are no longer sinusoidal, but clearly distorted. 
 

Case 3) makes reference to a hypothetical five-phase drive with third spatial harmonic, 
and corresponds to the point C in Fig. 6.5, which lies on the voltage limit. The obtained 
results are shown in Figs. 6.9. 

As can be seen in Fig. 6.9 (a), the modulating signal m1 remains within its validity 
domain. The filtered waveforms of the load currents i1, i3 and i5, which are shown in Fig. 
6.9 (b), are not sinusoidal. This is due to the load voltage space vector 3v , required to 

inject a 150 Hz system of balanced sinusoidal load currents of sequence 3, responsible for 
the third spatial harmonic of the magnetic field in the air gap.  

 
Case 4) makes reference to five-phase multi-motor drives and corresponds to point D 

in Fig. 6.6. Note that this point lies on the voltage limit. 

As expected, the modulating signals 1m , 3m  and 5m , represented in Fig. 6.10 (a), 

remain within their validity domain. Fig. 6.10 (b) shows the filtered waveforms of the 

 

Fig 6.9 Experimental test a) Modulating signal m1 (5 ms/div), b)filtered load currents i1, i3 and i5 (2 ms/div 
1 A/div).) 

 

Fig 6.10 Experimental test a) Modulating signal m1 (5 ms/div), b)filtered load currents i1, i3 and i5 (2 
ms/div 1 A/div).) 
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load currents i1, i3 and i5, which are not sinusoidal. This is due to the load voltage space 

vector 3v , required to inject a 20 Hz system of balanced sinusoidal load currents of 

sequence 3, responsible for the first spatial harmonic of the magnetic field in the air gap 
of the second machine. 
 

6.9 Seven Phase Inverter 

For a seven phase inverter the modulation constraints expressed in (6.19)-(6.23) 
become: 

 1 ik mm ,  (k = 1, 2, ..., 7),  (i = 1, 2,..., 7)   (6.41) 

       1
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hm , (k = 1, 2,..., 7),  (i = 1, 2,..., 7). (6.42) 

 hj
hh emm  , (h = 1, 3,5).       (6.43) 

Finally equation (6.22) can be writen as: 
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           (6.44) 

The analysis of (6.44), written for each couple (k, i) (k = 1, 2,..., 7 and i = 1, 2,..., 7), 
allows the determination of the voltage limit in each switching period. 

In terms of DCSVs, the goal is the determination of constraints that relate the 
maximum magnitudes of the three DCSVs one to the other, independently of their phase 
angles. these constraints can be expressed as follows: 
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    (6.45) 

The DCSV limits can be represented from the geometric point of view by introducing 

a three-dimensional space, having M1= 1m , M3= 3m  and M5= 5m  as Cartesian 

coordinates, arranged so as to form a right-handed coordinate system. In this space, it is 
possible to define a region of linear modulation. Each point of this region has coordinates 
M1, M3 and M5, which satisfy the constraint conditions represented by (6.45)). 
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When, in a switching period, the three reference voltage space vectors refv ,1 , refv ,3 and 

refv ,5  require three DCSVs ( 1m , 3m  and 5m ) whose magnitudes M1, M3 and M5 define a 

point within this region, then the seven modulating signals km  (k = 1, 2, ..., 7) will 

certainly satisfy the constraint conditions (6.6), provided that a suitable value for 0m  is 

chosen. This means that the three reference voltage space vectors can be properly 
synthesized. On the contrary, when the point associated to M1, M3 and M5 is out of the 
region of linear modulation, the modulating signals cannot satisfy (6.6) leading, in this 
case, to over-modulation conditions. 

The inequalities (6.45) describe three portions of space that they are delimited by the 
equations (6.46).  
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    (6.46) 

Equation (6.47) set the framework within which (6.46) defines the voltage limits of a 

 

Fig 6.11 Voltage limits of seven phase inverter, 3D representation 

Table II COORDINATES OF SPECIFIC POINTS OF THE REGION OF LINEAR MODULATION 
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seven phase inverter: 
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        (6.47) 

Fig 6.11 and 6.12 describe graphically the equations (6.46), (6.47). 
Table II describe the coordinate of the specific points that they defined the linear 

modulation limits for a seven phase inverter 
 

6.10 General theory of Space Vector Modulation  

In the Chapter 2 was described the Space Vector Modulation (SVM) for three phase 
inverter. In this section a generalization of same concepts will be presented to achieve a 
general definition of SVM for any multi-phase systems with odd number of phases and  
to obtain a very flexible modulation strategy that allows the full exploitation of the dc 
input voltage, and the simultaneous modulation of voltage space vectors in different d–q 
planes. 

In order to find a modulation technique that can synthesize the voltage space vectors of 
all the d-q planes simultaneously the analysis carried out on bi-dimensional planes should 
be abandoned in favor of a multidimensional point of view, that can be already found to 
some extent in some recent papers [21]. According to this new approach, the output 
voltages of the inverter are represented by a multidimensional vector v , which is defined 
as follows: 
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where kv (k=1,3,…,M-2) are the multiple space vectors. 

The concept of sector used for three-phase inverters can be extended to the concept of 
multidimensional sector. The space (with M-1 dimensions) is divided in M! (factorial M) 

 

Fig 6.12 Voltage limits of seven phase inverter 
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multidimensional sectors and the vectors of each sector can be expressed as a 
combination of M-1 adjacent multidimensional vectors (i.e. differing one another only in 
the state of one inverter branch), as follows: 

  )1(
1

)1(
1 ... 

 M
M vvv         (6.49) 

In literature the duty-cycles for the SVM of a M-phase inverter are generally calculated 
solving a set of linear equations obtained from (6.49). Although this approach is 
theoretically correct, it is not optimal from a computational point of view, because the 
coefficients of the linear equations depend on the voltage sector and have to be 
recomputed each time. 

A more elegant solution can be proposed by extending the concept of "reciprocal 

vector" seen for tree-phase inverters. Given the multidimensional vectors  (1)v , …, 1)(Mv  , 

it is possible to find the reciprocal vectors (1)w  , … , 1)(Mw   that satisfy the following 
constraints for each h=1,…,M-1: 

 1)()(  kk vw ,  (k=1,…, M-1)      (6.50) 

 0)()(  hk vw , (k =1,…, M-1, k≠h)     (6.51) 

where the dot product between multidimensional vectors is calculated by summing the 
result of the dot products of the corresponding multiple space vectors.  

Equation (6.50) and the M-2 equations in (6.51) form a set of M-1 linear equations 

where the unknown are the M-1 scalar components of )(w k . If the vectors )(v 1 , … , 
)(v 1M  are linearly-independent, this set of equations has one and only one solution. 

This procedure can be repeated M-1 times, for h=1,…,M-1, thus leading to M-1 

reciprocal vectors )(w 1 , …, )(w 1M . 
The usefulness of the reciprocal vectors is evident in the calculation of the duty-cycles 

in (6.49). In fact, supposing that )(w 1 , …, )(w 1M  are the reciprocal vectors of )(v 1 , …, 
)(v 1M , each duty-cycle can be calculated simply with a dot product, similarly to the 

three-phase case, as follows: 

 )1(  M
refk wv , (k = 1,…,M-1)      (6.52) 

where refv is the desired multidimensional voltage vector. 

The main advantage of reciprocal vectors is that they can be calculated off-line and 
stored in look-up tables depending on the multidimensional sector, thus improving the 
computation efficiency. For this purpose, it is possible to demonstrate by applying (6.51)-
(6.52) that the reciprocal vectors can be expressed in the following form: 
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Multi-Phase Inverter 
 

127 
 

From (6.53) it follows that there are M(M-1) different vectors ji,w , but it is sufficient 

to store in look-up tables only half of them, because the vectors reverse if the subscripts 
are swapped, as follows: 

 ij,ji, ww  .         (6.54) 

Likewise the active multidimensional vectors )(v 1 , …, )(v 1M , the reciprocal vectors 
depend on the sector in which the desired voltage vector is placed, and therefore can be 
stored in a look-up table depending on the sector number. 

 

6.11 Identification of the Sector Number 

In the traditional implementation of SVM some quantities, such as the switching 
configurations or the coefficients used for the calculation of the duty-cycles, are stored in 
lookup tables that are quickly accessed using the sector number as an index. 

In this section, the identification of the sector number will be examined more in 
details. 

 

A. Identification of Sector for Three Phase VSI 
 
The determination of the sector S of the reference vector, with modern floating-point 

DSP or high-frequency fixed-point DSP, is very simple for three-phase inverters because 

it is sufficient to calculate the argument θ of refv  using inverse trigonometric functions. 

Assuming θ in the range 0° ≤ θ < 360°, the sector number is given by: 

 










60
int


S          (6.55) 

where the function int(·) provides the integer part of the argument. 

Another method to determine the sector of the reference vector is explained hereafter. 
This method can be used also for low-cost fixed point DSP, due to the fact that it does not 
require the evaluation of any inverse trigonometric function, but only the calculation of 
dot products. 

The main idea is that each sector can be represented univocally as the intersection of 
three half-planes. For example, Fig. 6.13 shows that Sector 1 is the intersection of the 
three half-planes highlighted in gray. 

To check if the reference voltage vector lies in a certain sector, it is sufficient to verify 
that it belongs to the three half-planes whose intersection is the given sector. This result is 
very powerful, since it is straightforward to check whether the reference voltage vector 
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

 

 

= 

 

 

Fig. 6.13 - Representation of Sector 1 as intersection of three half-planes. 
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belongs to three half-planes or not by calculating the logic functions kL  (k = 1, 2, 3) 

defined as follows: 

 


 


otherwise

uvif
L kref

k
0

01
       (6.56) 

where ku  (k=1,2,3) are defined as follows: 

 
)1(

3

2



kj

k jeu


  (k=1, 2, 3).      (6.57) 

All vectors placed in the same sector lead to the same values of the logic functions kL , 

so it is possible to state that each sector is univocally identified by a sector code, i.e., a 

tern of logic values ( 3L , 2L , 1L ). 

This result is clearly shown in Fig. 6.14, where the correspondence between sector 
numbers and sector codes is shown. 

Furthermore, Fig. 6.14 shows also the three vectors 1u , 2u , and 3u  defined by (6.57). 

It is worth noting that vectors 1u , 2u , and 3u  represent a subset of the reciprocal vectors 

that can be found by applying (6.53) in the case of three-phase inverters. 

After the calculation of kL  with (6.56), the sector of refv can be identified by using 

Table III that relates the sector codes ( 3L , 2L , 1L ) to the sector numbers. The entries of 

Table III have been ordered so that the sector code, interpreted as a binary number and 
converted to its decimal representation, can be used as the address for identifying the 
table entry of the sector number 

 

B. Sectors in Multi-Phase Inverter 
 
The identification of the sector of a multidimensional voltage vector is not as 

immediate as in the three-phase case, because the orientation of the multidimensional 
sectors in the space cannot be traced back to a simple principle. 

The solution to this problem can be found by extending the method of space 
partitioning presented for three-phase VSI. 

It can be demonstrated that a multidimensional sector of a M-phase inverter is the 

intersection of M(M − 1)/2 half-spaces at most. 

The logic functions that express the belonging of the reference multidimensional 
vector to an half-space can be written as follows: 

 
TABLE III SECTOR NUMBER AS FUNCTION OF SECTOR BINARY CODE 
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otherwise

wvif
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ijref
ij

0

01
, Mji 1      (6.58) 

where ijw  are the same vectors introduced in (6.53). 

Once the logic functions khL ,  have been calculated, it is possible to concatenate them 

thus creating a binary code with M(M − 1)/2 bits that can be compared with the sector 

codes of the M! multidimensional sectors. 
It is worth noting that the identification of the multidimensional sector can be a time-

expensive process, since it requires M! comparisons. In order to improve the computation 
efficiency, it is convenient to treat the sector codes as decimal numbers, to sort them in 
ascending or descending order and to apply a binary search algorithm. 

 

6.12 Generation of Lookup Tables 

The implementation of SVM for multiphase inverters usually requires that the inverter 
configurations and the reciprocal vectors are stored in lookup tables. However, the 
determination of these lookup tables could seem rather complex for multiphase inverters 
since it is not possible to find a intuitive graphical  

A method to solve this problem is to exploit the equivalence principle between carrier-
based PWM and SVM that is illustrated hereafter. 

 

A. Equivalence between Carrier-Based PWM and SVM 
 
It is well known that carrier-based PWM and SVM are intrinsically equivalent for 

three-phase inverters. Whereas the carrier-based PWM determines the duty-cycle of each 
inverter branch, SVM determines the inverter configurations and their application times. 

1u

(1,0,1)

(0,0,1)

(0,1,1)

(0,1,0)

(1,1,0)

(1,0,0)

sector 1 

sector 2 

sector 3 

sector 5 
sector 6 

sector 4 2u 3u

 

Fig. 6.14 Relationship between sector numbers and sector codes for three-phase inverters, and
representation of the voltage vectors 1u , 2u  and 3u  in the d-q stationary reference frame. 
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This equivalence is clearly shown in the example of Fig. 6.17. It is shown that the 
sequence of vectors obtained with SVM for the case of Fig. 6.17 can be deduced also with 
PWM when m1>m2>m3. 

Initially, a zero vector is applied to the load, since all command signals sk (k = 1, 2, 3) 
are zero. Since m1>m2 and, consequently, s1 turns on before s2, the first active vector 

applied to the load is 1v , whose configuration is (001). The second active vector is 2v , 

with configuration (011), followed by a zero vector with configuration (111). Finally, 
these same vectors complete the period, but they are applied in reverse order. 

It is obvious that this result, now stated for vector lying in Sector 1, can be elevated to 

a general principle, namely, each set of modulating signals 1m , 2m , and 3m can be related 

to an equivalent sequence of space vectors, as if it were generated with SVM, and vice 
versa. 

The equivalence between SVM and carrier-based PWM for three-phase inverters 
allows an interesting interpretation of the concept of sector used in SVM. It has just been 
shown that the vectors in Sector 1 leads to command signals satisfying the conditions 

1m > 2m > 3m . Likewise, the vectors of Sector 2 are characterized by command signals 

with 2m > 1m > 3m . In other words, it is possible to associate each sector to a specific 

ordering of the duty-cycles 1m , 2m , and 3m , as illustrated in Table IV. 

The equivalence between carrier-based PWM and SVM turns out to be true also for 
multiphase inverters. According to this point of view, the vectors of the multidimensional 
Sector 1 are those that satisfy the following constraints: 

 Mmmm  ...21         (6.59) 

whereas the other sectors are characterized by a different ordering of the duty-cycles of 

the inverter branches. There are M! different ordering of 1m , 2m , . . . , Mm , hence there 

are also M! different sectors. 
 
 
 
 
 

TABLE IV RELATIONSHIP BETWEEN SECTORS AND ORDERING OF BRANCH  
DUTY CYCLES IN TRADITIONAL THREE PHASE INVERTER 

 

Sector 1 ORDERING 

1 321 mmm 

2 312 mmm 

3 132 mmm 

4 123 mmm 

5 213 mmm 

6 231 mmm 
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B. Look-Up Table 
 
The calculation of the lookup tables used in SVM can be made by exploiting the 

equivalence principle. 

It is necessary to consider all the M! orderings of 1m , 2m ,…, Mm . As previously 

explained, each of them can be correlated to a unique multidimensional sector. For each 

ordering, it is possible to determine the sequence )1(v ,…, )1( Mv  of the multidimensional 
vectors applied to the load by examining the configuration sequence produced by the 
corresponding carrier-based modulation. 

Finally, (6.50) and (6.51) allow one to calculate the reciprocal vectors. 
All these values can be stored in a lookup table that can be accessed using the sector 

number as an index. 
 

C. Case Study: Five Phase Inverters 
 
To illustrate the proposed approach, the lookup table for the implementation of SVM 

for a five-phase inverter is shown in Table V. The column entitled “Sector code” reports 
the sector codes calculated with the algorithm proposed in Section IV. The sector codes 
are in the form (L45, L35, L34, L25, L24, L23, L15, L14, L13, L12) and have been converted to 
decimal numbers to save space. 

The third column of Table V shows the sector number, which varies from 1 to 120. 
The column C1,...,C4 reports the four inverter configurations corresponding to the 

multidimensional space vectors that must be selected in each sector. These configurations 
are in the form (s5, s4, s3, s2, s1) and have been converted to decimal numbers. It is worth 
noting that the list of configurations is ordered, since two consecutive configurations 
differ only for the state of one bit. 

Finally, the column R1,…, R4 shows the reciprocal vectors that must be used for the 
calculation of the duty-cycles. The values of these entries, which refer to Table V, vary 

from −10 to +10. A negative number means that the subscripts of the reciprocal vector of 

Table IV must be swapped. The indexes i and j in Table V refer to the same indexes in 
(16). The implementation of the proposed algorithm with a DSP requires that Tables IV 
and V are stored in the DSP memory. 

After the calculation of the logic functions (6.58), the sector code can be calculated as 
follows: 

TABLE IV - LOOK UP TABLE OF THE RECIPROCAL VECTORS 

  Subscript j 

Su
b
sc
ri
p
t 
i 

  2 3 4 5 

1   2,1w    3,1w    4,1w    5,1w  

2   3,2w    4,2w    5,2w  

3   4,3w    5,3w  

4   5,4w  
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 0
12

7
34

8
35

9
45 2...222 LLLLcodeSector      (6.60) 

It is worth noting that the calculation of (6.60) is usually very fast using binary 
numbers, since it can be done with left logical shift and bitwise operations. 

To find the multidimensional sector, the sector code (6.60) has to be compared to the 
sector codes of Table V by using the binary search algorithm. In this way, it is possible to 
identify the reciprocal vectors needed for the calculation of the duty-cycles and the 
inverter configurations. 

 
 

Id. 
Sector 
Code 

Sector 
Number 

C1,C2,C3,C4 R1,R2,R3,R4 

1 0 65 16,24,28,30 -10,-8,-5,-1 
2 1 56 16,24,28,29 -10,-8,-2,1 
3 3 25 16,24,25,29 -10,-3,2,-5 
4 7 26 16,17,25,29 -4,3,-8,-5 
5 15 27 1,17,25,29 4,-10,-8,-5 
6 16 96 16,24,26,30 -10,-6,5,-2 
7 18 105 16,24,26,27 -10,-6,-1,2 
8 19 16 16,24,25,27 -10,-3,1,5 
9 23 15 16,17,25,27 -4,3,-6,5 
10 31 14 1,17,25,27 4,-10,-6,5 
11 48 95 16,18,26,30 -7,6,-8,-2 
12 50 106 16,18,26,27 -7,6,-3,2 
13 54 115 16,18,19,27 -7,-1,3,-8 
14 55 6 16,17,19,27 -4,1,6,-8 
15 63 7 1,17,19,27 4,-7,6,-8 
16 112 94 2,18,26,30 7,-10,-8,-2 
17 114 107 2,18,26,27 7,-10,-3,2 
18 118 114 2,18,19,27 7,-4,3,-8 
19 126 113 2,3,19,27 -1,4,-10,-8 
20 127 8 1,3,19,27 1,7,-10,-8 
21 128 66 16,20,28,30 -9,8,-6,-1 
22 129 55 16,20,28,29 -9,8,-3,1 
23 133 46 16,20,21,29 -9,-2,3,-6 
24 135 35 16,17,21,29 -4,2,8,-6 
25 143 34 1,17,21,29 4,-9,8,-6 
26 160 75 16,20,22,30 -9,-5,6,-3 
27 164 76 16,20,22,23 -9,-5,-1,3 
28 165 45 16,20,21,23 -9,-2,1,6 
29 167 36 16,17,21,23 -4,2,-5,6 
30 175 37 1,17,21,23 4,-9,-5,6 
31 176 86 16,18,22,30 -7,5,8,-3 
32 180 85 16,18,22,23 -7,5,-2,3 
33 182 116 16,18,19,23 -7,-1,2,8 
34 183 5 16,17,19,23 -4,1,5,8 
35 191 4 1,17,19,23 4,-7,5,8 
36 240 87 2,18,22,30 7,-9,8,-3 
37 244 84 2,18,22,23 7,-9,-2,3 
38 246 117 2,18,19,23 7,-4,2,8 
39 254 118 2,3,19,23 -1,4,-9,8 
40 255 3 1,3,19,23 1,7,-9,8 
41 384 67 4,20,28,30 9,-10,-6,-1 
42 385 54 4,20,28,29 9,-10,-3,1 
43 389 47 4,20,21,29 9,-4,3,-6 
44 397 48 4,5,21,29 -2,4,-10,-6 
45 399 33 1,5,21,29 2,9,-10,-6 
46 416 74 4,20,22,30 9,-7,6,-3 
47 420 77 4,20,22,23 9,-7,-1,3 
48 421 44 4,20,21,23 9,-4,1,6 
49 429 43 4,5,21,23 -2,4,-7,6 
50 431 38 1,5,21,23 2,9,-7,6 
51 480 73 4,6,22,30 -5,7,-10,-3 
52 484 78 4,6,22,23 -5,7,-4,3 
53 492 79 4,6,7,23 -5,-1,4,-10 
54 493 42 4,5,7,23 -2,1,7,-10 
55 495 39 1,5,7,23 2,-5,7,-10 
56 496 88 2,6,22,30 5,9,-10,-3 
57 500 83 2,6,22,23 5,9,-4,3 
58 508 82 2,6,7,23 5,-2,4,-10 
59 510 119 2,3,7,23 -1,2,9,-10 
60 511 2 1,3,7,23 1,5,9,-10 
61 512 64 8,24,28,30 10,-9,-5,-1 
62 513 57 8,24,28,29 10,-9,-2,1 
63 515 24 8,24,25,29 10,-4,2,-5 
64 523 23 8,9,25,29 -3,4,-9,-5 
65 527 28 1,9,25,29 3,10,-9,-5 
66 528 97 8,24,26,30 10,-7,5,-2 

TABLE V - LOOK UP TABLE FOR SVM OF 5-PHASE INVERTERS 
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67 530 104 8,24,26,27 10,-7,-1,2 
68 531 17 8,24,25,27 10,-4,1,5 
69 539 18 8,9,25,27 -3,4,-7,5 
70 543 13 1,9,25,27 3,10,-7,5 
71 592 98 8,10,26,30 -6,7,-9,-2 
72 594 103 8,10,26,27 -6,7,-4,2 
73 602 102 8,10,11,27 -6,-1,4,-9 
74 603 19 8,9,11,27 -3,1,7,-9 
75 607 12 1,9,11,27 3,-6,7,-9 
76 624 93 2,10,26,30 6,10,-9,-2 
77 626 108 2,10,26,27 6,10,-4,2 
78 634 109 2,10,11,27 6,-3,4,-9 
79 638 112 2,3,11,27 -1,3,10,-9 
80 639 9 1,3,11,27 1,6,10,-9 
81 768 63 8,12,28,30 -8,9,-7,1 
82 769 58 8,12,28,29 -8,9,-4,1 
83 777 59 8,12,13,29 -8,-2,4,-7 
84 779 22 8,9,13,29 -3,2,9,-7 
85 783 29 1,9,13,29 3,-8,9,-7 
86 832 62 8,12,14,30 -8,-5,7,-4 
87 840 61 8,12,14,15 -8,-5,-1,4 
88 841 60 8,12,13,15 -8,-2,1,7 
89 843 21 8,9,13,15 -3,2,-5,7 
90 847 30 1,9,13,15 3,-8,-5,7 
91 848 99 8,10,14,30 -6,5,9,-4 
92 856 100 8,10,14,15 -6,5,-2,4 
93 858 101 8,10,11,15 -6,-1,2,9 
94 859 20 8,9,11,15 -3,1,5,9 
95 863 11 1,9,11,15 3,-6,5,9 
96 880 92 2,10,14,30 6,-8,9,-4 
97 888 91 2,10,14,15 6,-8,-2,4 
98 890 110 2,10,11,15 6,-3,2,9 
99 894 111 2,3,11,15 -1,3,-8,9 
100 895 10 1,3,11,15 1,6,-8,9 
101 896 68 4,12,28,30 8,10,-7,-1 
102 897 53 4,12,28,29 8,10,-4,1 
103 905 52 4,12,13,29 8,-3,4,-7 
104 909 49 4,5,13,29 -2,3,10,-7 
105 911 32 1,5,13,29 2,8,10,-7 
106 960 69 4,12,14,30 8,-6,7,-4 
107 968 70 4,12,14,15 8,-6,-1,4 
108 969 51 4,12,13,15 8,-3,1,7 
109 973 50 4,5,13,15 -2,3,-6,7 
110 975 31 1,5,13,15 2,8,-6,7 
111 992 72 4,6,14,30 -5,6,10,-4 
112 1000 71 4,6,14,15 -5,6,-3,4 
113 1004 80 4,6,7,15 -5,-1,3,10 
114 1005 41 4,5,7,15 -2,1,6,10 
115 1007 40 1,5,7,15 2,-5,6,10 
116 1008 89 2,6,14,30 5,8,10,-4 
117 1016 90 2,6,14,15 5,8,-3,4 
118 1020 81 2,6,7,15 5,-2,3,10 
119 1022 120 2,3,7,15 -1,2,8,10 
120 1023 1 1,3,7,15 1,5,8,10 

 

6.13 Remarks on the Proposed SVM Algorithm 

The main advantages of the proposed algorithm are:  
 
i) its generality, since it can be theoretically adopted for an M-phase inverter 

(provided that M is an odd number);  
 

ii) its capability to generate the whole set of the admissible output voltages and not 
only a reduced set; and 

 

iii)  its formal similarity with the three-phase SVM. 
 

Several papers have been published on SVM of multiphase inverter, and some of them 
have obtained remarkable results, for example, showing the capability of the maximum 
voltage transfer ratio of about 0.6 for five-phase inverters. This result has been obtained 
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by adding a small contribution of a third-harmonic component on the phase voltage [4], 
[5], synchronized with the fundamental component. 

The wide majority of these papers is based on the idea that the selection of the inverter 
configurations can be made by correlating them to the positions (i.e., the sectors) of the 
multiple voltage vectors in the different d–q planes. 

 However, this concept could be somehow restrictive, as the following example 
demonstrates for five-phase inverters. Fig. 6.15 shows the admissible voltage vectors in 
the planes d1–q1 and d3–q3 of a five-phase inverter. If the desired output phase voltages 

are nnnnn vvvvv 54321  , then the configurations selected by the proposed SVM 

algorithm and by the carrier-based PWM algorithm are those inside the black rectangles. 
As shown, these configurations do not delimit any specific sector in the d–q planes and 
therefore it is not possible to derive a simple rule for their determination.  

The algorithms based on the analysis carried out in separate d–q planes are not able to 
synthesize these voltages, although they work perfectly for the synthesis of sinusoidal or 
little distorted voltages. In other words, they give more priority to vectors in the plane d1–
q1 over vectors in plane d3–q3. 

More general results can be obtained with the methods proposed in [14] and [21] that 
can independently synthesize voltage vectors in more than one d–q plane, but needs more 
computational time, since both [14] and [21] require a sort algorithm. 

It is worth noting that the most recent theories of SVM for multiphase inverter to some 
extent involve some CPU demanding tasks.  

In the proposed modulation strategy, the most time consuming part is certainly the 
binary search algorithm, since (6.52) and (6.58) are mainly dot products that can be 
executed very quickly on modern DSP, optimized for multiply-and accumulate 

operations. This binary search algorithm requires ceil ( )!(log2 M ) comparisons at most 

for a M-phase inverter (the ceil function returns the smallest integer number that is greater 
or equal to the specified argument). For example, in the case of a five-phase inverter, the 
binary search requires seven comparisons. Instead, assuming that the sort algorithm used 
in [14] is a bubble sort (usually adopted for its efficiency when the number of elements is 

Fig. 6.15. Multiple space vectors of a five-phase inverters, represented in planes d1-q1 and d3-q3. 
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very small), the sorting algorithm for a five-phase inverter involves ten comparisons and, 
at worst, also as many swaps of variables. Obviously, this result is far from proving that 
the proposed algorithm is faster or better than that of [14] that is suitable also for 
multilevel inverter, since the complexity should be related also to the available hardware, 
e.g., DSP or FPGA, its features and also on the capability of the programmer. 

 

6.14 Experimental Results for Look-Up Table Solution 

To verify the effectiveness of the proposed modulation strategy some experimental 
tests have been carried out. 

The experimental setup consists of a five-phase voltage source inverter feeding a five-
phase symmetrical series-connected R-L load. The load parameters in nominal condition 
are 11.5 Ω and around 11 mH. The dc bus voltage is around 100 V. The control algorithm 
is implemented in a DSP TMS320F2812 and an Altera FPGA Cyclone EP1C6. The 
switching period is 100 μs, corresponding to a switching frequency of 10 kHz. 

The total computational time of the SVM algorithm is lower than 20μs. The 
calculation of the logic functions requires about 5 μs, the binary search algorithm about 
12 μs and the calculation of the duty-cycles about 2 μs. 

With reference to the demanded voltages, four cases will be considered, namely, A, B, 
C, and D. The corresponding values of refv ,1  and refv ,3 f are summarized in Table VI. 

These cases have been selected to show that the proposed modulation technique is able 
to generate the reference multiple voltage vectors in the most critical operating 
conditions. 

 

Fig 6.16 Experimental result. Waveform (top, 2 A/div) of the load currents and (bottom, 40 V/div) of 
the phase voltage in the condition A. 

TABLE VI VALUES OF refv ,1  AND refv ,3 CONSIDERED IN EXPERIMENTAL TEST 

 A B C D 

refv ,1  50 V, 50 Hz 0 30 V, 50 Hz 60 V, 50 Hz 

refv ,3  0 50 V, 50 Hz 30 V, 150 Hz 15 V, 150 Hz 
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Fig. 6.16 shows the waveforms of a load current and of the corresponding phase 
voltage in the condition A, when a voltage reference vector of 50 V is rotating at 2π50 
rad/s in plane d1–q1, whereas the voltage reference vector in plane d3–q3 is zero. As 
shown, the waveforms are nearly sinusoidal, except for the current ripple due to the 
switching process, and the load phase voltage exhibits the typical nine-level waveform 

(0,±1/5Edc,±2/5Edc, . . . ,±4/5Edc). 

Fig. 6.17 shows the behavior of the five-phase inverter in the same operating 
condition. In particular, tracks 2, 3, and 4 show the sector number, the entry address in 
Table V, and the index R1 of the reciprocal vector used for the calculation of the first 
duty-cycle. It is evident that the sector number assumes ten different values in a period. 
Curiously, its waveform is not regular even in this simple case, because it often jumps 
from a value to another value that is not adjacent. 

Finally, Fig. 6.18 shows the waveforms of the duty-cycles δ1, δ2, δ3, and δ4 for the 
same case of Figs. 6.17 and 6.16. It is interesting that the waveforms of δ1 and δ4 or δ2 
and δ3 are nearly opposite. 

Fig. 6.19 shows the behavior of the inverter in condition B, when only the voltage 

 

Fig 6.17 Experimental result. Behavior of the inverter in the condition A. (From top to bottom) Load 
current (5 A/div), sector number (60/div), entry address of Table III (60/div), and index R1 of the first 
reciprocal vector (5/div). 

 

Fig 6.18 Experimental result. Waveforms of the duty-cycles δ1, . . . , δ4 in condition A (2 ms/div). 
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vector in plane d3–q3 is not zero. As shown, the signals representing the sector number, 
the table entry and the reciprocal vector index are very different from those of Fig. 6.20, 
and this means that new voltage vectors are involved in the modulation process. 

Afterward, some tests have been carried out to verify the capability of the proposed 
SVM to generate simultaneously multiple voltage vectors in the planes d1–q1 and d3–q3. 

Fig. 6.20 shows the behavior of the inverter in the condition C, when a voltage 
reference vector of 30 V is rotating at 2π 50 rad/s in plane d1–q1 and a voltage reference 
vector of 30 V is rotating at 2π 150 rad/s in plane d3–q3. 

The first trace of Fig. 6.20 shows the current waveform, which is evidently distorted 
by the presence of the third harmonic component. The other traces are the sector number, 
the entry address in Table V, and the index R1 of the first reciprocal vector. The 
waveforms of the duty-cycles corresponding to the operating condition of Fig. 6.20 are 
shown in Fig. 6.21 which highlights that δ2 and δ3 are now very similar. 

Finally, Fig. 6.22 shows the behavior of the inverter in the condition D, that 
corresponds to the maximum phase voltages. 

 

Fig 6.19 Experimental result. Behavior of the inverter in the condition B. (From top to bottom) Load 
current (3 A/div), sector number (60/div), entry address of Table III (60/div), and index R1 of the first 
reciprocal vector (5/div). 

 

Fig 6.20 Experimental result. Behavior of the inverter in the condition C. (From top to bottom) Load 
current (3 A/div), sector number (60/div), entry address of Table III (60/div), and index R1 of the first 
reciprocal vector (5/div). 
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As shown, the load current are remarkably distorted also in this case by the presence of 
a significant third harmonic component. 

 

6.15 Space Vector Modulation for a Multi-Phase Inverter: Solution 
Based on Ranking Functions 

The solution of SVM explained in the previous subsection requires the execution of a 
sorting algorithm, the calculation of the duty-cycles and the calculation of the switching 
configurations. 

In the previous implementation of SVM some quantities, such as the switching 
configurations or the coefficients used for the calculation of the duty-cycles, are stored in 
look-up tables, that are quickly accessed using the sector number as an index. 

Therefore, to adopt this methodology with multiphase inverters, it is necessary to 
identify the sector of the multidimensional vector with a unique number. 

 

Fig 6.21 Experimental result. Waveform of the duty-cycles δ1, . . . , δ4 in the condition C. 

 

Fig 6.22 Experimental result. Behavior of the inverter in the condition D. (From top to bottom) Load 
current (3 A/div), sector number (60/div), entry address of Table III (60/div), and index R1 of the first 
reciprocal vector (5/div). 
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This can be done by introducing the concept of ranking function R(p), i.e. a bijective 
algorithm that takes as input a permutation on the set {1, 2, …, M} and produces a 
number in the range {0, …, M!-1}. 

The traditional approach to this problem is to first choose an ordering criterion for 
permutations. Then the rank of a permutation is simply defined as the number of 
permutations that precede it according to this ordering criterion. 

The two most used ranking functions are the lexicographic ranking function Rlex and 
the Steinhaus- Johnson-Trotter (SJT) ranking function RSJT [23],[24]. 

When a ranking function is applied to the ordering permutation p(k) (k=1,2,…,M), the 
result is a unique number in the range [0,M!-1], that can be used to identify the 
corresponding multidimensional sector. 

The algorithms for the ranking functions Rlex and RSJT are shown in Fig. 6.26 and Fig. 
6.27, respectively. 

The algorithm are written using MATLAB language. In both algorithms, p is the array 
of M elements that represents the permutation function. The variable r is the return 
variable containing the rank of p. 

A detailed explanation of these ranking functions is beyond the scope of this treatment. 
A theoretical background can be found in [23]-[24]. 

 

A. Lexicographic Ranking Function 
 
The lexicographic order is based on the familiar idea as the ordering of words in 

dictionaries, provided that letters are replaced by numbers. 
According to this ordering principle, for example, the permutation (1,2,3) comes 

before the permutation (1,3,2), likewise the word "ABC" comes before the word "ACB" 
in a dictionary. 

 

B. Steinhaus- Johnson-Trotter Ranking Function 
The SJT ordering is based on the idea that two consecutive permutations should differ 

only by a transposition of two elements. For example, the six permutations of three 
objects {1, 2, 3}, according to the SJT algorithm, could be listed in the following order: 

(1,2,3), (2,1,3), (2,3,1), (3,2,1), (3,1,2), (1,3,2) 
This ordering is just one of the possibilities and it is characterized by the fact that the 

number 1 “sweeps” from left to right, and then right to left, through each of the six 

 

Fig 6.23 Matlab code for the lexicographic ranking function 
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permutations. When the position of 1 becomes extreme (either at the right or left), then 
recursively an adjacent transposition is done between two of the remaining numbers. 

As can be seen from Fig. 6.24, the SJT algorithm is more time-consuming than the 
lexicographic one and therefore it does not offer any advantage in this context. However, 
it is notable that applying the SJR algorithm to three-phase inverters leads to the 
traditional numeration of the sectors, shown in Table II (provided that the sector numbers 
are in the range {0,1,…,5} instead of {1,2,…,6}). 

 

Fig 6.24 Matlab code for the SJT ranking function 

a)
b)

 

 
c)

 
 
Fig 6.25 Experimental test. Behavior of the seven 
phase inverter when all the reference multiple 
vectors are zero except v1. (a) Waveform of 
currents i1, i3 and i5 (4A/div) and sector index 
(3000 sectors/div) calculated with lexicographic 
ranking function (5ms/div). (b) Waveform of 
currents i1, i3 and i5 (4A/div) and sector index 
(3000 sectors/div) calculated with STJ ranking 
function (5ms/div) (c) Waveforms of the duty-
cycles δ1, δ2, δ3 and δ4 (2ms/div). 
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6.16 Experimental Results for Algorithm Solution 

Some experimental tests have been carried out to verify the effectiveness of the 
proposed modulation strategy. 

The experimental setup consists of a seven-phase voltage source inverter feeding a 
seven-phase symmetrical series-connected R-L load. The load parameters in nominal 
condition are 10.5 Ω and around 0.4 mH. The dc bus voltage is around 110 V. The control 
algorithm is implemented in a DSP TMS320F2812 and an Altera FPGA Cyclone EP1C6. 
The switching period is 100 μs, corresponding to a switching frequency of 10 kHz. 

Fig. 6.25 shows behavior of the seven-phase inverter when a voltage reference vector 
of 50 V is rotating at 2π 50 rad/s in plane d1-q1, whereas the voltage reference vector in 

the other planes is zero. Fig. 6.25(a) and 6.25(b) show the waveforms of the currents 1i , 

3i   and 5i . The lower trace in both figures is the sector number, calculated with the 

lexicographic ranking function and the SJT ranking function. As can be seen, the sector 
number assumes fourteen different values in a period. However its waveform is not 
regular even in this simple case, because it often jumps among non-contiguous values. 

Fig.6.28 (c) shows the waveforms of the duty-cycles δ1, δ2, δ3 and δ4. It is interesting 
to note that in this case the duty-cycles appear to vary linearly during the fundamental 
period, and they form two groups, one with phase opposite to the other. 

Fig. 6.26 shows the behavior of the inverter when a voltage reference vector of 30 V is 
rotating at 2π 50 rad/s in plane d1-q1, a voltage reference vector of 15 V is rotating at 2π 

 
a) b)

  Fig 6.26 Experimental test. Behavior of the seven 
phase inverter when v1 is 30 V, v3 is 15 V and v5 
is 12 V. (a) Waveform of currents i1, i3 and i5 
(4A/div) and sector index (3000 sectors/div) 
calculated with lexicographic ranking function 
(10ms/div). (b) Waveform of currents i1, i3 and 
i5 (4A/div) and sector index (3000 sectors/div) 
calculated with the STJ ranking function 
(10ms/div). (c) Waveforms of the duty-cycles δ1, 
δ2, δ3 and δ4 (2ms/div). 
 

c)
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150 rad/s in plane d3-q3, and a voltage vector of 12 V is rotating at 2π 250 rad/s in plane 
d5-q5.  

Fig. 6.26 (a) and 6.26 (b) show the waveforms of the currents, 1i  3i  and 5i . The lower 

trace in both figures is the sector number, calculated with the lexicographic ranking 
function and the SJT ranking function. Fig. 6.26 (c) shows the waveforms of the duty-
cycles δ1, δ2, δ3 and δ4. It is interesting to note that the duty-cycles are now very different 
from the case of Fig. 6.25 (c) and each behaves differently from the others. 

 

6.17 Conclusions 

In this chapter a description of the multi-phase inverter with a odd number of phases 
has been presented. 

A general theory of pulse width modulation and of space vector modulation has been 
proposed. Different solutions has been developed to solve the problem of generalization 
of SVM in the multi-phase systems.  

The concepts of multidimensional space vector and reciprocal vector have been 
introduced. Using these concepts it is possible to consider the well-known three-phase 
space vector modulation as a particular case of the proposed approach. In particular it is 
possible to give a definition of "sector" that is coherent with the one used for three-phase 
inverters. 

Finally different algorithm for the determination of the sector have been presented. 
The feasibility of the SVM algorithm has been confirmed with several experimental 

tests on a five-phase inverter and a seven-phase inverter. 
In next chapter a new modulation technique will be presented. The main target of this 

technique is the minimization of inverter losses 
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Minimization of the Power 
Losses in IGBT Multiphase 

Inverters with  
Carrier-Based  

Pulse Width Modulation 
 
Abstract  
  
Nowadays there is an increasing interest toward multiphase drives, especially for 
medium and high power applications.  
In this chapter some modulation strategies for multiphase voltage-source inverters are 
compared and the modulation strategy with the minimum switching losses is determined. 
If the switching devices of the inverter are IGBTs or BJTs, this modulation strategy turns 
out to be the one with the minimum total power losses. 
Simulation and experimental results confirm the validity of the analytical approach and 
the feasibility of the proposed modulation strategy. 
 
 

7.1 Introduction 

This chapter is focused on carrier-based PWM strategies and in particular on their 
comparison in terms of switching power losses.  

Modulation strategies for three-phase inverters with minimum power losses have been 
analyzed [1]-[2], but so far very little research has been done on multiphase inverters [3] 

In this chapter the modulation strategy that produces the minimum power losses for an 
M-phase inverter will be presented and assessed by computer simulations. Finally, 
experimental tests confirming the validity of this theoretical approach are presented and 
discussed. 
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7.2 Assessment on Pulse Width Modulation for Multi-Phase Inverter 

The goal of the modulation process is to determine how to control the inverter 

switches, so that the mean values of the multiple space vectors kv (k=1, 3, …, M-2) over a 

switching period Tsw are equal to the reference values refkv ,  (k=1, 3, …, M-2). 

This problem can be solved by calculating the duty-cycles km  (k=1, …, M) of each 

inverter branch as follows [4]: 

 







 

 2,...,3,1
,0

1

Mh

h
krefh

dc
k vv

E
m  , (k=1,…,M)    (7.1) 

where Edc is the dc-link voltage and "" is the dot-operator, defined as the real part of the 
product between the first operand and the complex conjugate of the second operand. 

In (7.1) the zero sequence voltage v0 is a degree of freedom that the designer can 
choose to improve the performance of the modulation strategy. 

The modulation strategies that will be compared in this paper are identified with the 
names SPWM, DPWMMIN, DPWMMAX, SVPWM, and DPWM, and are defined in 
Tab. I by their zero sequence voltages. 

These modulation strategies are described hereafter.  
The modulation strategy referred to as SPWM is the traditional sinusoidal PWM, and 

its zero sequence voltage is always Edc/2.  
The zero sequence voltage of DPWMMIN is selected so that the minimum duty-cycle 

among m1, …, mM is always zero, whereas the maximum duty-cycle of DPWMMAX is 
always 1. As a consequence, when these strategies are used, in every switching period 
there is an inverter branch that does not commutate. 

The strategy called SVPWM is often referred to as "symmetric modulation". This 

TABLE I - DEFINITION OF THE ZERO SEQUENCE VOLTAGE 

FOR SOME MODULATION STRATEGIES 
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strategy is the generalization for M-phase inverters of the traditional strategy that is 
commonly used for three-phase inverters. 

Finally, DPWM is a discontinuous modulation, an intermediate strategy between 
DPWMMIN and DPWMMAX. It behaves like DPWMMAX if the zero sequence voltage 
of SVPWM is greater that Edc/2, otherwise it behaves like DPWMMIN. 

This definition can be apply only for loads without reference voltage vectors in planes 
dk-qk (k 1). 

The names adopted to identify these strategies, as mentioned before, are the same 
names that are traditionally used for three-phase inverters [5],[6]. In fact the strategies of 
Tab. I can be obtained by generalizing the corresponding techniques for three-phase 
inverters.  It is worth noting that there are many other discontinuous modulation strategies 
for three-phase inverters, but they have not been included in this paper since their 
multiphase version is not able to synthesize voltage vectors in different d-q planes [7]. 

Once the duty-cycles have been determined, it is possible to generate the inverter 
switching signals sk (k = 1, 2, ... , M) by comparing a triangular carrier signal c(t), varying 
within the range [0, 1], with M regular-sampled (i.e. assumed constant in each switching 
period) modulating signals, obtained from mk (k = 1, 2, ... , M). Fig. 7.2 shows the 
triangular carrier, the modulating signals and the inverter command signals in the 
particular case m1>m2>…>mM. 

 

7.3 Effect of the Zero Sequence Component on the Power Losses 

As widely known, the power losses of an inverter consist of switching power losses 
and conduction power losses. 

Since DPWMMAX and DPWMMIN prevent one branch of the inverter from 
commutating, their mean switching frequency is lower than that of SVPWM and SPWM, 
and consequently their switching power losses are expected to be lower. 

If the inverter switches are IGBTs or BJTs, it turns out that the conduction power 
losses of multiphase inverters are approximately constant for all modulation strategies as 

Tsw 

+1 

0 

m1

t

triangular carrier, c(t)

mM
 

mk

s1
 

sM
 

sk
 

 
Fig. 7.1 - Carrier and modulating signals for a multiphase inverter, represented in the particular case when 

m1>m2>…>mM. 
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long as the operating conditions are similar, i.e. same dc-link voltage and output current 
waveforms. Consequently, one comes to the conclusion that the zero sequence voltage v0 
does not affect the total conduction losses but only the switching losses. This remarkable 
result will be analytically justified in one of next sections. 

As far as the switching power losses are concerned, let's consider the switching pattern 
shown in Fig. 7.1 and focus on the behavior of the first inverter branch. Under the 
assumption that the load current flows in the positive direction, i.e. towards the load, the 
calculation of the switching losses in a switching period Tsw is a straightforward task. 
Switching losses take place in the upper IGBT during turn-on and during turn-off, 
whereas reverse recovery losses take place in the lower diode during turn-off. If the load 
current reverses, it is possible to make a similar reasoning, but the switches that are 
involved in the commutation process are the lower IGBT and the upper diode. 

In both cases, the total switching energy losses in a switching period can be written as 
follows [3]: 

   )(tiEE phasedcrroffonsw          (7.2) 

where τon and τoff are coefficients (with the dimension of time) related to the energy 
loss process in the IGBTs during turn-on and turn-off, τrr is a coefficient (with the 
dimension of time) related to the energy loss process in the diodes due to the reverse 
recovery currents during turn-off, and iphase(t) is the instantaneous value of the load 
current. 

The switching power losses can be found by multiplying (7.2) by the switching 
frequency fsw:   

  )(tiEfP phasedcrroffonswsw   .      (7.3) 

Equation (7.3) will be used in the next section for the determination of the optimal 
modulation strategy. 

 

7.4 Optimal Modulation Strategy 

Equation (7.3) shows that the switching power loss of an inverter branch is 
proportional to the load current flowing in that branch. Therefore the optimal strategy 
should try to avoid the state commutation of the branches that bear the highest currents. 

Since there are only two basic strategies, DPWMMIN and DPWMMAX, that do not 
change the state of one branch of the inverter in each switching period, the optimal 
strategy consists in adopting DPWMMIN or DPWMMAX in each switching period 
depending on which one avoids the commutation of the highest load current. 

To find an analytical formulation of this problem, it is necessary to split expression 
(7.2) of each duty-cycle mk in two terms. The first one, m0, is the zero-sequence 
component, which is constant for all the phases, whereas the second one, qk, depends on 
the multiple space vectors: 

 kk qmm  0           (7.4) 
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where 

 
dcE

v
m 0

0           (7.5) 
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To understand which inverter branch can avoid a state commutation, it is sufficient to 
find the phase indexes kmax and kmin corresponding to the maximum and the minimum 
value of qk (k=1,…, M). In other words, kmax and kmin are such that 

maxkq  and 
minkq  are 

respectively the maximum and the minimum values in set { q1, …, qM }. The duty-cycle 
of the phase kmax can be easily driven to 1 by adding the following zero-sequence 
component: 

 
maxkqm 10 .         (7.7) 

Similarly, the duty-cycle of phase kmin can be set to zero by adding the following zero-
sequence component: 

 
minkqm 0 .         (7.8) 

Once kmax and kmin are known, the zero-sequence component that minimizes the 
switching power losses turns out to be: 
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otherwiseq

iiifq
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min

minmaxmax

k

kphasekphasek ||||1 ,,

0 .     (7.9) 

The zero sequence component (7.9) may lead to discontinuities in the modulating 
signals, as can be seen in Fig. 7.2(a), which shows the waveform of the modulating 
signals of a five-phase inverter when the voltage transfer ratio is 0.5. This behavior 
should be compared to that of SVPWM whose modulating signals, more regular and 
symmetrical, are shown in Fig. 7.2(b) under the same operating conditions. 

It must be noted that the modulation strategy derived from (7.9) is optimal, since it 
produces the minimum switching losses, whereas the conduction losses are independent 
of the modulation strategy. This strategy can be considered a generalization for 

 

1 

0 
(a)

 

1

0
(b) 

Fig. 7.2 Waveforms of the modulating signals of a five-phase inverter when the voltage transfer ratio is
0.5. (a) Optimal modulation. (b) SVPWM. 
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multiphase inverters of the modulation strategy proposed in [1]- [3] for three-phase 
inverters. Furthermore, it can be applied to multiphase inverters whatever the number M 
of phases is (provided that M is odd). In addition it can synthesize voltage vectors in any 
d-q plane and is able to fully exploit the dc-link voltage. 

 

7.5 Evaluation of the Conduction Losses 

Let's consider an IGBT voltage source inverter. The simplest model of the conduction 
power losses of an inverter branch takes into account only the effect of the voltage drop 
on the IGBTs and the diodes. 

Fig. 7.1 shows the waveform of the command signals of the branches of a multiphase 
inverter. Let's focus the attention on a single branch, and let's assume that the branch 
duty-cycle is m and that the current flows in the positive direction. 

Let's suppose that the voltage drops of the IGBT and on the diode consist of two 
contributions, i.e. a constant term and a term varying with the current, as follows: 

 IGBTIGBTONIGBTIGBT irVv  ,        (7.10) 

 DDONDD irVv  ,         (7.11) 

where VIGBT,ON is the IGBT saturation voltage, VD,ON is the diode forward voltage, rIGBT 
and rD are the differential resistances of the IGBT and of the diode, and iIGBT and iD are 
the currents flowing through the two components. 

When the upper IGBT is on, there is a voltage drop equal to VIGBT across its terminals, 
and when the IGBT turns off, the current flows through the lower diode, thus causing a 
voltage drop VD. As a consequence, the mean value of the conduction losses over a 
switching period can be written as: 

    |)(|1 tivmvmP phaseDIGBTconduction  ,   (iphase>0).    (7.12) 

With a similar reasoning, it is possible to find that, when the current flows in the 
opposite direction, the mean value of the conduction losses over a switching period is as 
follows: 

    |)(|1 tivmvmP phaseIGBTDconduction  ,   (iphase<0).   (7.13) 

Equation (7.12) and (7.13) can be joined together as follows: 

   )()( tivvmtivP phaseDIGBTphaseONconduction      (7.14) 

where the new variable vON  is defined as follows: 
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The conduction power losses of the whole inverter can be obtained by summing the 
contributions of all the branches. It results: 
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

 .   (7.16) 

In (7.16) the contribution of the kth branch is identified by the subscript k. 
For sake of simplicity, let's now assume that the differential resistance rIGBT and rD in 

(7.10) and (7.11) are so small that their effect can be neglected, namely vIGBT coincides 
with VIGBT,ON and vD with VD,ON. 

As can be seen in (7.1), the duty-cycles of each branch can be written as a function of 
the zero-sequence voltage and of the reference voltage vectors. Substituting (7.1) in 
(7.16) leads to the following expression: 
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Equation (7.17) can be further simplified by considering that Kirchhoff's law forces to 
zero the sum of the output currents: 
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In conclusion, the conduction losses are 

  
 














M

k
kkON

Mh

h
krefh

dc

ONDONIGBT
totalconduction tiVv

E

VV
P

1
,

2,...,3,1
,

,,
, )( . (7.19) 

The zero-sequence component v0 does not appear in (A10) and hence it does not affect 
the total conduction losses of the converter, although it affects the conduction loss of each 
branch alone.  

 

7.6 Validity Limits of the Theoretical Analysis 

In the previous subsection (A10) has been determined under the assumption that the 
voltage drops on the IGBTs and on the diodes are independent of the currents. This 
assumption may seem too simplistic and it is necessary to investigate its validity interval. 

If the differential resistances are not neglected, one comes to the following equation 
instead of (A10): 
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Unlike (7.19), in (7.20) there is a term depending on v0. The mean value of this term 
over a fundamental period is 
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Two different modulation strategies, the first with a zero-sequence component v0' and 
the second with a zero-sequence component v0'', differ in the following amount of 
conduction losses: 

 
 






outT M

k
kphasekphase

dcout

DIGBT
cond dtii

E

vv

T

rr
P

0 1
,,

00
0, .    (7.22) 

By inspecting (7.22) one comes to the conclusion that ΔPcond,0 is usually negligible in 
practical applications. In fact the difference between the differential resistances is usually 
very small. In addition, when the requested output voltage is near the maximum limit, the 
admissible interval for the zero sequence voltage is also very small, so the difference 
between v0' and v0'' is close to zero.  

An upper bound for (7.22) can be easily found in the worst case. Applying the 
triangular inequality to (7.22), one finds the following result: 

 2
0, pkdIGBTcond IrrCP         (7.23) 

where Ipk is the maximum peak-value of the phase current and 
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is a coefficient that depends only on the current waveforms, but not on their amplitude. 
If the load currents are sinusoidal, a numerical calculation shows that C is 0.078 for 

five-phase inverters, 0.037 for seven-phase inverters, and 0.021 for nine-phase inverters. 
Applying the Cauchy-Schwarz integral inequality to (7.22) leads to the following 

result: 

 2
0, 2

1
pkdIGBTcond IrrP         (7.25) 

This inequality is valid under the assumption that the current space vectors move along 
circular trajectories in the corresponding d-q planes. Inequality (7.25) is much weaker 
than (7.24) but it has the advantage of being very simple, and it can be applied also for 
non-sinusoidal operating condition 

 

7.7 Determination of the Switching Power Losses 

A. Analytical Expression 
 
It is worth noting that, in the general case, the waveform of the modulating signals 

produced by the optimal modulation strategy depends on the instantaneous values of the 
phase currents. However, if all the multiple space vectors of the currents are null except 
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one, the clamping instants depend only on the phase angle of the non-null current space 
vector, which happens independently of the current magnitude, as shown in Fig. 7.2(a).  

If the load currents are assumed sinusoidal and with amplitude IM, it is straightforward 
to calculate the mean value of the total switching losses of the inverter. By integrating 
(7.9), this value turns out to have the following form: 

  Mdcrroffonswstrategytotalsw IEfMKP  ,       (7.26) 

where Kstrategy is a coefficient that depends on the modulation strategy, on the number 
of phases M and the load displacement angle φ. 

If DPWMMIN or DPWMMAX are adopted, it is possible to demonstrate that the 
coefficient Kstrategy has the following expression: 
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If SPWM or SVPWM are adopted, the coefficient Kstrategy has the constant value 
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If the strategy DPWM is adopted, the coefficient Kstrategy is as follows: 
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Finally, if the optimal modulation strategy is adopted, the coefficient Kstrategy is as 
follows: 
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It is worth noting that all these modulation strategies can be used to synthesize vectors 
in different d-q planes. However, the analytical calculation of the switching power losses 
has been developed here only in the case of sinusoidal operation, because this is the 
simplest case for which it is possible to present an explicit analytical solution. 

To obtain (7.28) it is necessary to start from (7.3), which represents the switching 
losses of an inverter branch in a switching period Tsw. The total switching power losses of 
the converter in a fundamental period Tout of the output voltage is the sum of M equal 
contributions of the M phases; hence the mean total switching losses over a fundamental 
period can be written as: 
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If the phase current is assumed sinusoidal, 
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it turns out from the calculation of (7.31) that the total switching loss has the form 
(7.26) and that the coefficient KC is that shown in (7.28). 

To obtain (7.30), equation (7.3) has to be modified to take into account the possibility 
that there are switching periods without state commutations. This can be done by 
introducing a multiplicative function ε that is 1 if the inverter branch commutates during 
the switching period and 0 otherwise. Equation (7.3) becomes: 

   )(tiEfP phasedcrroffonssw   .      (7.33) 

In this case, the total switching loss in a period Tout can be expressed as follows: 
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Fig. 7.3 Typical waveforms of the phase voltages, of the absolute values of the load currents and of the
function ε for a five-phase inverter, under the assumption that the delay angle φ of the currents is lower
than M2/ . 
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For the calculation of (7.34) it is necessary to know the waveform of ε(t). Fig. 7.3 
shows the typical waveforms of the phase voltages, of the absolute values of the currents 
and of the function ε for a five-phase inverter as long as the optimal modulation strategy 

is used, under the assumption that the load displacement angle φ is lower than 
M2


. 

The waveform of the function ε has been drawn for the first branch of the inverter. As 
can be seen, it is zero when the voltage of phase 1 is the greatest or the lowest among all 
voltages and, simultaneously, the absolute value of corresponding current is the greatest 
one. 

Since the function ε is non-zero only in the intervals [t1,t2] and [t3,t4] shown in Fig. 7.3, 
(7.34) becomes as follows: 
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where t1, t2, t3 and t4 are: 
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It is now a straightforward task to prove by direct calculation of (7.35) that Kopt has the 

expression given in (7.30) for 
M2

||
  . In the case 

M2
||

  , it is possible to make a 

similar reasoning, thus obtaining the general result shown in (7.30). 
 

B. Comparison of the Efficiency of  the Modulation Strategies 
 
The coefficient Kstrategy allows the comparison of the modulation strategies. As long as 

the values of the dc-link voltage, of the output current amplitude and of the switching 
frequency are the same, greater values of Kstrategy lead to greater switching losses. 

Figs. 7.4(a) and 7.4(b) show the behavior of KMM, KS , KD and Kopt in the cases M=5 
and M=7 respectively, whereas Figs. 7.5(a) and 7.5(b) show the switching loss reduction 
that can be obtained by adopting the optimal strategy instead of the other strategies. This 
reduction, expressed in percentage, is calculated by using the following relationship: 
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where Kstrategy has to be set equal to KMM, KD or KS depending on which strategy is 
examined. 

As can be seen, when the load power factor is close to one, the optimal modulation 
performs similarly to strategies DPWMMAX and DPWMMIN, but presents a 
conspicuous reduction compared to SPWM and SVPWM. The corresponding energy 
saving percentage, quantifiable by combining (7.27), (7.30) and (7.31), is 

 M2/sin100  . 

The reduction of the switching losses can be up to 30% for a five-phase inverter and 
up to 22% for a seven-phase inverter. 

When the optimal strategy is compared to DPWMMIN and DPWMMAX, the 
maximum reduction of the switching losses takes place when the load power factor is in 
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Fig. 7.5 Reduction of the switching losses as a function of the power factor for strategies SPWM, SVPWM, 
DPWMMIN, DPWMMAX, DPWM and the optimal modulation strategy. Five phase inverter (a). Seven 
phase inverter (b). 
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Fig. 7.4 Comparison of the coefficient Kstrategy for strategies SPWM, SVPWM, DPWMMIN, DPWMMAX, 
DPWM and the optimal modulation strategy. Five phase inverter (a). Seven phase inverter (b). 
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the range 0.4-0.6 and it can be up to 10% for a five phase inverter or 5% for a seven-
phase inverter.  

Since Kstrategy can be regarded as a quality index related to the exploitation of the 
silicon devices of an inverter branch, it can be useful also for the comparison of inverter 
topologies differing in the number M of phases.  

Fig. 7.6 shows the behavior of Kopt for M=3, 5, 7, 11 and 15. As can be seen, an 
increase in M shows an increase in Kopt 

This means that the best exploitation of the silicon devices of an inverter branch takes 
place in the three-phase case. 

It is important to clarify that this result is valid only under the assumption of sinusoidal 
output currents, and it is not possible to infer any conclusion for different operating 
conditions. 

 

7.8 Simulation Results 

In order to verify the effectiveness of the proposed modulation strategy and to compare 
it to the traditional strategies, some computer simulations and experimental tests have 
been carried out. Both computer simulations and experimental tests refer to a five phase 
inverter feeding an R-L passive load.  

Since the switch adopted for the experimental prototype is the IGBT SKW30N60 
produced by Infineon, which comprises also a fast recovery anti-parallel diode, the 
simulations were carried out by modeling the behavior of this specific component by 
means of the circuit simulator PLECS 2.0. 

Fig. 7.7 shows the output characteristic of the IGBT and the diode, whereas Fig. 7.8 
shows the turn-on and turn-off energy losses when the voltage applied to the switches is 
400 V and the junction temperature is 150°C. It is worth noting that, in this case, the 
manufacturer has included the reverse-recovery loss of the diode in the turn-on energy 
loss curve. 
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Fig. 7.6 Behavior of the coefficient Kopt for M=3, 5, 7, 9, 11 and 15. 
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A. Power Losses 
 
The results obtainable with (7.26) and (7.30) have been compared to the switching 

losses determined by computer simulations. Two cases have been considered. In Case 1, 
the load impedance is 7 Ω and the amplitude of the load currents is about 28 A. In Case 2 
the load impedance is 14 Ω and the amplitude of the load currents is about 14 A. 

In both cases, some tests with different values of the load power factor have been 
carried out, whereas the dc-link voltage is kept at 400 V and the switching frequency is 
10 kHz. The variation of the power factor is obtained by modifying the load resistance 
and reactance without changing neither the magnitude of the load impedance or the 
amplitude of the load currents. 

The result of the comparison is shown in Fig. 7.9. As can be seen, the theoretical 
prediction of (7.26) is in good agreement with the simulation results.  

For the comparison between the simulation results and the results obtainable by 
applying (7.26) and (7.30), it is necessary to estimate the coefficient τon+τoff+τrr in (7.26). 
This can be done by noting that the slope of the curve representing the total switching 
energy in Fig. 7.8 is proportional to the product (τon+τoff+τrr)Edc. Since this curve is not a 
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Fig. 7.9 Comparison between the switching power loss curve (solid line) of the optimal modulation 
strategy calculated with (7.26) and (7.30), and the power loss determined with computer simulations, in 
Case 1 () and 2 (). 
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Fig. 7.7 Output characteristic of the IGBT and 
the diode used for the computer simulations 
(SKW30N60), when the junction temperature is 
150°C. 

 Fig. 7.8 Switching losses of the IGBT and the diode 
used for the computer simulations (SKW30N60), 
when the final voltage after turn-on and the initial 
voltage before turn-off is 400 V, and the junction 
temperature is 150°C. 
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perfect straight line, the coefficient τon+τoff+τrr has been calculated by considering the best 
linear interpolation of the total loss curve for currents in the range 0-30 A. In this way a 

value of 1.82210-7s has been obtained. 
Fig. 7.10 compares the conduction and the switching power losses produced by the 

optimal modulation strategy and the other modulation strategies in the operating 
conditions of Case 1 for a five-phase inverter. Fig. 10(a) shows that the conduction losses 
depend on the load power factor, but are practically independent of the modulation type. 
Fig. 10(b) shows that the optimal modulation strategy performs much better than 
SVPWM and SPWM, and has a slight advantage over DPWMMIN and DPWMMAX.  

Fig. 7.11 shows that adopting the optimal strategy leads to an energy saving that varies 
according to the load power factor and can be up to 6-7% compared with DPWMMIN 
and DPWMMAX, and about 26% compared with SVPWM, when the load power factor 
is 0.7. These results are in good agreement with the theoretical predictions of Fig. 7.5(a). 

 

B. Current Quality 
Several different quality indexes can be adopted for the assessment of a modulation 

strategy and each one is suitable to a specific problem or application. 
Energy efficiency is a key factor for the realization of compact, high performance 

converters, and nowadays it is considered one of main problems. However, if the goal is 
to improve the quality of the load currents or reduce the common mode voltage, the 
optimal modulation may not be the best choice, as explained in this section. 
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Fig. 7.10 Simulation results for Case 1. Conduction (a) and switching (b) power losses of a five-phase
inverter when the optimal modulation strategy or the strategies SPWM, SVPWM, DPWMMAX,
DPWMMIN and DPWM are adopted. 
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Fig. 7.11 - Simulation results. Energy saving of the optimal modulation with respect to strategies SVPWM,
DPWMMAX and DPWMMIN for a five-phase inverter in Case 1. 
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To characterize the behavior of the modulation strategies in terms of current quality, it 
is opportune to introduce an appropriate quality index. Suitable quality indexes could be 
the rms value of the load current ripple or the THD of the load current. However, the first 
one is preferable, since the amplitude of the current ripple, practically independent of the 
fundamental component of the load current, is proportional to the dc-link voltage and to 
the switching period, and inversely proportional to the load inductance. 

Fig. 7.12 shows the rms value of the current ripple for SPWM, SVPWM, DPWMMIN, 
DPWMMAX, DPWM and for the optimal modulation strategy for a five-phase inverter. 
The curves have been normalized by dividing the rms value of the ripple by the quantity  

 
load

swdc
norm L

TE
I  .        (7.41) 

where Lload is the load inductance. 
As known, in five-phase inverters, SPWM shows the lowest current ripple [8], very 

close to that of SVPWM, whereas the optimal modulation strategy exhibits the same 
behavior of  DPWMMIN and DPWMMAX. This is somehow a predictable conclusion, 
since the optimal strategy behaves at times like DPWMMIN and at times like 
DPWWMAX 

 

7.9 Experimental Results 

A. Feasibility of the Optimal Modulation Strategy 
 
To verify the effectiveness of the proposed modulation strategy some experimental 

tests have been carried out with a five-phase inverter. 
The experimental setup consists of a five-phase voltage source inverter feeding a five-

phase symmetrical series-connected R-L load. The load parameters are 10.5 Ω and around 
7.5 mH. The dc bus voltage is around 100 V. The control algorithm is implemented in a 
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Fig. 12 - Normalized rms value of the load current ripple of a five-phase inverter for strategies SPWM,
SVPWM, DPWMAX, DPWMMIN, DPWM  and for the optimal strategy as a function of the voltage
transfer ratio. 

 

a)        b) 

Fig. 7.13 Experimental results obtained with a five phase inverter when the reference voltage vector

refv ,1  is rotating at 50 Hz, refv ,3 is zero and the voltage transfer ratio is 0.52. (a) Waveforms of the load

currents (5 ms/div, 2 A/div). (b) Modulating signals (5 ms/div). 
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DSP TMS320F2812 and an Altera FPGA Cyclone EP1C6. The switching period is 100 
μs, corresponding to a carrier frequency of 10 kHz.  

Fig. 7.13(a) shows the experimental waveforms of the five load currents and Fig. 13(b) 
shows the modulating signals of the output phases 1, 2 and 3 (phases 4 and 5 are not 
shown here) when the reference voltage vector refv ,1  rotates at 50 Hz and refv ,3  is zero. 

The voltage transfer ratio, defined as the ratio of v1,ref  over Edc, is set equal to 0.52, which 
is the maximum admissible value in this operating condition. As can be seen in Fig. 13(a), 
despite the modulating signals are remarkably distorted, the load currents are practically 
sinusoidal. 

Finally, Figs. 7.14(a) and 14(b) show that the proposed modulation strategy could be 
used also when the control system generates both reference voltage vectors refv ,1  and 

refv ,3 . In the case of Fig. 7.14 these vectors rotate at 50 and 20 Hz respectively and their 

magnitude is 20% of the available dc-link voltage. As can be seen, the waveforms of the 
modulating signals are indeed discontinuous, but the current waveforms keep their 
regularity. 

 

B. Assessment of the Theoretical Analysis of the Switching Losses 
 
The problem of measuring the converter power losses is rather difficult, for the 

following reasons: 
 

i) it's not possible to separate the switching losses from the conduction losses of 
the inverter; 
 

ii) it's difficult to measure the output power accurately, since the input currents 
and the output voltages are discontinuous quantities; 
 

a)        b) 

Fig. 7.14 Experimental results obtained with a five phase inverter when the reference voltage vectors

refv ,1  and refv ,3 are rotating at 50 and 20 Hz respectively and the voltage transfer ratio of both vectors is 0.2.

(a) Waveforms of the load currents (20 ms/div, 2 A/div). (b) Modulating signals (20 ms/div).  
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iii) since the efficiency of a power converter is usually very high, the difference 
between input and output power is appreciable only for high powers, which 
are not always compatible with the equipment of research laboratories. 
 

For these reasons, the verification of the power losses has been done indirectly by 
measuring the temperatures of the power switches for different modulation strategies. The 
temperatures are measured by two thermal sensors LM35 placed on the sinks of the upper 
and lower power switches of the first inverter branch (these two switches are equal and 
have separate sinks). 

The mean value of the sink-to-ambient temperature rise of a power switch is 
proportional to the power loss of the switch itself. Since the thermal-impedance of the 
two switches of a branch is practically the same in the laboratory prototype, the sum of 
their temperatures Δθ1 and Δθ2 is proportional to the mean value of the total power losses 
of the branch. 

Some tests have been carried out for the optimal modulation and for SVPWM, 
DPWMMAX and DPWMMIN with a dc-link voltage of 150V. The load is a passive 
impedance with a fundamental power factor of 0.95. The load current frequency is 10 Hz 
and the load current amplitude is 10 A. The sink-to-ambient thermal impedance Zth of the 
switch is about 10 °C/W. 

The first modulation strategy that has been tested is the optimal modulation. By using 
the result of this experimental test and by applying (7.27)-(7.30) it is possible to predict 
the temperature rise of the other modulation strategies. In fact, the total temperature 

21    of a modulation strategy can be calculated as follows: 

      optswswthopt PPZ ,2121       (7.42) 

where  opt21   is the total temperature rise measured during the test with the 

optimal modulation, whereas Psw and Psw,opt are the switching losses of a generic 
modulation strategy and of the optimal modulation strategy, calculated with (7.27)-(7.30). 

The results of the experimental tests are reported in Tab. II and III, which compare the 
calculated and the measured total temperature rises for SVPWM, DPWMMAX and 

Table II Comparison between Experimental and 
Calculated Temperature Rise [°C] for a Switching 

Frequency of 10 kHz 

Strategy 

1+2  

(calculated) 

1 

(measured) 

2  

(measured) 

1+2  

(measured) 

Opt  n.a. 43.1 49.7 92.8

DPWMMIN  93.4 43.0 51.2 94.2

DPWMMAX  93.4 43.6 50.0 93.6

SVPWM  98.8 45.8 53.1 98.8
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DPWMMIN when the switching frequency is 10 kHz and 16 kHz respectively. 
As can be seen, there is a good agreement between the temperatures experimentally 

measured and the ones theoretically calculated. 
 

7.10 Conclusions 

In this chapter the carrier-based PWM modulation strategy with the minimum 
switching losses for multiphase VSIs with an odd number of phases has been presented. If 
the inverter is based on IGBTs or BJTs, this modulation strategy is also the best one in 
terms of total power losses, since the conduction losses are approximately constant for all 
the modulation strategies. 

The proposed strategy has been compared to some traditional strategies and, in the 
case of 5-phase inverters, it has been shown to reduce the switching power losses by 6% 
to 26% when the load power factor is 0.7. 

Experimental results confirm the validity and the effectiveness of the proposed 
modulation strategy 
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Extended Stator Flux 
Vector Control of  

Multi-Phase 
 Induction Motor Drives 

 
Abstract  
  
In this chapter, a rotor-flux-oriented control scheme for seven-phase induction motor 
drive, having the stator flux components instead of the stator current components as 
main control variables, is presented. As a consequence, a simple stator flux regulator 
can replace the conventional current regulators implemented in the synchronous 
reference frame.  
The proposed Stator Flux Vector Control (SFVC) scheme uses a flexible modulation 
strategy for seven-phase Voltage Source Inverters (VSIs) that allows the simultaneous 
modulation of voltage space vectors in different d-q planes. This problem is completely 
solved using the Duty-Cycle Space Vector (DCSV) representation, which describes the 
state of the switches by means of complex variables. Using the DCSV representation it is 
possible to combine the multiple space vector representation, useful in modeling multi-
phase machines, with traditional carrier-based PWM principle, suitable for the 
modulation of multi-phase VSIs. 
 The validity of the proposed control scheme is confirmed by several experimental tests. 
 

 

8.1 Introduction 

A variable-speed drive is usually composed by a three-phase inverter supplying a 
three-phase motor. However, since variable-speed drives are always supplied from power 
electronic converters, the number of phases can be considered as a design variable and 
does not have to be equal to three anymore. On the contrary, a three-phase drive should 
be regarded as a particular case. 

Nowadays, there is an increasing interest towards multi-phase motor drives, especially 
for medium and high power applications in naval and railway propulsion systems. 
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In fact, the use of multi-phase inverters together with multi-phase ac machines has 
been recognized as a viable approach to obtain high power ratings without increasing the 
stator current per phase, making it possible to use standard power switches based on a 
single device. 

Furthermore, multi-phase motor drives have several advantages over the traditional 
three-phase motor drives such as reduction of the amplitude and increase of the frequency 
of torque pulsations, and increase of the fault tolerance. In addition, multi-phase motor 
drives offer a greater number of degrees of freedom compared with three-phase motor 
drives, which can be utilized for improving the drive performance [1]-[2]. 

It is worth noting that it is not possible to analyze multi-phase motor drives using the 
space vector representation in a single d-q plane. It is known that, to completely describe 
a multi-phase electromagnetic system, the space vector representation in multiple d-q 
planes (multiple space vectors) must be adopted [3]-[4]. 

Several control schemes for multi-phase induction machines, of symmetrical [5]-[8] 
and unsymmetrical [9]-[12] type, based on Field Oriented Control (FOC) principles, have 
been presented. All of them utilize the stator current components as main control 
variables. 

In this chapter, a rotor-flux-oriented control scheme for seven-phase induction motor 
drive is presented. The main control variables are the stator flux components instead of 
the stator current components, thus a simple stator flux regulator can replace the 
conventional current regulators implemented in the rotor-flux-oriented reference frame. 
This basic choice simplifies the control scheme and exhibits a fast torque response [13]. 

The implementation of the proposed control scheme requires the utilization of a 
flexible modulation strategy for seven-phase VSIs, allowing the full exploitation of the dc 
input voltage, and the simultaneous modulation of voltage space vectors in different d-q 
planes. 

In this chapter the problem of the modulation strategy of  seven-phase inverters is 
completely solved using the Duty-Cycle Space Vector (DCSV) representation [14]-[15]. 
Basically, this representation describes the state of the switches by means of complex 
variables [16]-[17]. Using the DCSV representation it is possible to combine the multiple 
space vector representation, useful in modeling multi-phase machines, with traditional 
carrier-based PWM principle, suitable for the modulation of multi-phase VSIs. 

The performance of the proposed control scheme is verified by experimental tests 
carried out on a seven-phase induction motor drive prototype. 

 

8.2 Machine Equations of Seven-Phase Induction Motor 

Let’s consider a seven-phase star-connected induction machine, with stator windings 
symmetrically distributed within the stator slots, and squirrel cage rotor.  

The behavior of the machine can be described by means of an opportune mathematical 
model, described in chapter 5, which takes into account the spatial distribution of the 
magnetic field in the air gap up to the seventh harmonic. 

The mathematical model is based on the following assumptions. Flux saturation, 
hysteresis losses and eddy current losses in the iron cores are neglected. Furthermore, iron 
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cores with infinite permeability are considered and the slot effects are not taken into 
account. 

The machine equations, written in terms of multiple space vectors in three reference 
frames synchronous with the corresponding rotor fluxes, are: 
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d
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where p is the pole pairs number, ωk is the angular speed of the k-th rotor flux vector, and 
ωm is the rotor angular speed in electric radians. 

Note that using the multiple space vector representation leads to decoupled equations 
of the electrical quantities. In fact, the three sub-systems of Eqs. (8.1)-(8.5), (8.6)-(8.9) 
and (8.10)-(8.13) are independent of each other. 

As a consequence, a seven-phase induction machine can be considered as constituted 
by three independent three-phase induction machines (denoted by indexes 1, 3, and 5) 
acting on the same rotor shaft. 

It is worth noting that the current space vectors 1Si  and 1Ri  are responsible for the 

fundamental spatial component of the magnetic field in the air gap, whereas 3Si , 3Ri  and 

5Si , 5Ri  generate the third and the fifth spatial harmonic, respectively. 
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In this paper the third and the fifth spatial harmonic of the magnetic field in the air gap 

are set to zero. This goal is reached by zeroing the voltage space vectors 3Sv  and 5Sv . 

This choice has been made for the sake of simplicity to describe the control algorithm 
of the seven-phase induction motor drives. The possibility to use the third and the fifth 
spatial harmonic components is out of the scope of the present chapter.  

The seventh spatial harmonic is zero since it is generated by the zero-sequence 
component of the stator current, which is null in the case of star-connected stator 
windings. 

 

8.3 Stator Flux Vector Control 

Solving (8.3) and (8.4) with respect to 1Si  and 1Ri , and substituting in (8.3) and (8.13) 

yields 

   1
11

1
11

11

1
S

RS

R
Rm

R

RR

LL

MR
j

L

R

dt

d

























    (8.14) 

 11
111

1

2

7
RS

RS

j
LL

M
pT 


 ,      (8.15) 

where the parameter σ1 is defined as follows: 
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2
1

1 1
RS LL

M
 .        (8.16) 

The reference frame orientation is chosen so that the d-axis has the direction of the 
rotor flux vector. Hence (8.14) can be rewritten in terms of d and q components as 
follows: 
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Fig. 8.1.Block diagram of the proposed SFVC scheme. 
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Also (8.16) can be rewritten as follows:  

 11
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 .       (8.19) 

As can be seen, these equations are quite similar to the corresponding equations of the 
traditional FOC based on d-q stator current components. In fact the rotor flux depends 
only on dS1 , whereas the motor torque is proportional to qS1 . 

A block diagram of the proposed SFVC scheme is shown in Fig. 8.1. 
The control scheme is implemented in a reference frame synchronous with the rotor 

flux vector, like traditional field oriented controls. It is assumed that a suitable observer 
estimates 1s , 1r , and the angular frequency ω1 of the rotor flux vector. 

 

A. Torque Control 
 
The motor torque is controlled by comparing the torque reference Tref with the 

estimated torque T. On the basis of the torque error, the PI regulator produces a torque 
request by adjusting the q-component of the stator flux, according to (8.19). Therefore, if 
the reference torque is higher than the actual torque, the PI regulator tends to increase the 
φS1q,ref, otherwise it tends to decrease it. 

 

B. Rotor Flux Control 
 
The rotor flux is controlled by adjusting the d-component of the stator flux, according 

to (8.17). 
In the low speed range, the d-component of the stator flux is constant and has the rated 

value rated,dS1 . At higher speeds, instead, it can be reduced by an opportune field 

weakening algorithm. 
 

C. Stator Flux Regulator  
 
The stator flux regulator behaves as a proportional controller, with some additional 

terms compensating the stator back-EMF and the voltage drop caused by the stator 
resistance. The stator flux regulator equation can be expressed as follows:  

 



 1,1

111,1

SrefS

SSSrefS jiRv


      (8.20) 

where 1/τ represents the gain of the controller.  
Combining (8.20) and (8.1), i.e. refSS vv ,11  , leads to the following equation, 

expressing the dynamic behavior of the stator flux vector: 
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 refSS
S

dt

d
,11

1 


  .       (8.21) 

According to (8.21), in order to obtain fast flux transients, and consequently a high 
torque dynamic, it is necessary to adopt small values of τ. 

 

D. Flux Observer 
 
The aim of the flux observer is the determination of stator flux and phase angle of the 

rotor flux, which are necessary for the field oriented control of the induction machine. 
The flux observer operates in the stator reference frame. In the following the superscript 
“s” will be used to identify quantities expressed in the stator reference frame. 

The stator flux is determined by integrating the following stator voltage equation: 

 S
SS

S
S

S
S iRv

dt

d
11

1 


.        (8.22) 

If the measure of the stator currents is available, the rotor flux can be estimated as 
follows 

  S
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1   .       (8.23) 

The phase angle θ1 of the rotor flux vector, necessary for the field oriented control, can 
be derived from (8.23) as follows 

    S
SS

S
S

S
R iL 111111 argarg   .      (8.24) 

It is evident from (8.22) that the estimation of the stator flux vector can be affected by 
stator resistance mismatch, sensors offsets and the inverter non-linearity (inverter dead-
times, voltage drop on the conducting switches, etc.). 

The estimation error on the phase angle  depends on the stator flux estimation error, 

the mismatch on the leakage inductance LS1 and the offset of the current sensors. 
The leakage inductance shows moderate variations with the stator currents and it will 

be assumed practically constant. 

However, the influence of the two machine parameters, namely RS1 and LS1, on the 
flux estimation can be considered negligible in the high speed range. Whereas, in the low 
speed range, the performance of the flux observer must be improved by a feedback loop 
[18]. A closed-loop estimator is based on the principle that feeding back the difference 
between the measured output of the observed system and the estimated output, and 
continuously correcting the model by the error signal, the error should be minimized. 

In the case of a flux estimator, the motor flux cannot be directly measured, but the idea 
of realizing a closed-loop system is still applicable if the difference between a signal 
representing the steady-state value of the reference rotor flux and the signal of the 
estimated rotor flux vector is used as feedback signal. 

Hence, (8.22) has to be replaced by the following equation: 
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where G is the gain of the flux observer and the reference flux vector is 
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This observer is much more robust than an open loop estimator and reduces the 
sensitivity of the control scheme to stator parameter variations and to sensor offset, even 
at low speed. However, it requires the knowledge of a further machine parameter, namely 
the ratio LR1/M1, and the tuning of the gain G. 

 

E. Torque Observer 
 
The torque can be estimated from the measurements of the stator current and the 

estimation of the stator flux, as follows: 

  112

7
SS jipT  .        (8.27) 

As can be seen, the torque estimation does not require explicitly any motor parameters, 
except the pole pairs. 

 

8.4 Experimental Results 

In order to verify the effectiveness of the proposed control scheme some experimental 
tests have been performed on a seven-phase induction motor drive prototype. 

The experimental setup consists of a custom-designed seven-phase voltage source 
inverter (Fig. 8.2 (a)) feeding a seven-phase squirrel cage induction motor (Fig. 8.2(b)), 
whose parameters are reported in Tab. I 

 (a)  (b) 

Fig. 8.2.Laboratory induction motor drive a)Custom-designed seven-phase voltage source inverter, b) 
Custom-designed seven-phase squirrel cage induction motor 
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The IGBTs are rated 30A and 600 V. The dc bus voltage is about 130 V, obtained with 

a three-phase diode rectifier and filtered by a capacitance of 3300 F. 
The test motor is coupled to a separately excited dc machine acting as load. 
The control algorithm is implemented in a Digital Signal Processor (DSP) 

TMS320F2812. The switching period is 250 μs, corresponding to a switching frequency 
of 4 kHz. 

The particular modulation strategy adopted for the experimental tests can be 
considered as a generalization of the well-known symmetric modulation used with three-
phase inverters. The zero sequence component m0 is selected in order to maintain the 
seven modulating signals centered within the interval [0,1], according to the following 
relationship: 

     1,...,min,...,max 7171  mmmm .      (8.28) 

The behaviour of the proposed SFVC scheme has been analyzed in steady-state and 
transient conditions. 

The experimental tests in steady-state conditions have been carried out with Tref = 10 
Nm, φSd,ref = 0.52 Wb and a rotor speed of about 550 rpm. The results are presented in 
Figs. 8.4 and 8.5.  

For display purposes, Fig. 8.3 shows the behaviour of only three of the stator currents. 
As expected, the stator currents exhibit sinusoidal waveforms having the same amplitude, 
and a displacement angle of 4π/7. The superimposed small ripple is due to the switching 
effects. 

The trajectories of the stator current space vectors 1Si , 3Si  and 5Si , in the 

0 ‐

TABLE  I 
MOTOR PARAMETERS 

RATED POWER 

RATED PHASE VOLTAGE 

RATED SPEED 

POLE NUMBER 

SLOT NUMBER 

3500 W 

120VRMS, 50 HZ 

1450 RPM 

4 

28 

 

Fig. 8.3. Experimental test. Waveforms of stator currents in phase 1, 3, and 5, in steady-state conditions 
(20 ms/div, 4A/div). 
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corresponding d-q planes, are presented in Fig. 8.4. As can be seen the space vector 1Si  

rotates at constant speed along a circular trajectory, whereas the space vectors 3Si  and 5Si  

are null, according to the choice of 0,3 S
refSv  and 0,5 S

refSv . This result confirms that the 

stator currents are balanced and sinusoidal. 
The good behavior of the estimated torque and of the estimated rotor flux magnitude is 

emphasized in Fig. 8.5 (a).  
In order to evaluate the dynamic response of the proposed control scheme, a square-

wave torque reference from 5 Nm to 10 Nm, having a frequency of 2 Hz, has been 

applied to the drive system. The flux reference has been kept constant (Sd,ref = 0.52 Wb). 

The waveforms of the estimated torque, of the estimated rotor flux and of the - 
components of stator current space vector 1Si  are shown in Fig. 8.5 (b). As can be seen, 

the system exhibits a fast torque response, whereas the rotor flux magnitude remains 
constant. This behavior shows that the proposed SFVC scheme is able to perform a 
decoupled control of torque and flux. 

 
 
 
 
 

 
 
 

Fig. 8.4 Experimental test.  
a)Trajectory of the space vector 1Si  in steady-

state conditions (4A/div). 
 b)Trajectory of the space vector 3Si  in steady-

state conditions (4A/div).  
c). Experimental test. Trajectory of the space 
vector 5Si  in steady-state conditions (4A/div). 
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8.5 Conclusions 

It has been shown in this chapter that, by combining the multiple space vector 
representation with traditional carrier-based pulse width modulation, it is possible to 
define a rotor-flux-oriented control scheme for seven-phase induction motor drive.  

The peculiarity of this control scheme is the adoption of the stator flux components 
instead of the stator current components as main control variables. This choice allows 
replacing the conventional current regulators, implemented in the rotor-flux-oriented 
reference frame, with a simple stator flux regulator. 

The implementation of the proposed control scheme requires a flexible modulation 
strategy for seven-phase VSI, which is based on the DCSV representation of the inverter 
state. This carrier-based modulation strategy allows the full exploitation of the dc input 
voltage, and the simultaneous modulation of three voltage space vectors in different d-q 
planes. 

Several experimental tests have been carried out showing that it is possible to obtain 
decoupled torque and flux control, with fast torque response. 
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High Torque Density 
Applications 

 
Abstract  
  
In this chapter, a rotor-flux-oriented control scheme for seven-phase induction motor 
drives is presented. At low speed the proposed control scheme is able to increase the 
motor torque by adding a third harmonic component to the air-gap magnetic field. 
Above the base speed the control system reduces the motor flux in such a way to ensure 
the maximum torque capability.  
The analysis consider the drive constrains and show how these limits modify the motor 
performances.  
The validity of the proposed control scheme is confirmed by experimental tests. 
 

 
9.1 Introduction 

The use of multi-phase inverters together with multi-phase ac machines has been 
recognized as a viable approach to obtain high power ratings without increasing the stator 
current per phase, making it possible to use standard power switches based on a single 
device. 

Several control schemes, based on field oriented control, have been presented for 
multiphase drives. These control strategies have been applied to symmetrical, 
unsymmetrical and special multiphase machines as well as multi-motor drives [3]-[10] 

Multiphase drives offer the opportunity to increase the torque density by adding a third 
spatial harmonic in the magnetic field. This feature has been exploited mainly in 
permanent magnet synchronous motors [11]-[12]. It is worth noting that the development 
of high torque density drives is dependent on successful implementation of proper 
modulation strategies which will enable the  precise synthesis of non-sinusoidal variables 
[13]-[14]. 

High-torque density control scheme were presented for five-phase induction motor 
drives [15],[16]. 

So far, very little research has been done on the operation of multiphase electric drives 
in field weakening region and the realization of robust control scheme. 
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In this context, the present paper proposes a solution to the control problem of seven-
phase induction motors. The adopted control scheme exploits the maximum torque 
capability of the motor at any speed. In addition, the operation in field-weakening speed 
range requires the knowledge of very few motor. 

The performance of the proposed control scheme is verified by experimental tests 
carried out on a seven-phase induction motor drive prototype. 

 

9.2 Machine Equations of Seven-Phase Induction Motor 

In the previous chapters  the machine equations of multi-phase motor, and in particular 
of seven phase induction motor, are have been analyzed and described. In this section 
there is only a short resume. 

The machine equations, written in terms of multiple space vectors in three reference 
frames synchronous with the corresponding rotor fluxes, are as follow: 
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where p is the pole pairs number, ωk is the angular speed of the k-th rotor flux vector, and 
ωm is the rotor angular speed in electric radians. 
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It is worth noting that the current space vectors 1Si  and 1Ri  are responsible for the 

fundamental spatial component of the magnetic field in the air gap, whereas 3Si , 3Ri  and 

5Si , 5Ri  generate the third and the fifth spatial harmonics, respectively. 

 

9.3 Motor Control for High Torque Density 

If a multiphase motor with concentrated windings, i.e. with one slot per pole per phase, 
is considered, it is possible to increase the torque density of a multiphase motor by adding 
spatial harmonic components of order greater than one to the air-gap magnetic field. 

Some authors have shown that, if a third spatial harmonic is added to the air-gap 
magnetic field and this harmonic moves synchronously with the fundamental component, 
the waveform of the magnetic field in the air-gap resulting from their superposition can 
have a peak value that is lower than that of the fundamental component. This result is 
illustrated in Fig. 9.1. In this way it is possible to increase the amplitude of the 
fundamental component up to 115% without overcoming the rated peak value of the flux 
density, i.e. the amplitude of the flux density when the distribution of magnetic field in 
the air-gap is sinusoidal. 

The fifth spatial is generally not considered and is set to zero, since it cannot be used 
to increase the motor torque perceptibly and leads to an unjustified increment in the 
control scheme complexity. For this reason, in the following it is supposed that the motor 
is not excited by voltages in plane d5-q5 and consequently the corresponding current and 
flux vectors in this plane are null. 

Let's suppose that the d-axes of reference frames d1-q1 and d3-q3 have the same 

directions of flux vectors 1R  and 3R . Consequently, the components φR1q and φR3q are 

zeros. 
Combining (9.2) and (9.4), and considering only the q-component of the result, shows 

that the slip frequency ω1-ωm is related to the current iS1q as follows: 
   qSRmR iM 11111   .       (9.14) 
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Fig. 9.1 Waveform of the air-gap magnetic field: fundamental component and third spatial harmonic. 
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where τR1 is defined as the ratio of LR1 over RR. 
Similarly, combining (9.6) and (9.8), one obtains: 

   qSRmR iM 33333 3   .       (9.15) 

where τR3 is defined as the ratio of LR3 over RR. 
If the third spatial harmonic of the magnetic flux moves synchronously with the 

fundamental component, its electric angular speed is triple of that of the fundamental 
wave, i.e. 

 ω3=3ω1.         (9.16) 

Substituting (9.16) in (9.15) and considering (9.14), one comes to the conclusion that 
the condition of synchronism (9.16) can be verified only if the following relationship is 
satisfied:  
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.        (9.17) 

In steady-state condition, the rotor fluxes are proportional to iS1d and iS3d respectively. 

 φR1 = M1 iS1d          (9.18) 

 φR3 = M3 iS3d.         (9.19) 

Substituting (9.18) and (9.19) in (9.17) leads to the following result: 
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.        (9.20) 

This result is used in following sections, to calculate the correct value of the current 
iS3q, so that the magnetic field wave generated by the current vectors 3Si  is synchronous 

with that generated by 1Si  and 1Ri . 

 

9.4 Field Weakening Operation 

In the high-speed range, the motor operation is limited by the available dc-link voltage, 
the inverter current rating, and the machine thermal rating. 

 

A. Voltage Limits 
 
The degree of utilization of the dc-link voltage depends on the voltage modulation 

strategy that has been adopted. Hereafter it is assumed that the modulation strategy of the 
drive is able to fully exploit the dc-link voltage and to generate all the admissible 
combinations of voltage vectors in the three d-q planes. For example, a modulation 
strategy with these features is the carrier-based pulse width modulation with a suitable 
choice of the zero-sequence voltage [17]. 
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In chapter 6 the problem of the control of multi-phase inverter is discussed and solved. 
In this section are summarized only the equations useful to clarify the drive voltage 
constrains. 

An explicit solution for the voltage limit of a seven-phase inverter has been determined 
in chapter 6, leading to a set of inequalities that link the magnitudes of the multiple 
voltage space vectors, independently of their phase angles. 

This set of inequalities is as follows: 
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The variables in (9.21)-(9.23) are the magnitudes of the three reference voltage vectors 
that should be generated by the inverters.  

The output voltage boundaries can be represented from a geometric point of view by 
introducing a three-dimensional space, having v1,ref, v3, ,ref and v5, ,ref normalized by Edc as 
Cartesian coordinates, arranged so as to form a right-handed coordinate system. In this 
space it is possible to define a region of linear modulation that is shown in Fig. 9.2. Each 
point of this region satisfy the three constraints (9.21)-(9.23). 

If it is assumed that the currents in plane d5-q5 are not used, the reference voltage 
vector v5,ref is always zero and the admissible voltage vectors are represented by the base 
surface of the polyhedron of Fig. 9.2. For clarity, this region is shown in Fig. 9.3 and the 
constraints on the voltage vectors become as follows: 
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Fig. 9.2 Validity domains of v1,ref, v3,ref, 
v5,ref, normalized dividing by the dc-
link voltage. 
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Fig. 9.3 Validity domains of v1,ref and v3,ref , 
normalized dividing by the dc-link voltage. 
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B. Current Limits 
 
The current limit is defined by the inverter current rating or by the machine thermal 

rating. This limit can be approximately described by an inequality in the following form: 

 2
max,

2
3

2
3

2
1

2
1 SqSdSqSdS IIIII  .       (9.26) 

It is easy to recognize that the left-hand member of (9.26) is proportional to the sum of 
the squared rms value of the stator currents and is proportional to the Joule losses of the 
stator windings. 

 

C. Maximum Torque Capability in Field Weakening Operation 
 
It is well-known that, when the rotor speed of a three-phase induction motor increases, 

the inverter dc-link voltage may become insufficient to inject the requested currents into 
the motor. To allow the motor to operate at higher speeds, it is necessary to reduce the 
flux level, although this choice leads inevitably to a reduction of the maximum torque that 
the motor can deliver to the load. 

The same principle may be used also for the field-weakening operation of high-torque 
density multiphase motors but in this case the problem of selecting the correct flux level 
is rather complex. In fact, the control scheme has to choose between decreasing the 
magnetizing currents iS1d or iS3d, and it is not simple to understand which law is the best 
one to maximize the torque capability because of the large number of parameters and 
constraints. 

A numerical analysis can be very useful to solve this problem. Equations (9.1)-(9.13) 
have been used to find the best combination of currents iS1d and iS3d that maximize the 
torque capability of the motor at any operating speed without overcoming the current 
limit, the voltage limit and the peak value of the air-gap flux density. The result of this 
optimization procedure is shown in Fig. 9.4. 

The motor parameters adopted for the numerical optimization are reported in Table I 
and correspond to the seven-phase induction motor used also for the experimental tests 
discussed in followings sections. 

TABLE I – SEVEN-PHASE MOTOR PARAMETERS 

Trated = 25 Nm LS1 = 180 mH 
Edc = 100 V LR1 = 180 mH 
Is,max = 7.5 A  M1 = 175 mH 
ISd,rated = 3.13 A  LS3 = 24 mH 
Edc = 100  V LR3 = 24 mH 
RS = 1.1 Ω  M3 = 19 mH 
RR = 1.0 Ω p = 2  
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Examining Fig. 4, one comes to the conclusion that the motor operation can be divided 
into four parts. 

In the low speed range (region I), the torque is enhanced by about 10% by the addition 
of a third-order spatial harmonic. In region I the torque capability is limited only by the 
maximum current IS,max. 

Region II starts when the dc-link voltage is completely exploited. It is worth noting 
that in this region iS3d is controlled progressively to zero and the motor looses the high-
torque density capability. This means that it is convenient to use the available dc-link 
voltage to sustain entirely the fundamental component of the magnetic field instead of the 
third spatial harmonic, because the advantage given by the latter to the generation of the 
motor torque becomes very small. In addition, the reduction of iS3 allows to increase iS1q 
without overcoming the current limit, and consequently helps to contain the torque 
reduction. 

Above the base speed (region III), the torque diminishes below the rated torque, but 
the power delivered to the load is practically constant and slightly greater than the power 
at base speed. The rms value of the phase current is constant and the voltage limit is 
completely exploited by vS1 alone.  

Finally, at very high speed (region IV), the dc-link voltage is not sufficient to inject the 
maximum current into the motor phases. The power delivered to the load decreases and 
the motor behavior, like in region III, is very similar to that of a traditional three-phase 
motor. In this operating condition, the maximum torque is obtained when the d-
component of the stator flux vector is equal to the q-component, namely the stator flux 
vector and the rotor flux vector form an angle of 45 degrees [19]. 

 

9.5 Control Scheme 

The block diagram of the proposed control scheme, derived on the basis of the analysis 
carried out in previous section, is shown in Fig. 9.5.   
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Fig. 9.4 Maximum torque capability of the seven-phase motor whose parameters are reported in Table I. 
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In the control scheme, it is possible to identify three different parts. The first one is 
responsible for the tracking of the current references, the second one is the torque control 
loop, whereas the third one manages the field-weakening operation. 

In Fig. 9.5, the controlled variables are expressed in two reference frames d1-q1 and d3-
q3, synchronous and aligned with the corresponding rotor flux vectors. For the proper 
operation of the control scheme, it is assumed that estimations of the motor fluxes, torque 
and speed are available, although the problem of the observer is out of the scope of this 
analysis. 

 

A. Current Loop 
 
Two PI regulators, (a) and (b), are used to track the reference signals iS1d,ref and iS1q,ref. 

Two other PI regulators, (c) and (d), have the same task for the reference signals iS3d,ref 
and iS3q,ref.  

As usual, the output signals of these regulators should be  compensated for the back 
electromotive forces. If the dc-link voltage is not sufficient to synthesize the reference 
voltage vectors, their magnitudes are re-computed  by multiplying for a reduction factor, 
lower than one, so that the rescaled reference voltages are kept inside the linear 
modulation area of Fig. 9.3. This task is accomplished by the limitation block (e). 

 

B. Torque Loop 
 
The motor torque is adjusted by the PI regulator (f) that compares the reference torque 

with the estimated actual torque. The output of this regulator is the torque-producing 
current iS1q,req, that tends to increase when the requested torque is greater than the 
estimated torque, and to decrease in the opposite case. It is worth noting that the reference 
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Fig. 9.5 Block diagram of the control scheme. 
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value iS3q,ref, necessary for ensuring the synchronism between the fundamental and the 
third-order spatial harmonics of the magnetic field, is calculated by (9.22) once iS1q,ref is 
known.  

In region I, II, III the maximum deliverable torque is limited by the maximum current 
Is,max, whereas in region IV the maximum torque takes places when the d-component of 
the stator flux vector is equal to the q-component of the stator flux vector. In steady-state 
condition, this latter equality can be written as follows: 

 
11

1
1

S

dS
qS L

i



 .         (9.27) 

The limitation block (g) assures that these constraints are satisfied in any speed region. 
In fact, the absolute value of the current iS1q is bounded by iS1q,max, which makes the stator 
current equal to Is,max or makes φS1q equal to φS1d, depending on which one is the most 
restrictive constraint in the present operating condition. 

 

C. Flux Loop 
 
The rotor flux magnitude φR1 is indirectly controlled by PI regulator (j), which adjusts 

the d-component iS1d,req of the stator current vector. In the same way, PI regulator (h) 
adjusts iS3d,req to control the rotor flux magnitude φR3. 

When the motor speed is too high, the available dc-link voltage Edc is not sufficient to 
satisfy entirely the voltage request. The dc-link voltage that would be necessary for 
satisfying the voltage request can be calculated with the following equation: 
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If Edc,req is greater than the present dc-link voltage, it means that the motor is operating 
in region II, III or IV, and certainly the third spatial harmonic of the magnetic field has to 
be reduced. This task is accomplished by PI regulator (h), that integrates the difference 
Edc - Edc,req. If this difference is negative, iS3d is brought to zero. Otherwise it increases up 
to the threshold value iS3d,max shown in the limitation block (i). 

It is worth noting that the decrease of iS3d causes a corresponding reduction of the 

voltage request and, if vS1,req is lower than  )73sin(21  Edc, i.e. 0.51 Edc, the freed 

voltage resources can be used to keep φR1 unaltered as long as possible. 

On the other hand, if the voltage request vS1,req is greater than  )73sin(21  Edc,  as 

happens in region III and IV, it can never be satisfied, even if the third harmonic of the 
magnetic field is set to zero. In this case, PI regulator (j), which integrates a quantity 
proportional to the difference reqSdc vE ,1)73sin(2  , decreases  φR1 by acting on the 

current iS1d. The limitation block (k) forces this current to stay between an upper bound 
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iS1d,max, and a lower bound iS1d,min. This is necessary to ensure the stable operation of the 
motor at high speed.  

The main advantage of the proposed field weakening scheme is that it is independent 
of the base speed and the motor parameters, except for the leakage inductance σ1LS1, 
which is generally used in the state observer. In addition, it does not require any complex 
calculation of the flux level or look-up tables. 

 

9.6 Calculation of the Amplitude of the Third Spatial Harmonic of the 
Magnetic Field in the Air-Gap 

In previous sections the maximum values of the magnetizing currents maxdSi ,1 , maxdSi ,3  

in the planes d1-q1 and d3-q have been introduced , but the meaning of these currents has 
not been clarified. In this section the problem of maximizing the torque capability in 
multiphase drives based on induction motors by adding a third spatial harmonic in the air-
gap field is investigated. 

The analysis shows that not considering the inverter and motor current rating may lead 
to suboptimal motor performance  

It is worth noting that nearly all the papers that describe the control scheme of a 
multiphase motor with high torque density choose a value of the third spatial harmonic of 
the air-gap field that is deduced from a well-established method, namely the 
maximization of the amplitude of the fundamental component of the air-gap field. 
Although this choice could lead to an effective improvement of the motor torque in some 
cases, actually there are situations where it turns out to be useless or even detrimental. 

The main reason is that the maximization of the fundamental component of the air-gap 
field coincides with the maximization of the motor torque only for the motor alone. When 
the motor is considered as a part of a complete electric drive, the solution for the 
maximum torque capability may be different. In fact, in the case of the whole drive, the 
motor is subject to constraints such as the inverter voltage limit, the inverter current rating 
or the machine thermal rating. These constraints remarkably affect the motor 
performance. 

 

A. Approach of Maximization of the Fundamental Component of the 
Air-Gap Field 

 
The corresponding values of the flux-producing components of the stator currents turn 

out to be approximately as follows: 
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where iSd,rated is the rated magnetizing current of the motor operating without third spatial 
harmonic. Equations (9.29)-(9.30) are approximated in that the effect of the leakage flux 
has been neglected for their determination.  

To obtain the relationships (9.29) and (9.30), it is necessary analyze the air-gap 
magnetic field present in a multi-phase electrical machine. 

If no constraint on the motor currents is present, an increment of the fundamental 
component of air-gap field always leads to an increment of the motor torque. For this 
reason, (9.29) and (9.30) are usually adopted in the field-oriented control of high-torque 
density multiphase drives. 
The torque of a n-phase motor (the number n of phases is assumed odd) with only the 
contributions of the first and the third harmonics can be written as follows: 
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where M1 and M3 are mutual inductances between stator and rotor windings in the plane 
d1-q1 and d3-q3, whereas LR1 and LR3 are rotor self inductances. As can be seen from (9.31), 
the torque depends on all the current components, but it can be demonstrated that the first 
term inside the brackets is usually the dominant one. This is the reason why the increment 
of iS1d in (9.29) has a positive repercussion on the motor torque. 

 

B. Optimization of the Motor Torque 
 
In practical applications, the torque capability of a multiphase motor drive is mainly 

limited by the inverter current rating and the motor current rating. The maximum value 

that is admissible for the stator current is denoted with max,SI . This current limit can be 

expressed by (9.26). 
Equation (9.26) is particularly important for the optimization of the torque in 

multiphase drives. In fact, if the currents iS1d and iS3q are not set to zero and a third spatial 
harmonic is added to the air-gap field, (9.26) shows that there is a reduction of the current 
iS1q at disposal for torque generation. 

 

Fig. 9.7 Example of behavior of the maximum torque for different values of the ratio of the magnetizing 
currents. 
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Consequently the maximum torque capability corresponds to a precise combination of 
all the current components and results from a constrained optimization that has to 
consider not only the maximum admissible value of the air-gap field but also inequality 
(9.26). 

Fig. 9.7 shows an example of the behavior of the maximum torque for different values 
of the ratio of the magnetizing currents, and refers to the motor parameters in Tab. I. As 
can be seen, the motor torque is maximum when the ratio iS3d/iS1d is about 0.32, and this 
result is very different from that given by (9.29)-(9.30), that lead to a ratio of 0.5. 

It is possible to shown that the torque improvement that could be obtained for a given 
motor depends on the ratio between the magnetizing current ISd,rated and the maximum 

current max,SI , as shown in Fig. 9.8. It is worth noting that the third harmonic is useless or 

even detrimental if this ratio is 22  or greater. 

Fig. 9.9 show the behavior of the currents iS1d and iS3d that correspond to the maximum 
torque enhancement. As can be seen, the optimal values are similar to (9.29) and (9.30) 

 

Fig. 9.8 Maximum torque that can be obtained by adding a third spatial harmonic of the air-gap field as 
a function of the ratio between the magnetizing current and the maximum current. 

 

Fig 9.9 Normalized values of the magnetizing currents iS1d and iS1q for different ratios ISd,rated/IM. 
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only when the magnetizing current of the motor is small compared to the maximum 
current, whereas they may be sensibly lower when the magnetizing current is at least 40% 
of the maximum current. 

 

9.7 Experimental Results 

Fig. 9.10 shows some experimental results obtained with a field-oriented drive based 
on a seven-phase induction motor. The figure compares the start-up transients in the cases 
that the third spatial harmonic of the air-gap field is generated either according (9.29)-
(9.30) or according the proposed method. During the start-up transient the control system 
tries to produce the maximum torque. As can be seen, in the second case the motor is 
slightly faster, i.e. the motor produces a higher torque. In fact, after 0.4 s of acceleration, 
the motor speed is about 430 rpm in the first case and 510 rpm in the second case. 

Figs. 9.11-9.13 show the behavior of the motor during a start-up transient when the 
torque reference is equal to the rated. Trace 9.11 of both Figs. 9.12 and 9.13 shows the 
waveform of a line current during the transient. In addition Fig 9.11 shows the waveforms 
of the estimated torque and of the currents iS1d and iS1q, whereas Fig. 9.12 shows the 
waveforms of the rotor speed and of the currents iS3d and iS3q. Initially, the motor is at 
standstill and absorbs only the magnetizing currents iS1d and iS3d. 

After the rated torque command, the motor starts up and the line current reaches the 
maximum admissible amplitude (region I). In region II the control algorithm quickly 
reduces iS3d and, accordingly, iS3q. In region III the motor flux keeps decreasing, as can be 
recognized by examining the waveform of iS1d. 

The control system, to entirely exploit the current limit (9.26) slightly increases iS1q, to 
take advantage of the progressive reduction of the other current components in region II 
and III. 

 

Fig 9.10 Experimental results. Behavior of a 7-phase induction motor during a speed transient when the
third spatial harmonics is generated by maximizing the fundamental component of the air-gap field (a), or
by maximizing the motor torque (b) 
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Fig. 9.13 shows the behavior of the control system in the same operating condition of 
Fig. 9.11 and 9.12, but focuses the attention on region II. In this transition speed range, 
the waveform of the line current is initially distorted by the presence of a third harmonic 
component, but becomes more and more sinusoidal while iS3d decreases. 

 

9.8 Conclusions 

A rotor-flux-oriented control scheme for high-torque density seven-phase induction 
motor drives has been presented and experimentally assessed. The proposed control 
scheme is able to exploit the maximum torque capability of the motor at any speed. Its 
main advantage is that the flux control loop is independent of the base speed and the 

motor parameters, except for the leakage inductance LS1. In addition, it does not require 
any complex calculation of the flux level or look-up tables 

Furthermore the analyses of the problem of maximizing the torque capability of 
multiphase drives based on induction motors by adding a third spatial harmonic in the air-
gap field is presented. The analysis takes into account the current limit of the motor and 
of the inverter and shows that the traditional solution of this problem, available in 
literature for induction motors without considering any current constraint, may lead to 
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Fig.9.11 - Start-up transient with rated torque 
(500 ms/div). 1) Motor torque (20 Nm/div), 2) 
iS1d (2 A/div), 3) iS1q (2 A/div), 4) Phase current 
(10 A/div). 

Fig.9.12 - Start-up transient with rated torque 
(500 ms/div). 1) Motor speed (750 rpm/div), 
2) iS3d (1 A/div), 3) iS3q (1 A/div), 4) Phase 
current (10 A/div). 
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Fig.9.13 - Start-up transient with rated torque. The time scale is 1 s/div for upper traces and 100 
ms/div for lower traces. 1) Motor torque (20 Nm/div), 2) iS1d (4 A/div), 3) iS3d (2 A/div), 4) Phase 
current (10 A/div). 
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suboptimal motor performance. The main reason is that the traditional solution, based on 
the maximization of the fundamental component of the air-gap field, is valid only for the 
motor alone. When the motor is considered as a part of a complete electric drive, the 
solution corresponding to the maximum torque may be different. 

The results described in this paper can be useful for the design of multiphase induction 
motors and drives, or for the tuning of the control systems. 

The validity of the theoretical analysis is verified by numerical simulation and 
experimental results. 
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Fault-Tolerant  
Control Strategy Under an 
Open Circuit Phase Fault 

Condition 
 
Abstract  
  
In this chapter some different control strategies, suitable for open-phase fault operation 
of multi-phase current regulated induction motor drives, are presented. These strategies, 
which are valid in steady-state as well as in transient operating conditions, are then 
compared in terms of stator and rotor copper losses and torque pulsations. The 
comparison is based on an opportune mathematical model of the machine that, 
exploiting the properties of the multiple space vector representation of multi-phase 
systems, takes into account the first five spatial harmonics of the air-gap magneto motive 
force. 
An optimal free-disturbance control strategy, for multi-phase current regulated motor 
drives, suitable for open-phase fault operation, is presented and tested. The proposed 
strategy, minimizes the stator and copper losses in transient and steady-state operating 
conditions. 
The effectiveness of the proposed fault tolerant control strategies is confirm  by 
numerical simulations based on finite element analysis and by some experimental tests, 
carried out on a seven-phase asynchronous motor drive prototype. 
 

 

10.1 Introduction 

The development of modern power electronic devices and the improvement in the 
control techniques make it possible to consider the number of phases of variable-speed 
motor drives as one of the design variables. As a consequence, the conventional three-
phase solution simply represents a particular case. 

The increase of the phase number leads to a reduction of the stator current per phase 
with the same power, with evident advantages in terms of inverter power devices. 
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Furthermore, the improved spatial distribution of the Magneto Motive Force (MMF) in 
the machine air gap reduces the rotor copper losses and the amplitude of the torque 
pulsation [1]-[2]. 

A further advantage of multi-phase drives, with respect to the three-phase ones, is the 
greater number of degrees of freedom that can be exploited in different ways. 

One possibility consists in improving the fault-tolerant capability of the motor drive. 
This characteristic represents a crucial point for all applications requiring a high degree of 
reliability, such as aircraft or marine ones. 

This chapter investigates a class of faults for multi-phase motor drives where one of 
the phases becomes open-circuited. This type of fault can be caused by mechanical failure 
of a machine terminal connector, an internal winding rupture, or by an electrical failure in 
one of the inverter phase leg. 

Some control strategies, able to ensure disturbance-free operation of multi-phase motor 
drives under an open circuit phase fault condition, without any additional hardware 
connection, have been already presented in literature. 

In [3] and [4] the problem has been solved using the usual phasor representation of 
each stator current in steady-state operating conditions. In [5] the proposed solution is 
based on the Fortescue’s symmetrical component representation of the stator currents. 
Also in this case reference is made to steady-state conditions. 

A different approach, which is based on the multiple space vector representation of 
multi-phase quantities [6], [7], has been proposed in [8] for multi-phase motors with 
“sinusoidally” distributed stator windings, having an odd number of phases. 

In this chapter, the multiple space vector representation is used in order to define 
different fault-tolerant control techniques for multi-phase current-regulated induction 
motor drives. The proposed approach allows the analytical determination in closed form 
of the waveform of the stator currents in the healthy phases, ensuring disturbance-free 
operation in transient and steady-state operating conditions. 

Using an opportune mathematical model of the seven-phase induction machine, which 
takes into account the undesired effects of the third and fifth spatial harmonics of the 
MMF in the air gap, the properties of the proposed control strategies, in terms of stator 
and rotor copper losses and torque pulsations are analyzed and compared. 

Some experimental tests have been carried out on a seven-phase asynchronous motor 
drive prototype available in laboratory. The results confirm the effectiveness and the 
properties of the proposed fault-tolerant control strategies. 

 

10.2 Analysis of the MMF in the Air-Gap 

The behavior of the MMF spatial distribution produced by the stator windings in the 
air gap of the machine directly affects the rotor quantities dynamics, and then the rotor 
copper losses and the electromagnetic torque. 

Under the assumptions usually adopted and described in Chapter 5, the description of 
the spatial distribution of the MMF in the air gap produced by the symmetrical stator 
windings of a star connected multi-phase induction motor, can be written, in terms of 
stator current space vectors, in the following compact form: 
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In (3) M is the number of phases, NS is the number of conductors in series per phase, 
KwSρ the ρ-th winding coefficient, p the pairs of poles, θS a stationary angular coordinate 
and Si  the ρ-th stator current space vector. 

Note that this result (10.1) is valid both in steady-state and transient conditions, and 
allows taking into account up to the (M-2)-th spatial harmonic 

As (10.1) emphasizes, the MMF in the air gap has a non-sinusoidal distribution and its 
spatial harmonic of order ρ (ρ = 1, 3,..., M-1) depends only on the corresponding current 
space vector Si . In particular, its amplitude is proportional to the magnitude of Si  and its 

angular speed (in electrical radians per second) is ωhρ = ωρ / ρ, where ωρ is the angular 
speed of Si . 

In the ideal case of electrical machines with “sinusoidally” distributed windings, the 
spatial harmonics of order greater than one can be neglected, then the MMF distribution 
produced by the M stator windings can be expressed as: 

    sj
Se

wSS
SS eti

p

KNM
tf 


  )(

2
, 1      (10.2) 

As (10.2) demonstrates, the MMF in the air gap due to stator windings has a sinusoidal 
spatial distribution, which depends exclusively on the instantaneous value of the first 
stator current space vector iS1. In particular, its amplitude is proportional to the magnitude 
of iS1 and its angular speed (in electrical radians per second) is ω h1 = ω1, where ω1 is the 
angular speed of iS1 . 

The other stator current space vectors do not contribute to the air gap MMF, therefore 
they can be considered as degrees of freedom. 

 

10.3 Operation in Healthy Conditions 

In a current regulated multi-phase induction motor drive the reference value of the first 
current space vector, i.e. ref,Si 1 , is calculated by the control system to satisfy the 

demanded torque and flux, whereas the remaining current space vectors are set to zero. 
In this way, the MMF in the air gap has a nearly-sinusoidal distribution, torque 

pulsations and rotor losses are strongly reduced, and stator copper losses are minimized. 
This type of control strategy is illustrated in Chapter 8 and can be adopted because, in 

absence of fault, the three stator current space vectors 531 SSS i,i,i  are independent each 

other, and can move arbitrarily in the corresponding d-q planes. 
Note that, in the particular case of high torque density motor drives the reference 

values of the first and the third current space vectors are calculated by the control system 
to satisfy the demanded torque and flux, whereas only the space vectors refSi ,  ( 5 ) 

are set to zero. This option was considered in the previous chapter. 
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10.4 Current Control Strategies in Fault Conditions 

When an open circuit phase fault condition occurs (phase k open) the (M-1)/2 stator 
current space vectors iS1 ,iS3 ,iS5 ,...,iS (M −2) are independent anymore, and the following 
constraint must be satisfied: 

 0
2

,...5,3,1

)1(  





M

k
SSk ii




 .       (10.3) 

Then, the three stator current space vectors Si  are independent anymore. As a 

consequence, a new control strategy must be determined.  
Disturbance-free operations can be achieved if the harmonic distribution of the MMF, 

produced by the stator windings in the air gap in healthy and fault conditions is the same. 
This stringent requirement can be satisfied for all the spatial harmonics only for 

machines with ‘sinusoidally’ distributed stator windings. In fact, these machines 
practically generate only the first spatial harmonic and different control strategies in fault 
conditions simply affect the stator copper losses. 

On the contrary, in the general case, it is always possible to maintain undisturbed only 
the first spatial harmonic, considering the same reference space vector ref,Si 1 . The other 

undesired MMF spatial harmonics interact with the rotor windings, producing rotor 
copper losses and torque disturbances. 

A block diagram of the proposed multi-phase fault-tolerant induction motor drive is 
shown in Fig. 10.1. 

The reference space vector ref,Si 1  is requested by a field oriented control scheme, 

whereas the optimal instantaneous values of the current reference space vectors ref,Si 3 ,…, 

refSi ,  are calculated by the fault-tolerant algorithm. 

M-phase 
VSI

dc bus 

Control 
scheme 

ref,Si 1  

ref,Si   

refT  

ref  

AC 
 MOTOR 

gate 
signals 

Current 
regulator

 = 3, 5,…,M-2 

Fault-tolerant 
algorithm 

 
Fig. 10.1. Block diagram of a current regulated seven-phase induction motor drive with the proposed 
fault-tolerant algorithm. 
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A. Optimal Disturbance-free Operations in Fault Conditions 
 
The first strategy (strategy (A)) is a disturbance free operation control algorithm, 

which minimizes the instantaneous stator copper losses steady-state and transient 
conditions 

The instantaneous stator copper losses can be calculated as: 

 



M

k
SksSJ iRP

...3,2,1

2 .        (10.4) 

Substituting the inverse Clarke transformation in (6), and considering a null value of 
the zero sequence component, owing to the winding star connection, leads to: 

 
22

,..5,3,12 





M

SsSJ i
M

RP


  .       (10.5) 

The reference space vector iS1,ref is requested by the control scheme, and the fault 
algorithm calculates the most opportune remaining reference current space vectors 
satisfying the optimization criterion and the constraint condition (10.3). 

Equation (10.3) can be rewritten as 

 )1(
,1

)1(
2

,..5,3
,






 k
refS

k
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refS ii  


 .      (10.6) 

As (10.6) suggests, each current space vector refSi ,  (ρ = 3, 5, M-2) can be 

decomposed along two orthogonal directions (T and N), as expressed by the following 
relationship: 

 )1(
,,

)1(
,,,

  k
NrefS

k
TrefSrefS jiii 




  .     (10.7) 

Note that (10.7) defines a constraint exclusively for the T-components, then, in order 
to minimize the stator copper losses, all the N-components are set to zero, 

As a consequence (10.6) and (10.7) can be rewritten as: 
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 )1(
,,,

 k
TrefSrefS ii 

    (ρ=3, 5, M-2)     (10.9) 

The last step consists in the determination of the T-components TrefSi ,,  (ρ = 3, 5, M-

2). According to (10.9) the optimal solution coincides with (M-3)/2 equal T-components.  
As a consequence, the optimal instantaneous values of the current reference space 

vectors, which guarantee the minimum stator copper losses, taking the constraint (5) into 
account, can be expressed in closed form, in a stator reference frame, as follows: 

  )1(
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 , (ρ=3, 5, M-2)    (10.10) 
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It can be demonstrated that, in the particular conditions characterized by a space vector 
iS1,ref rotating on a circular trajectory with constant angular speed, the proposed fault 
tolerant control scheme leads to a system of sinusoidal, but unbalanced, stator currents. 

In the ideal case of ac motors with ‘sinusoidally’ distributed stator windings the 
current space vectors calculated by (10.10) do not contribute to the spatial distribution of 
the MMF. On the contrary, in the practical case, each current space vector iSρ,ref  (ρ = 3, 5, 
M-2) produces two counter-rotating sinusoidal spatial harmonics of MMF of order ρ, 
having the same amplitude. 

In following analyzes for simplicity it will be supposed that the phase 1 breaks. This 
hypothesis does not reduce the validity area of the theory but permits to simplify the 
equations.  

Therefore when the hypothesis is applied, (10.3) can be expressed as: 

 





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,...5,3,1
1 1
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SS ii


 .        (10.11) 

In this situation for a five phase machine the current space vectors can be described by 
means of two constants, as follows: 
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where 

 










refSrefSrefS

refSrefSrefS

ijii

ijii

,3,3,3

,1,1,1




       (10.13) 

Under this hypothesis strategy A for a five phase machine can be expressed as follows: 

 0,1 33   KK ,  α=2π/5.     (10.14) 

Furthermore for a seven phase machine the equations (10.12) and (10.13) can be 
defined as: 
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where 
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Strategy (A) can be expressed for seven phase machine as follows:  
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 021021 5533   K,K,K,K  .    (10.17) 

In steady-state operating conditions (i.e. refSi ,1  rotating with constant angular speed on 

a circular trajectory), the current space vectors refSi ,3  and refSi ,5  move along an horizontal 

segment (see Fig. 2a). 
As a consequence, the interactions between the stator direct components and the rotor 

reaction inverse components (and vice versa) produce a pulsating torque, having 
frequency 2 f, where f is the stator current frequency. 

 

B. Strategy (B) 
 
In order to improve the spatial distribution of stator copper losses in the stator 

windings and to minimize the peak inverter current, a new fault control strategy, can be 
introduced. 

Strategy (A) minimize the joule stator losses but it obtains different amplitude for line 
currents both in transient and in steady state conditions. This situations can determine a 
different temperature distribution for stator phases and a different exploitation of the 
machine iron.  

In steady state operating condition strategy (B) allow to obtain the same amplitude for 
all remaining stator currents after the fault. This constrain saturate all degree of freedom 
only for a five phase machine whereas, when the number of phases is higher than five, for 
this problem there are infinite solutions.  

Under this hypothesis strategy B for a five phase machine can be expressed: 
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,1 33


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

 



 KK , α=2π/5  (10.18) 

In [3] one of the possible solutions is proposed but only with reference to steady-state 
operating conditions, owing to the phasorial representation of the stator currents. 

In this section the solution presented in [3] is introduced with vectorial representation, 
useful for the implementation of a multi-phase drive based on vector control system.  

For a seven-phase machine the equations (10.18) can be rewrite as: 

 2560.0,5550.0,1882.0,4450.0 5533   KKKK  (10.19) 

In (10.19)  5533 , KKKK  have not an analytic solution but only a numeric solution. 

In steady-state operating conditions this leads to six sinusoidal stator currents of equal 
amplitude and the current space vectors refSi ,3  and refSi ,5  move along elliptical trajectories 

(Fig. 10.2b)._Therefore, also in this case, both the third and the fifth spatial harmonics of 
the MMF are constituted by two counter-rotating components, leading to pulsating torque 
components.  

For multi phase system with a number of phases higher than seven a solution can be 
always found but only in a numeric way. 
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C. Strategy (C) 
 
Low frequency torque pulsation can represent a problem in some applications. In order 

to eliminate this pulsating torque in fault conditions, counter-rotating stator MMF 
components have to be avoided.  

This result can be obtained for a five phase induction machine by forcing the current 
space vectors refSi ,3 to move along circular trajectories, with constant angular speed. 

The fault control strategy reaching this goal, with minimum stator and rotor copper 
losses, can be defined as: 

 1,1 33   KK         (10.20) 

This result can be obtained by forcing the current space vector refSi ,3  to move along 

circular trajectories, with constant angular speed. 
For a seven phase machine the strategy (C) can be express as: 

 21,21,21,21 5533   KKKK    (10.21) 

In this case, the current space vectors refSi ,3  and refSi ,5 rotate in the same direction of 

refSi ,1 , with the same angular speed, as can be seen in Fig. 10.2c. 

For a generic M-phase machine with odd number of phases (10.20) and (10.21) can be 
generalized as: 

   ,32,32  MKMK   (ρ=3, 5, …, M-2)  (10.22) 

 

10.5 Comparison of the Fault-Tolerant Strategies in Steady-State 
Conditions 

The three proposed fault-tolerant strategies (A), (B), and (C) have been compared, in 
steady-state operating conditions, in terms of stator and rotor copper losses, average 
torque and torque ripple. 


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Fig. 10.2. Trajectories of the stator current space vectors. a) Strategy A. b) Strategy B. c) Strategy C. 
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In the case of ‘sinusoidally’ distributed stator windings, only the stator copper losses 
must be calculated, owing to the undisturbed behavior of the other quantities. 

The instantaneous stator copper losses can be evaluated by (10.5): 
Taking (10.17), (10.19) and (10.21) into account for a five phase machine, it can be 

demonstrated that: 

healthyJSAfaultJS PP ,)(, 2

3
 ,        (10.23) 

healthyJSBfaultJS PP ,)(, 52786.1 ,       (10.24) 

healthyJSCfaultJS PP ,)(, 2 .        (10.25) 

For a seven-phase machine: 
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For a M-phase machine the ratio between the stator joule power losses in healthy 
condition and fault conditions for strategies (A) and (C) can be expressed: 
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As can be seen, Strategy A is the best [8], whereas Strategy C is the worst. 
This conclusion is independent of the number of phases. 
The comparison in terms of rotor copper losses, average torque and torque ripple 

depends on the operating conditions and is strongly affected by the stator winding 
distribution. In the following, reference is made to a seven-phase squirrel-cage induction 
machine, having stator winding with one slot per pole per phase. The machine parameters 
are shown in Tab. I. 

The mathematical model of a current fed seven-phase induction machine can be 
written in terms of multiple space vectors as follows (stator reference frame): 

TABLE  I 
MOTOR PARAMETERS 

RATED POWER 

RATED PHASE VOLTAGE 

RATED SPEED 

POLE NUMBER 

SLOT NUMBER 

3500 W 

120VRMS, 50 HZ 

1450 RPM 

4 

28 
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iR 0 ,  (ρ = 1, 3, 5)    (10.26) 

  RRSR iLiM
,   (ρ = 1, 3, 5)    (10.27) 
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 RS ijiMpT ,       (10.28) 

where RR is the rotor resistance, LRρ and Mρ are, respectively, the rotor and mutual 
inductances concerning the ρ-th spatial harmonic, and ω is the rotor angular speed in 
electrical radians. 

The behavior of the proposed fault-tolerant algorithms in steady-state conditions can 
be determined by solving. (10.26)-(10.28) by means of a numerical procedure, assuming 
the stator currents as input variables. Then, the rotor copper losses can be evaluated as 
follows: 





5,3,1

2

2

7


RRJR iRp .        (10.29) 

Note that this model takes into account the first five spatial harmonics of the MMF in 
the air gap. 

The results of the comparison as function of the rotor speed (in p.u. of the rated value), 
with rated value of the torque, are presented in Figs. 10.3-10.5. 
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Fig. 10.4. Average torque as function of the rotor speed. 
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Fig. 10.3. Rotor copper losses as function of the rotor speed. 
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Fig. 10.3 illustrates the rotor copper losses (in p.u. of the value in healthy condition). 
As can be seen, Strategy A is slightly better than Strategy B, whereas Strategy C is clearly 
the worst. Note that the rotor copper losses have a minimum for low rotor speed whereas 
are constant for high rotor speed. 

The average value of the torque (in p.u. of the rated value) as a function of the rotor 
speed is shown in Fig. 10.4. Also in this case, Strategy C is the worst owing to the higher 
value of the torque disturbance, and Strategy A is better than Strategy B. 

The results of the comparison in terms of peak-to-peak amplitude of the torque ripple 
are presented in Fig. 10.5. As expected, Strategy C generates no torque ripple in the 
whole speed range, whereas Strategy A and Strategy B lead to high values of the torque, 
especially at low speed. From this point of view, Strategy B is better than Strategy A. 

Furthermore in order to emphasize the effectiveness of the fault tolerant control 
strategy (A), the simulation of a field-oriented drive based on a five-phase surface 
mounted permanent magnet synchronous motor has been implemented using FE analysis. 

To better comprehend the undesired effects of the spatial harmonic components of the 
magnetic field in the air gap two different double-layer stator winding arrangements, 
having two slots per pole per phase, are considered. 

 

Fig. 10.6. Cross-section of the permanent magnet motor, with a superimposed typical flux plot obtained 
by FE analysis. 
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Fig. 10.5.Torque ripple amplitude as function of the rotor speed. 
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In Case 1, the stator winding coil pitch is 9/10 and a relevant third harmonic spatial 
component of the MMF is present (winding factor KwS3 = 0.794). In Case 2 the stator 
winding coil pitch is 7/10 leading to reduced third harmonic component (winding factor 
KwS3 = 0.139). 

The cross-section of the permanent magnet machine, with a superimposed typical flux 
plot, is shown in Fig. 10.6. 

A transient operating condition, corresponding to a torque ramp, in both healthy and 
fault conditions, has been simulated. 

The waveforms of the d-q stator current components required by the five-phase drive 
control scheme, as a function of the rotor position, are presented in Fig. 10.7, whereas the 
waveforms of the five stator currents injected in the stator windings in healthy condition, 

 

Fig. 10.7. Simulation results. Waveforms of the stator current d-q components, required by the control 
scheme during a torque reference ramp, in a rotor reference frame. 

                          
 
Fig 10.8 Simulation results. Waveforms of the five stator currents, required in healthy conditions during 
a torque reference ramp. 
 

                          
 
Fig. 10.9. Simulation results. Waveforms of the five stator currents, required in fault conditions (phase 1 
open) during a torque reference ramp. 
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are illustrated in Fig. 10.8. As can be seen, during steady-state operating conditions, the 
stator current are balanced and sinusoidal. 

In fault condition, the stator current calculated by the fault tolerant control strategy on 
the basis of (10.10) and injected in the stator winding are shown in Fig. 10.9. As 
expected, in steady-state conditions, with an open-circuited phase, the proposed control 
strategy requires a system of unbalanced sinusoidal stator currents. 

The torque response obtained by FE analysis in Case 1 in healthy conditions is shown 
in Fig. 10.10. As can be seen, the torque matches the reference value very well, except for 
a small ripple due to the slot effects. 

In Fig. 10.11 the corresponding torque response in fault condition is presented. Large 
oscillations at relatively low frequency are clearly recognizable. They are caused by the 

                           

Fig. 10.10 Simulation results. Torque response calculated by FE analysis, in healthy conditions (coil 
pitch = 9/10). 

                          
 
Fig 10.11 Simulation results. Torque response calculated by FE analysis, in fault conditions (phase 1 
open, coil pitch = 9/10). 

                          
 
Fig. 10.12. Simulation results. Torque response calculated by FE analysis, in healthy conditions (coil 
pitch = 7/10). 
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interaction of the third spatial harmonic produced by the stator windings with the third 
spatial harmonic generated by the rotor permanent magnets. 

The simulation result obtained in Case 2 in healthy conditions is illustrated in Fig. 
10.12. The motor torque is lower than that produced in Case 1, owing to the reduced 
value of the winding factor KwS1. However, the ripple amplitude remains very small. 

The torque waveform in fault conditions is shown in Fig. 10.13. As in Case 1, 
oscillations at low frequency are still present, but their amplitude is clearly reduced. This 
is due to the small third spatial harmonic of the magnetic field generated by the stator 
windings with coil pitch equals to 7/10. 

In this second case, the proposed fault tolerant control strategy leads to practically 
disturbance-free operation, in transient and steady-state operating conditions, as can be 
recognized comparing the torque waveforms in Figs. 10.12 and 10.13. 

 

10.6 Experimental Results 

The behavior of the proposed fault tolerant strategies has been also verified by some 
experimental tests performed on a seven-phase induction motor drive prototype. 

The experimental setup consists of a custom-designed seven-phase voltage source 
inverter feeding a seven-phase squirrel cage induction motor with full pitch stator 
windings, whose parameters are reported in Table I. 

The IGBTs are rated 30A and 600 V. The dc bus voltage is about 150 V, obtained with 

a three-phase diode rectifier and filtered by a capacitance of 3300 F. 
The test motor is coupled to a separately excited dc machine acting as load. The 

control algorithm is implemented in a Digital Signal Processor (DSP) TMS320F2812 and 
the switching period is 100 μs.  

An indirect field oriented control (FOC) drive with synchronous current regulators has 
been implemented and its behaviour has been analyzed with and without an open circuit 
phase fault. 

The experimental tests in steady-state conditions have been carried out with a torque 
reference of 10 Nm, and a rotor speed of about 300 rpm.  

                           

Fig. 10.13 Simulation results. Torque response calculated by FE analysis, in fault conditions (phase 1 
open, coil pitch = 7/10). 
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The results obtained in healthy conditions are presented in Figs. 10.14-10.15. The 
stator currents in phase 1, 2, 3, and 4, are shown in Fig. 10.14. As expected, the stator 
currents are balanced and sinusoidal. 

The behavior of the torque, which has been measured by a torque meter, is illustrated 
in Fig. 10.15. As can be seen, the torque is practically constant. 

The results achieved in fault conditions (phase 1 open) are illustrated in Figs. 10.16-
10.17 (Strategy A) and 10.18-10.19 (Strategy C), respectively. 

As can be seen in Figs. 10.16 and 10.17, Strategy A allows sinusoidal and unbalanced 
stator currents to be obtained, and the corresponding torque behavior is characterized by a 

   

Fig. 10.14 Experimental results. Waveforms of 
stator currents in phase 1, 2, 3, and 4, in healthy 
conditions (20 ms/div, 5 A/div).  

Fig. 10.15 Experimental results. Measured 
torque in healthy conditions (100 ms/div, 5 
Nm/div). 

 
Fig. 10.16 Experimental results. Strategy A. 
Waveforms of stator currents in phase 1, 2, 3, and 
4, in fault conditions (20 ms/div, 5 A/div). 

Fig. 10.17 Experimental results. Strategy A. 
Measured torque in fault conditions (100 
ms/div, 5 Nm/div). 

 

 
Fig. 10.18 Experimental results. Strategy C. 
Waveforms of stator currents in phase 1, 2, 3, and 
4, in fault conditions (20 ms/div, 5 A/div). 

Fig. 10.19. Experimental results. Strategy C. 
Measured torque in fault conditions (100 
ms/div, 5 Nm/div). 
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torque ripple having frequency double with respect to the stator one. 
Also Strategy C leads to sinusoidal and unbalanced stator currents (Fig. 10.18), but 

with amplitudes greater than those concerning Strategy A, according to the theoretical 
results. Furthermore, as can be seen in Fig. 10.19, in this case the torque ripple 
component at low frequency is practically absent. 

 

10.7 Conclusions 

In this chapter, three different control strategies for multi-phase machine, allowing 
disturbance-free operation in the case of open-phase fault condition, have been proposed 
and compared. 

The determination of these fault-tolerant control strategies, which can be implemented 
in steady-state as well as in transient operating conditions, is based on the multiple space 
vector representation of the multi-phase quantities. 

The comparison, in terms of stator and rotor copper losses, average torque and torque 
ripple, is based on an opportune mathematical model of the seven-phase induction 
machine that takes into account the first five spatial harmonics of the air-gap magneto 
motive force.  

The results of the comparison can be summarized as follows. 
If the induction machine has ‘sinusoidally’ distributed stator windings, Strategy A is 

optimal in terms of stator copper losses, whereas Strategy B is the best with reference to 
the minimum peak inverter current. 

In the case of induction machine with concentrated windings, Strategy A has the best 
performance in terms of rotor copper losses and average torque, but Strategy C is the best 
with reference to the torque ripple. 

A seven-phase asynchronous motor drive prototype has been built in the laboratory 
and some experimental tests have been carried out. The results have confirmed the 
effectiveness of the proposed fault-tolerant control strategies. 
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Multi-Motor Applications 
 
Abstract  
  
An interesting possibility, offered by multiphase machines is related to the so-called 
multi-motor drives. A well-defined number of multiphase machines, having series 
connected stator windings, with an opportune permutation of the phases, can be 
independently controlled with a single multi-phase inverter. 
In this chapter an electric drive consisting of two five-phase PM tubular actuators fed by 
a single five-phase inverter is described. 
The control scheme of the drive for position control is presented and the performance of 
the drive is evaluated by experimental results 
 
 

11.1 Introduction 

Several applications, such as in textile manufacturing, industrial manipulators, winders 
and electric vehicles, require more than one variable-speed electric drive.  

The current solutions use a three-phase machine drive realized with a common dc link, 
while each ac machine has its own voltage source inverter (VSI) as the supply. 

A vector control algorithm can be applied to each three-phase machine separately to 
obtain an independent control of every machine. In this way is possible to achieve 
completely independent control systems able to operate with different machine types 
(induction machine, brushless), with different speed and loading conditions.  

The multi-phase drives permit to achieve the same results with a multi-motor 
application. According to this solution, a single multi-phase inverter can supply several 
multi-phase motors with different motor parameters and different load conditions. The 
particularity of multi-motor applications is the fact that the motors are connected in series 
even so every machine can be totally independent from each others [1]-[4].  

On the contrary the existing attempts to utilize a single three-phase inverter for supply 
and the vector control of two or more three-phase machines connected in parallel are 
restricted to situations where speeds and loading of the machines are supposed to be the 
same [5]–[8]. 

 



Chapter 11  

 

212 
 

Probably the first proposal of a multiphase variable speed electric drive dates back to 
1969 [9]. While [9] proposed a five-phase induction motor drive, a six-phase (double star) 
induction machine supplied from a six-phase inverter was examined in [10], [11]. The 
early interest in multiphase machines was caused by the possibility to apply this 
technology in high power applications where the reduction of the power per inverter leg 
can be an attractive goal. 

Other advantages of multiphase machines over their three-phase counterparts include 
an improvement in the noise characteristics [12], in reliability (chapter 10) and in motor 
torque density (chapter 9) [19]. 

The numerous degrees of freedom of multi-phase drive permit the full exploitation of 
the different advantages of multi-machines for a single application. In other words when a 
multi-phase machine is applied in a multi-motor application it can conserve the intrinsic 
reliability.  

Recent surveys of the state-of-the art in this area [12], [13] indicate an ever increasing 
interest in multiphase machines within the scientific community world-wide. 

The purpose of this chapter is to analyze a concept for a multi-phase multi-motor 
vector controlled drive system in which stator windings of the machines are connected in 
series, with an appropriate phase transposition, and the supply is a single current-
controlled VSI. 

Two linear actuators with five phases are used for this applications. 
The use of linear actuators in positioning drives has received a growing interest in 

industrial applications [14]-[17]. Linear actuators provide thrust force directly to the load, 
without mechanical transmissions of gear trains, thus leading to higher control bandwidth 
and dynamic performance. 

 
    

 

 

   

   

Fig 11.1 Some applications of 
the linear actuators  
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Fig 11.1 shows some useful industry applications for linear actuators. 
Among the various linear actuators, tubular topologies with permanent magnet 

excitation are particularly attractive, since they do not show the typical assembly 
problems of linear open machines and show a compact structure and high force density 
[14]-[17]. 

PM tubular actuators can be constructed with surface-mounted radial magnetized 
magnets or with axially magnetized magnets. An interesting comparison between the two 
solutions is carried out in [18], where the axially magnetized machine turns out to have 
higher force density but to require more permanent magnet material. If the same volume 
of permanent magnet is used, the two topologies lead to the same force density. However, 
axially magnetized machine should be preferred because axially anisotropic rare-earth 
magnets are usually less expensive and widely available. 

The conventional approach for an electric actuator is to supply it with a three-phase 
inverter. However, since variable-speed drives are invariably supplied from power 
electronic converters, the number of phases does not have to be equal to three anymore 
and it can be considered as a design variable. 

The use of a multi-phase drive reduces the overall dimensions of the application and it 
can ensure a global reliability. 

 

11.2 Operating Principle 

According to what was described in previous chapters, the machine equations in a 
generic plane k can be resumed as follows: 

 
dt

d
jiRv Sk

SkSkSSk


  1       (11.1) 
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 RkkSkSkSk iMiL          (11.3) 

 RkRkSkkRk iLiM         (11.4) 

The multi-phase machines can be analyzed as the sum of different three-phase 
machine connected in same shaft. The total torque produced is the weighted algebraic 
sum of the torques of the single motors (11.5).  
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Since only one space vector is needed for the flux and torque control in one machine, 
there is a possibility of using the existing degrees of freedom for controlling of other 
machines that would be connected in series with the first machine. 

However, if the control of the machines with series connected stator windings is to be 
decoupled one from the other, it is necessary that the flux/torque producing currents of 
one machine do not produce flux and torque in all the other machines in the group. 
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In other words in a M-phase drive is possible to connect up to (M-1)/2 different 
machines. Therefore every space vector can be used to independently control a single 
machine. 

In simple terms, and taking the five-phase machine case into account, it will become 
possible to independently realize vector control of two five phase machines using a single 
voltage source inverter, provided that the stator windings of the two machines are 
connected in series and that an appropriate phase transposition is introduced so that the 
set of five five-phase currents that produce rotating mmf in the first machine, does not 
produce rotating mmf in the second machine and vice versa. 

A correct phase transposition is essential for the operation of multi-motor applications. 
This transposition is created on the basis of the general Park transformation presented in 
the previous chapters (11.6). 

  
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kh
kh x

M
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12  ,     (h = 1,3,5,…,M-2),    (11.6) 

Equation (11.6) takes into account only the odd space vectors because the even vectors 
are the complex conjugates of the previous ones. 

Based to (11.6) the first space vector can be expressed by (11.7) 
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where  

 TAB I CONNECTION FOR FIVE-PHASE 

MACHINES 

M1  M3 
1 1 
2 4 
3 2 
4 5 
5 3 

 

TAB II CONNECTION FOR SEVEN-PHASE 

MACHINES 

M1 M3 M5 
1 1 1 
2 4 6 
3 7 4 
4 3 2 
5 6 7 
6 2 5 
7 5 3 

 

 

TAB III CONNECTION FOR NINE-PHASE 
MACHINES 

M1  M3 M5 M7

1 1 1 1 
2 4 6 8 
3 7 2 6 
4 1 7 4 
5 4 3 2 
6 7 8 9 
7 1 4 7 
8 4 9 5 
9 7 5 3 
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Furthermore also the second space vector can be expressed in a similar way. 
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Eq. (11.9) can be also re-written as: 
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On the basis of relationships (11.10) and (11.7) it is possible to conclude that the phase 
’1’ of all the machines will be connected in series without transposition, indeed the phase 

step among 1x  and 3x  relatively to x1 is zero. 

The phase ‘2’ of second machine will be connected to the fourth phase of the first 

motor because there is a displacement between 1x  and 3x  relatively to x2 is 2 . 

In same way the Tables I, II, and III describe phase connections for five-phase 
machine, seven-phase machine and nine-phase machine. Figure 11.2, 11.3, and 11.4 
illustrate the same connections. 

Table III and figure 11.3 show how the number of phases influences the possibility of 
to connecting multi-phase machines in series. In fact, in Tab III, the machine described 
with symbol M3 cannot be a nine phase machine but only a three-phase machine. This 
means that it is possible to connect multi-phase motors in series even when the number of 
the phases is different. Therefore if a nine-phase system is adopt, a standard three phase 
machine can be connected to three others nine-phase machine and controlled 
independently.  

 
 

Fig 11.2 Five-phase machines 
connection 

 

Fig 11.3 Seven-phase machines 
connection 

 

Fig 11.4 Nine-phase machines connection 
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In general, it is possible to conclude that the number of phases of system determines 
both the number of machine that is possible connect, and the number of phases of the 
connected machines. 

If M is the number of phases of the application, two possibilities may arise: 
 

i) M is a prime number. In this situation the maximum number of machines that 
can be connected in series with phase transposition are equal to number of 
independent space vectors. 

2

1


M
NumberMachine       (11.11) 

ii) M isn’t a prime number and it can be decomposed with a prime factorization. 
By the fundamental theorem of arithmetic, every positive integer has a unique 
prime factorization, therefore M can be expressed as a product of k factors. 


npppM ...21         (11.12) 

In this situation it is not possible to connect (M-1)/2 machines with M phases 
because (p1-1)/2 machines must have p1 phases, (p2-1)/2 machines must have 
p2 phases etc. 
The maximum number of M-phases machines that can be connected is: 
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Based on previous statement, with a nine-phase system (9=32) it is possible to connect 
a single three-phase machine ((3-1)/2) and three nine-phase machines.  

With a fifteen-phase system (15=5·3) it is possible to connect a single three-phase 
machine, two five-phase machine , and four fifteen-phase machines. 

 

11.3 Description of the Multi-Motor Drive 

In this section the analysis is focused on a multi-motor drive consisting of two tubular 
axially magnetized actuators fed by a single five-phase inverter. The basic scheme of a 
tubular PM actuator is shown in Fig. 11.5  

The slider is composed by axially magnetized magnets and ferromagnetic pole pieces, 
assembled within a non-magnetic stainless tube, whereas the stator has five star-
connected windings. The scheme of the connections of the two actuators is shown in Fig. 

 

Fig 11.5 Basic scheme of a tubular permanent magnet motor with axial magnets. 
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11.2. 
The control scheme of the multi-motor drive is shown in Fig. 11.6. As can be seen, it is 

possible to identify two different parts. The first one is related to the control of the first 
actuator, whereas the second one is related to the control of the second actuator. 

Each part is very similar to that of a traditional three-phase PM actuator. Positions x1 
and x2 of the sliders are measured by Hall sensors and are transformed into electric angles 
θ1 and θ2. These angles are necessary for the implementation of the field-oriented control 
of each actuator that requires the representation of the motor currents in the synchronous 
reference frames d1-q1 and d2-q2. 

The PI regulators a1, a2, b1 and b2 are used to adjust the actuator currents. The set-point 
for the d component of the stator current is zero for both actuators, whereas the q 
component of the stator current is proportional to the magnetic thrust force. 

The PI regulators c1 and c2 adjust the currents iq1 and iq2 depending on the speed errors. 
Finally, the proportional regulators d1 and d2 are used for the position control.  

To improve the bandwidth of the position loop, two signals, proportional to the 
derivative of the position set-points, are added to the speed errors (this feed-forward 
action is very common in position control schemes adopted for applications of industrial 
automation). 

As can be seen, the control scheme of a single actuator does not present remarkable 
differences compared to that of a three-phase actuator. Hence it can be understood also by 
readers that are not familiar with multiphase technology. 

However, the control scheme of the multi-motor has to combine the reference stator 

voltage vectors refSv ,1 , and refSv ,2 , together to generate the five-phase voltages. 

Although the actuators are independent, they share the same dc-link bus. 
Consequently, the exploitation of the potential of a multi-motor is possible only if the 

Fig 11.6 Block diagram of the control scheme 
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modulation strategy adopted for the five-phase inverter (VSIs) is able to produce the 
requested output voltages. 

Synthesizing more space vectors, in different d-q planes and simultaneously, is a 
difficult problem. Two methods are usually adopted [16], i.e. Space Vector Modulation 
(SVM) and carrier-based Pulse Width Modulation (PWM). For three-phase VSIs the two 
methods have been proved to be equivalent, and they can be interchangeably 
implemented. On the contrary, in the case of multiphase VSIs, the carrier-based PWM 
method seems to be the most effective approach, and it has been adopted also in this 
section. 

The validity domain of refSv ,1 and refSv ,1  is represented by the shaded area in Fig. 11.7. 

As can be seen, the available voltage of an actuator depends also on the voltage used by 
the other actuator. For this reason, if the thrust force delivered by an actuator has to 
increase quickly, it is necessary to adopt a criterion to favor this actuator, but without 
perturbing the operation of the other. 

The control system has to limit excessive voltage request caused by the PI regulators. 
For example, if the voltage required by the current regulators corresponds to point A in 
Fig. 11.7, the control system limit is so that the reference voltage corresponds to point B. 
In this way, the operation of the second actuator is not perturbed, whereas the first 
actuator receives all the remaining available voltage.  

 

11.4 Experimental Results 

To verify the feasibility and the performance of the proposed multi-motor drive, some 
experimental tests have been carried-out on a prototype available in laboratory. Each 
actuator has a stroke of about 36 cm and can produce a thrust force of about 100 Nm. The 
control algorithm is implemented in a Digital Signal Processor (DSP) TMS320F2812. 
The switching period is 100 μs, corresponding to a switching frequency of 10 kHz. 

The reference signals for the position of the sliders are sinusoidal, with variable 
amplitude and frequency. 

 

Fig 11.7 Validity domain of the magnitudes of the actuator voltage vectors 
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Fig. 11.8 (a) shows the behavior of the multi-motor drive when the position reference 
of the first slider is set to zero, whereas the amplitude of the second one corresponds 
nearly to a full stroke, and the frequency is 4 Hz. As can be seen, the first actuator is in 
steady-state, independently of the movements of the second one. 

Fig. 11.8 (b) shows the behavior of the multi-motor drive when both actuators are 
moving. The frequencies of the sinusoidal reference signals are 2 Hz and 4 Hz 
respectively, and their amplitude are nearly equal. As can be seen, each actuator follows 
its sinusoidal reference with good accuracy. 

Fig 11.9 show the motor prototypes used in laboratory 
 

11.5 Conclusions 

This chapter presents a positioning multi-motor drive consisting of two PM tubular 

Fig 11.8 Experimental results. Behavior of a the positioning multi-motor drive. The positioning references 
are sinusoidal signals with an amplitude corresponding to the actuators stroke. (a) The first actuator is at 
stand-still, whereas the second actuator moves with a frequency of 4 Hz. (b) The actuators move with 
frequencies of 2 Hz and 4 Hz respectively. 

 

Fig 11.9 Motor prototypes 
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five-phase actuators fed by a single five-phase inverters. This kind of solution leads to a 
more compact design and to a reduction in size and weight, and is seen with interest by 
automation industry, for example, for aerospace applications. 

Up to now, very little research has been done on positioning multi-motor drives. This 
paper analyzes the control scheme of the drive and discusses the main problems that 
could reduce the performance, such as the parasitic coupling between the actuators, the 
limited available voltage, and the existence of cogging force. 

These problems are analyzed in depth and the drive performance is evaluated by 
experimental results. 
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