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,QWURGXFWLRQ�
 

In this chapter we describe the model of the equivalent electric network, that is an 

integral method to solve numerically a general magnetoquasistatic problem.  

In section 1.1 the mathematical description, based on the A-ϕ formulation, is given. 

Section 1.2 is dedicated to the description of the discretization technique. In order to 

stress the circuit interpretation of field problem, a graph is associated to the 3D mesh 

since the beginning. All the numerical details are worked out. In section 1.3 the 

reduction of the size of the solving system is dealt with, both by taking in account the 

eventual lower dimensionality of the problem and eliminating all the non essential 

variables by means of algebraic procedure. The circuit analogy is again stressed. A 

simple numerical example aimed to show how the complete model works is developed 

in section 1.4. Numerical results relative to some practical cases where an analytical 

solution is available are presented in section 1.5. In section 1.6 the generalization of the 

model to the case of composite superconducting materials, by means of a suitable 

material characteristic, is carried out. Finally, the possibility to relate the field (local) to 

the circuit (integral) quantities by means of higher order functions is discussed in 

section 1.7. 
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����7KH�PDWKHPDWLFDO�IRUPXODWLRQ�
 

Let us consider a system made of a superconducting domain (SC) with assigned time 

varying transport current and subject to the magnetic field produced by currents 

flowing outside. Let us limit our analysis to the cases of transport current and external 

magnetic field varying on characteristic time scales which are low enough compared 

with the time required by an electromagnetic wave to propagate over the entire 

extension of the domain. In general, if a systems is supplied only by slow varying 

sources, the energy is mainly stored either in magnetic or electric form rather than 

redistributes between the two equally; such a system is said to be TXDVLVWDWLF. A system 

with extension on the order of meters can be considered quasistatic if the sources 

change with time with frequencies up to tens of MHz. More in particular, since the 

considered system is made of superconductors, currents are allowed to flow very easily 

without the need of strong electric fields, therefore the magnetic field is mainly 

produced by electric currents, with negligible contribution of displacement currents and 

the predominant form of stored energy is magnetic in nature. When this condition holds 

the system is referred to as PDJQHWRTXDVLVWDWLF [32,33].  

In a magnetoquasistatic system made of magnetically homogeneous materials having 

magnetic permeability 0µ , the magnetic flux density % and the current density - are 

related through the Ampere law: 

 

( ) ( )W�W� [-[% 0µ=×∇ (1.1.1) 

 

Vector - of equation (1.1.1) represents the WRWDO current density at any point, i.e. if 

point [ lies inside the superconducting domain, vector - is the sum of the applied 

transport current and the shielding current induced in the superconductor that exhibit 

the Meissner effect [33,34]. From equation (1.1.1) it follows that, under the 

magnetoquasistatic approximation, the current density is a vector having zero 

divergence everywhere, i.e.  

 

( ) 0=⋅∇ W�[- (1.1.2) 
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The magnetic flux density is always a zero divergence vector at any point, that is  

 

( ) 0=⋅∇ W�[% (1.1.3) 

 

From equation (1.1.3) it follows that vector % can always be expressed as the curl of 

a regular1 vector function $ named vector magnetic potential [35] 

 

( ) ( )W�W� [$[% ×∇= (1.1.4) 

 

Any other vector function $’ obtained from $ by just adding the gradient of an 

arbitrary regular scalar function still leads to the magnetic flux density % through 

equation (1.1.4). Among all this class of equivalent vector potentials the VXLWDEOH one is 

selected by arbitrarily assigning its divergence. 

By substituting equation (1.1.4) in eq. (1.1.1) and choosing the divergence of $ to be 

equal to zero, the following vector Poisson equation is obtained 

 

( ) ( )W�W� [-[$ 0
2 µ=∇ (1.1.5) 

 

By solving equation (1.1.5) the following expression of magnetic vector potential is 

obtained 

 

( ) ( ) 






 [[[
[-[$ 30

4
GW�W�

9
∫
∞

−π
µ

= (1.1.6) 

 

where the integral is calculated over all the three dimensional space 9�.

The local dependence of electric field ( on the magnetic flux density % is expressed 

through the Faraday law: 

 

1 A vector function I(U) is regular if it continuous in all the space and goes to zero as 1/U when U goes to 
infinite 
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( ) ( )
W
W�W�

∂
∂−=×∇ [%[( (1.1.7) 

 

By substituting equation (1.1.4) in the equation (1.1.7) and exchanging the curl and 

time derivative operators, it follows  

 

( ) ( ) �[$[( =






∂
∂+×∇ W

W�W� (1.1.8) 

 

Thus vector field ( + �$/�W has zero curl everywhere and can be expressed as the 

gradient of a regular scalar function named scalar electric potential [35], therefore the 

electric field ( is expressed as: 

 

( ) ( ) ( )
W
W�W�W�

∂
∂−ϕ−∇= [$[[( (1.1.9) 

 

Equation (1.1.9) is usually referred to as the $ – formulation of 

magnetoquasistatics. By substituting in it expression (1.1.6) of the vector potential the 

following equation, relating electric field to current, is obtained 

 

( ) ( ) ( ) 






 [[[
[-[[( 30

4
GW�WW�W�

9
∫
∞

−∂
∂

π
µ

−ϕ−∇= (1.1.10) 

 

The electric field ( at any point of the SC region is related to the local current 

density by means of the constitutive relation of the superconducting material. Equations 

(1.1.2) and (1.1.10), together with the constitutive relation of the superconducting 

material, form the basis of the model of the equivalent electric network which is 

developed in sections 1.2 and 1.3. 
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���� 7KH� GLVFUHWL]HG� SUREOHP� DQG� WKH� HTXLYDOHQW� HOHFWULF�
QHWZRUN�

 

Let us consider a system made of a superconducting region (SC) with assigned time 

varying transport current and a current-driven normal conducting region (NC) placed in 

the empty space. The dimensions of the NC and SC domains and the frequency of 

variation of the impressed currents are such that the magnetoquasistatic approximation 

holds. Our goal is to determine the current density and the AC losses everywhere inside 

the superconducting domain at any instant.  

Let us divide the superconducting region in a finite number 1( of three-dimensional 

elements. Let 1) be the number of faces of the discretization. Let us also define a 

normal unit vector for all faces. Depending on their position the faces can be 

distinguished as faces lying inside the SC domain or lying on the interface surfaces 

with the two poles of the generator which inject the transport current ,tr(W) in the SC 

domain. Let the number of these faces be equal to 1&. Furthermore, there is a number 

(1) ± �1&) of faces lying on the boundary of the domain which, due to the fact that in 

magnetoquasistatics it is not possible to have non zero normal component of current 

density at the interface with non conducting media, have no current flowing through 

them. Let us assume all the 1& currents flowing through the faces of the discretized SC 

region and the (1( � 1) electric scalar potentials of the centers of the elements and of 

the positive pole of the generator as unknowns of the problem. All the physical 

quantities involved in the calculation have to be expressed as a function of them. We 

assume all the currents to be oriented according to the normal unit vector of the face, i. 

e. a positive current is given by a current density whose flux through the face, respect 

to the direction of the normal unit vector, is positive. In a first moment all the currents 

are assumed to be independent quantities which are allowed to take any value; the 

mathematical constrains for their physical consistency will be stated later. Let us 

indicate with ,(W) and 9(W) the vector of the 1& unknowns currents at time W.
In order to better fix the concepts it is convenient to refer to an example. Let us 

consider the cylindrical superconducting body, connected to a current generator and 

subject to the magnetic field produced by a current driven normal conducting coil, 

represented in figure 1.2.1. We assume a Cartesian coordinate system having the ] axis 
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parallel to axis of the cylinder and the origin coincident with its centre as reference 

system. 

 

,WU(W)

�

,FRLO�(W)

6&�

1&�
[

\

]

��

 
ILJXUH��������VXSHUFRQGXFWLQJ�F\OLQGHU�ZLWK�DVVLJQHG�WUDQVSRUW�FXUUHQW��

DQG�VXEMHFW�WR�H[WHUQDO�PDJQHWLF�ILHOG�

The superconducting cylinder is connected to the current generator by means of two 

equipotential electrodes which span all the front and back cross section. We subdivide 

the cylindrical volume in a number of prisms with triangular basis. Since at this stage 

we are focusing only on the explanation of the numerical method we can refer to a 

coarse mesh, made of few elements, which however allow us to fully work out the 

numerical details without being too cumbersome to deal with. Moreover, it is worth to 

notice that there is no particular reason to use prisms with triangular basis for building 

the discretization instead of tetrahedrons, parallelepipeds, prisms with different basis or 

others. The only reason why they have been chosen is that such a prismatic mesh is 

easily obtained by “extruding” a two-dimensional mesh made of triangles. Let us adopt 

a three dimensional mesh made of 72 prisms, arranged in 3 groups of 24 prisms each. 

Any group of prisms, which cover a section spanning one third of the SC cylinder, is 

obtained by sliding the two dimensional triangular mesh of the cross section, made of 

24 triangles, along the axis of the cylinder, as shown in figure 1.2.2.  
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Since the 2D mesh of the circular cross section is composed of 19 nodes and 42 

segments, the full 3D mesh of the cylinder has 74 nodes, 126 (42 × 3) rectangular faces 

parallel to the sliding direction (] axis) and 96 (24 × 4) triangular faces orthogonal to it; 

the total number 1) of faces is equal to 222. Moreover, 12 of the 42 segments of the 2D 

mesh are edge segments, therefore the 3D mesh of the SC cylinder contains 36 (12 × 3) 

faces lying on the border with the empty space. It follows that the number 1& of faces 

of the mesh which can have a non zero current flowing through them is equal to 186, 

consequently the discretized problem expects 186 unknowns.  

Let us now associate an oriented graph * to the mesh of the superconducting domain 

in the following way 

 

- any of the centers of the 1( elements of the SC mesh corresponds to a 

node of the graph. Two additional nodes are provided for representing the two 

electrodes of the generator; the total number of nodes is equal to 1(�� � 

- any of the 1&� faces of the SC mesh with a current flowing through 

corresponds to a branch of the graph; the total number of branches is equal to 

1&
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- any branch is oriented according to normal unit vector of the 

corresponding face 

 

Now on we agree to label the nodes corresponding to the positive and the negative 

electrode of the generator as the second last ((1(��)�WK) and the last ((1(��)�WK) node 

respectively. Even if not strictly necessary, this choice will result convenient later. The 

graph relative to the mesh of figure 1.2.2, containing 74 nodes and 186 branches, is 

represented in figure 1.2.3. The above labeling conventions are used. 
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ILJXUH�������JUDSK�DVVRFLDWHG�WR�WKH��'�PHVK�RI�WKH�6&�F\OLQGHU 

The nodes relative to the poles of the generator (73 and 74) have been sketched apart 

only for the sake of picture clarity. It is worth to notice that the complete graph is 

composed by the assembling of three sub-graphs with hexagonal cells, each associated 

to a section of the discretized SC cylinder. A sub-graph is shown in figure 1.2.4. 
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ILJXUH�������VXE�JUDSK�DVVRFLDWHG�WR�D�VLQJOH�VHFWLRQ�RI�WKH�PHVK 

Figure 1.2.4 makes clear how a branch of the graph corresponds to a face of the 

discretization (recall that any segment of the triangular mesh slides along the axis of the 

cylinder to generate a rectangular face) and a node corresponds to the centre of an 

element. The branches that connect the nodes of a same sub-graph schematize the 

currents flowing in the azimuthal or radial direction, whereas the branches that connect 

the nodes of two different sub-graphs schematize the currents flowing in the axial 

direction. Moreover, an axial current can flow also through any of the faces laying on 

the surfaces adjacent to the electrodes, therefore the complete graph contains branches 

connecting all the nodes of the sub-graph relative to first section to node 73, and all the 

nodes of the sub-graph relative to third section to node 74. 

Let us now introduce a first set of physical constrains on the unknown currents. Since 

the considered problem is magnetoquasistatic, the displacement current is negligible 

everywhere and the current density - is a soleinodal vector at any point. Consequently 

its flux through any closed surface must be zero. According with this property, the 

algebraic sum of the currents circulating through all the faces of any element has to be 

equal to zero at any instant. Moreover, the algebraic sum of the current injected or 

extracted from the SC domain by the generator and the currents circulating through the 

faces which lies on the inlet or outlet surfaces respectively, must also be always zero. 

These equations can be stated in a very natural way by using the incidence matrix of 

the oriented graph * associated to the mesh of the superconductor, having (1(�� �)

nodes and 1& branches. In fact, the (1(� � �) î 1&�  incidence matrix >$LQ@ of the 

oriented graph * is defined as follow  
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- element DL�M is equal to +1 if branch M meets node L and points according to 

the outgoing direction 

- element DL�M is equal to –1 if branch M meets node L and points according to 

the ingoing direction 

- element DL�M is equal to 0 if branch M does not meet node L

Since the branches of the graph are oriented according to the currents and the nodes 

represent the centers of the elements (or the equipotential electrodes of the generator), 

the conditions of zero algebraic sum for the currents can be expressed in the following 

form 

 

( ) ( ) �D,@>$ LQ =+ W,
W WU (1.2.1) 

 

where ,(W) is the vector of all the 1& currents circulating through the faces the 

discretized superconducting domain at time W and D' is a vector whose L�WK element is 

equal to +1 if node L represents the negative electrode of the current generator, is equal 

to –1 if node L represents the positive electrode and is equal to 0 otherwise. ,tr(W) is the 

current of the generator at the same instant. When the current impressed by the 

generator is equal to zero equations (1.2.2) are homogeneous. The matrix obtained by 

adding (for example as last column) vector D to matrix >$LQ@, is equal to the incidence 

matrix of the graph associated to the mesh of the SC domain and containing an 

additional branch representing the current generator. However, since among the (1(��
�) rows of the incidence matrix >$LQ@ only (1(�� �) are independent rows, it follows that 

one of the equations (1.2.1) is not independent from the others. Furthermore, whatever 

set of (1(�� �) rows of the incidence matrix is independent, therefore whatever of 

equations (1.2.1) can be eliminated to obtain a set of (1(�� �) independent relations. 

We choose to eliminate the equation referring to the negative electrode of the generator 

(any other choice would be equivalent), that is the last row of incidence matrix, thus we 

write the set of the (1(�� �) independent equations as follows 

 

( ) ( )W,W WUD,>$@ −= (1.2.2) 
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where the (1(�� �) î 1& matrix >$@ and the (1(�� �) vector D are extracted from the 

incidence matrix >$LQ@ and the vector D’ respectively, by suppressing the last row. 

Equations (1.2.2) represent a first set of (1(�� �) conditions that the 1& unknowns must 

satisfy.  

Let us carry out a step ahead and consider the electric field inside the 

superconducting domain. According to the $ – formulation of magnetoquasistatics 

the electric field ( at any point of the superconducting region can be expressed, at any 

time W, as follows 

 

( ) ( ) ( )
W
W�W�W�

∂
∂−ϕ−∇= [$[[( (1.2.3) 

 

where $ is the magnetic vector potential and is the electric scalar potential. By 

taking the line integral of the electric field over a path connecting whatever couple of 

points [K and [N belonging to the SC domain and oriented from [K to [N the following 

equation is obtained: 

 

( ) ( ) ( ) ( )∫∫ ⋅−ϕ−ϕ=⋅
N

K

N

K

GW�GW
GW�W�GW� NK

[

[

[

[

[[$[[[[( (1.2.4) 

 

The time derivative of the vector magnetic potential has been moved out of the 

integral because the integration path does not change with time. Moreover after the 

integral the space dependences disappear and the derivative becomes total. All the 

terms of equation (1.2.4) have the dimension of a voltage. By considering the mesh of 

the superconducting domain, it is possible to associate at any current flowing through a 

face an equation of the same type of (1.2.4). In fact, for any current flowing through a 

face lying inside the SC region we can chose as integration path the segment 

connecting centers of the two neighboring elements separated by the face, oriented 

according to the current, and for any current flowing through a face lying on the border 

with the electrodes of the generator, we can chose as integration path the segment 

connecting the centre of the unique element to which the face belong to and the centre 
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of the face itself, still oriented according to the current. By expressing the same concept 

by means of the oriented graph * associated to the mesh, we can say that an equation of 

the same type of (1.2.4) can be associated at any branch of the graph. 

We have stated since the beginning that we assume the currents flowing through the 

faces of the SC mesh as unknowns of the discretized problem, therefore if we mean to 

use equations of type (1.2.4) to solve the problem we have to express all the filed 

quantities there appearing as a function of the currents. To accomplish this task we first 

recall that the magnetic vector potential $ at any point of the superconductor can be 

expressed through equation (1.1.5), which in the considered case takes the form 

 

( ) ( ) ( ) 














 [[[
[-[[[

[-[$ 3030

44
GW�GW�W�

1&6& 9

H[W

9
∫∫ −π

µ
+

−π
µ

= (1.2.5) 

 

where the first integral represents the contribute of currents circulating over volume 

96& of superconducting region and the second one represents the contribute of currents 

circulating over volume 91& of normal conducting region. If necessary the first integral 

of the right hand side can be calculated as sum of the integrals of the same function 

over all the elements of the mesh of the SC domain. The current density inside the 

normal conducting region is denoted with -H[W. By substituting equation (1.2.5) in 

equation (1.2.4) we obtain 

 

( ) ( ) ( )

( ) ( )
∫ ∫∫ ∫

∫

⋅












−π
µ

−⋅












−π
µ

−

+ϕ−ϕ=⋅

N

K 1&

N

K 6&

N

K

GGW�GW
GGGW�GW

G

W�W�GW�

9

H[W
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(1.2.6) 

 

Equation (1.2.6) depends both on the distribution of electric field and current density 

inside the superconductor. However, the two vector ( and - at any point are not 

independent. They are linked together by means of the constitutive relation of the 

material, which can be expressed, in the more general form, as 
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( ) ( )( )W��W�W� [[-)[( = (1.2.7) 

 

For homogeneous, ohmic (linear) and time-invariant materials function ) is linear 

and it is not point or time dependent. For superconductors, which are far from being 

linear, the constitutive relation is more complex, and depends on the temperature and 

the magnetic field in the considered point. However, the main features of the 

macroscopic behavior of superconductors are well reproduced by assuming the vectors 

( and - to be parallel with magnitudes following a power law [14-16], i.e. 

 

( ) ( )
( )

( ) ( )
( )W�
W�

�7-
W�(W�

�71

F
F [-

[-
%

[-[(
%











= (1.2.7) 

 

where (F is a conventiRQDO�YDOXH��XVXDOO\�DVVXPHG�HTXDO� WR��� 9�FP��-F(7�%) is the 

temperature and magnetic field dependent critical current density of the 

superconductor, that is, the value of the current density circulating in a point of the 

superconductor which produces a local electric field equal to (F when the considered 

point have a temperature 7 and is subject to a magnetic flux density %. The exponent 1,

which also depends on temperature and magnetic field, is the non dimensional 

parameter which allows the best fitting of the experimental ( ±�- characteristic. In the 

following we will assume the superconducting region to be in thermal equilibrium with 

assigned temperature, thus neglecting the effects of the local heating. For the cases 

where the thermal effects become important, the present electromagnetic model should 

be coupled with a thermal model which allow to calculate at any time, the temperature 

distribution inside the entire SC domain.  

By substituting the general constitutive relation (1.2.6) in equation (1.2.5) the 

following equation, depending only on electric potential and current density inside the 

superconducting and the normal conducting domains, is obtained 
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(1.2.8) 

 

To express equation (1.2.8) in terms of the unknowns of the problem it is necessary 

to state a link between the current density inside the superconductor and the currents 

circulating through the faces of the mesh. Let us assume the current density - to be an 

uniform vector inside any element of the SC domain. With such an assumption an 

actual current distribution inside the SC can only be reproduced in an approximate 

sense; the more the elements the finer the approximation. The possibility of having 

different courses of current density inside the elements, which is a very crucial point for 

the accuracy of the numerical results, will be considered later in section 1.7. The 

uniform current density is related to the currents flowing through the faces of the 

element. Let us consider a generic element L and let us denote with 1)i the number of 

its faces. Let ,j,i be the current flowing through the M-th face of element L. Since index M
goes from zero to 1)i it defines a local (relative to the element) labeling for the 

currents. Let XM�L, with M = 1, 1)i, be the normal unit vector of the M-th face of element L
and let 6i,j be its surface area. Physically, the uniform current density -L inside the 

element should satisfy the system  

 









=⋅

=⋅

�L1)�L1)�L1)L

�LL��LL

LLL
,6

���
,6

X-

X- 111

(1.2.9) 

 

In general such a vector does not exist because system (1.2.9) contains more 

equations than unknowns. However there will exist an unique vector which will 

minimize the error among its fluxes and the assigned set of currents outgoing or 

ingoing the element. This vector can be determined by finding the minimum, with 

respect to vector -L, of the following error function  
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( ) ( )∑
=

−=
L1)

M
L�ML�MM�L

7
LL ,6)

1

2

2

1 X-- (1.2.10) 

 

where the scalar product has been replaced by the matrix product between transpose 

of vector -L and vector XM�L (7 denotes the transpose operator). By imposing the 

derivative of function ) respect to -L to be equal to zero and considering that the 

product of compatible QîP matrixes (P of left matrix is equal to Q of right matrix ) is 

associative, the following equation is obtained 
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2 (1.2.11) 

 

Matrix that left multiply vector -L in equation (1.2.11) is a 3 × 3� strictly positive 

defined matrix and hence it can always be inverted, therefore the expression of uniform 

current density as a function of currents is given by 
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2 XXX- (1.2.12) 

 

Let us now introduce the local-global correspondence matrix @>&OJ
L for currents of 

element L, having 1)L rows and 1& columns. Element K�M
OJ
LF of matrix @>&OJ

L is equal to 

1 if face where K�WK current flows coincides with face M�WK of element L and is otherwise 

equal to zero. If face M of element L lies on the boundary, its current is zero and, 

consequently, row M�WK of matrix @>&OJ
L is made of all zeros. It follows that vector ,L(W)

of currents through all the faces of element L at time W, is linked to vector ,(W) of all 

currents through the faces of the superconducting mesh at same time by means of the 

following relation  

 

( ) ( )WW OJ
LL ,@>&, = (1.2.13) 
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By substituting equation (1.2.13) in equation (1.2.12) the following relation is 

obtained 

 

[ ] ( )W66 LL 1)

M
M

OJ
LM�LL�M

1)

M

7
M�LM�LL�M ,&XXX- L 






























= ∑∑

=

−

= 1

1

1

2 (1.2.14) 

 

where M
OJ
L @>& is the M�WK row of matrix @>&OJ

L . If follows that the uniform current 

density at any point of the superconducting domain can be expressed, at any instant W,
as a function of all current through the faces of discretization in the following concise 

way 

 

( ) ( )[ ] ( )WW� ,[.[- = (1.2.15) 

 

Matrix >.([)@, having dimension 3î1&, is an element-wise uniform matrix, i. e. its 

elements are the same for all points [ belonging to the same geometric element of 

discretized region SC. To determine the value of matrix >.([)@ at a given point [’ is 

only necessary to find out the element L of the mesh to which point [’ belong to and 

then calculate it as reported in equation (1.2.14). Matrix >.([)@ is very sparse; in fact 

only columns which are relative to currents flowing through the faces of the element 

containing point [ are non zero. This means that the reconstruction of current density at 

any point is strictly local, i. e. it is only contributed by currents flowing in the vicinity 

of the point. In case of mesh made by tetrahedron at most four columns of matrix 

>.([)@ can be different from zero. They are less than four if the element have one ore 

more faces lying on the boundary of the SC domain. The non zero columns can be at 

most five or six for mesh made of prisms with triangular basis or parallelepipeds 

respectively.  

For what concern the normal conducting part of the system, now on we assume it to 

be a normal coil made of 1WXUQV turns. The current density is supposed to distributes 

uniformly inside any turn. With these assumptions current density -ext at any point [ of 

normal conducting region is a known quantity at any instant W and can be expressed as 
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( ) ( ) ( )W,W� FRLO1&
H[W [N[- = (1.2.16) 

 

where N1&([) is the vector given by the ratio between the unit vector tangent to the 

direction of the turn at point [ and the area of its cross section. If cases where the 

normal conducting part of the system is a generic bulk domain are considered, the 

distribution of current density is not a priori known, therefore the normal conducting 

region needs to be subdivided in a finite number of three dimensional elements as well, 

and the current density in any element has to be expressed as a function of all currents 

through the faces of the discretization. These currents must be treated as unknowns 

together with the currents of the SC region. 

By substituting equations (1.2.15) and (1.2.6) in equation (1.2.16) the following 

relation is obtained  
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In case of homogeneous superconducting materials, by splitting the line integral from 

[K to [N in the sum of the integrals over the two segments connecting [K to the centre of 

the face shared by the two elements and the latter to [N and considering that matrix 

functions ( )[ ][. is element wise uniform, function ) and can be moved out of the 

integral; the left side term can be then expressed as the product of a vector of 

geometrical coefficients times a nonlinear function of all currents.  

Equation (1.2.17) states a non linear differential link between the currents of the SC 

region, the potentials of the nodes of the SC mesh, and the current circulating through 

the external coil. Let us denote with L the unique face of the SC mesh associated to 

points [K and [N and with ,L(W) the current flowing through it at time W, moreover, only 

for convenience, let us rewrite equation (1.2.17) as follows 
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The left side of equation (1.2.18) contains the difference of the potentials of the 

points [K and [N, and a voltage term, that we indicate with YH[WL(W), given by the product 

of a geometrical coefficient that we indicate with PL
FRLO, having the dimension of an 

inductance, and the time derivative of the current flowing in the coil, which is a known 

quantity. The voltage term represented by the first right hand integral is a non linear 

function of all currents. Let us indicate with YUL(W) this voltage and with IL(,(W)) the 

function. Indeed, since the reconstruction of the current density (>.([)@,(W)) is strictly 

local and the integral is calculated over the segment connecting the points [K and [N,

function IL depends only on the currents flowing through the faces of the elements 

which are crossed by the integration path. Finally, the rightmost voltage term is given 

by the sum of the product of the time derivative of all the unknown currents with 1&

geometrical coefficients. Let us indicate with PLM the coefficient which multiply the 

time derivative of the M�WK current in the equation (1.2.18), relative to the L�WK current. 

Even though the reconstruction of current density is strictly local, all this coefficients 

can be different from zero, because the innermost integral is calculated over the whole 

volume of the SC region and therefore it involves all the currents. From the above 

inspection of the various terms, it follows that equation (1.2.18) can be interpreted, at 

any time W, as the voltage balance equation of a circuit branch derived from two nodes K
and N with potential ([K,W) and ([N,W) respectively and containing an impressed voltage 

generator YH[WL(W), a non linear current-controlled voltage generator YUL(W), and a inductor 

coupled with (1& ± �) others. A picture of this circuit branch is shown in figure 1.2.5. 
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By using the symbols of the figure, equation (1.2.18), which states the voltage 

balance of the branch, can be rewritten as  
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1
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We can get a deeper physical insight of equation (1.2.18) and its circuit interpretation 

if we consider the following example. Let us refer to a group of six elements of the 

mesh of figure 1.2.2, which discretizes the SC cylinder of figure 1.2.1. The elements 

are assembled as shown by the frontal view of figure 1.2.6, where the segments 

connecting the centers of neighboring elements, oriented according to the current 

flowing through the face, are also shown. 

 

[f

[a

[b

[c

[d

[e

ILJXUH��������IURQWDO�YLHZ�RI�D�JURXS�RI�VL[�DGMDFHQW�HOHPHQWV 

By calculating, according to the clockwise direction, the line integral of the electric 

field (, expressed by means of equation (1.2.3), over the closed loop defined by the six 

segments of figure1.2.6, and substituting in it the expression (1.2.5) of magnetic scalar 

potential the following equation is obtained 
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By substituting in equation (1.2.20) equations (1.2.7), (1.2.15) and (1.2.16), and 

rearranging the terms, we obtain the equation  
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The left side integral represents the electromotive force induced in the loop by the 

time variation of the magnetic flux linked with it and sustained by the current flowing 

in the coil, whereas the second of the integrals of the right hand side represents the 

electromotive force induced in the loop by the time variation of the magnetic flux 

linked with it and produced by the currents flowing in superconducting region. The first 

integral on the right represents the voltage drop associated to the heating by Joule effect 

produced by the currents flowing within the elements which are crossed by the loop. If 

we now apply equation (1.2.18) to any of the segments of the loop and we sum or 

subtract these equations depending on whether the relative segment is oriented 

clockwise or counterclockwise respectively, we observe that the resulting equation is 

exactly the same as equation (1.2.21). In terms of the circuit quantities introduced with 

equation (1.2.19) this relation can be expressed as  
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where ST is the couple of letters (ST� � DE�� EF�«�ID) which indicates the segment. 

Therefore, with reference to a single branch of the loop, the independent voltage 

generator represents the local electromotive action impressed by the time variation of 

the external magnetic field, and the controlled voltage generator represents the local 

voltage drop associated to the local heating by Joule effect. The local electromotive 

action induced in the branch by the time variation of magnetic field produced by the 

currents circulating in the superconductor are represented by means of auto mutual 

induction coefficients, according to classic circuit theory.  

We have seen before that it is possible to obtain as many independent equations of 

the type of (1.2.19), as the currents circulating through the faces of the SC mesh, that is 

1&. In fact any current defines an unique couple of extremes [K and [N of the integration 

path of equation (1.2.18), from which equation (1.2.19) derives. By recalling the 

oriented graph * associated to the mesh, we can state the same property by saying that 

an equation of the same type of (1.2.19) can be associated to each branch of the graph. 

It follows that the entire system, made of a superconducting domain with an assigned 

transport current and subject to the influence of an external magnetic field, can be 

schematized by means of an equivalent electric network, having 1&� branches and (1(

� �) nodes. The circuit picture is completed by the fact that, as we have seen before 

with equations 1.2.2, the algebraic sum of all currents ingoing or outgoing each node 

must be zero. The graph associated to the equivalent network is exactly coincident with 

graph * associated to the mesh of the SC domain. Since the electric scalar potential is 

defined apart from a constant value, it is possible to assign arbitrarily the potential of 

one of the nodes of the network, therefore the circuit unknowns are 1&�currents and (1(

� �) potentials.  

All the branches of the network are current controlled branches of the type of the one 

represented in figure 1.2.5. The set of the 1& independent equations of the type of 

(1.2.19), defining the voltage balance of each branch can be written in the following 

concise form 

 

( ) ( ) ( )( ) [ ] ( )WGW
GWW,GW

GW FRLO
FRLO ,0,09>%@ +=− ) (1.2.23) 
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where >%@ is an (1(�� �) î 1& matrix whose elements are all +1, 0 or –1, 9(W) is the 

vector of the (1(�� �) potentials at time W of all the nodes except the one that we have 

chosen to assign, 0FRLO is the set of the 1& mutual induction coefficients of the current 

circulating in the external coil, )(,(W)) is the vector of the 1& non linear functions of the 

currents which define the controlled voltage generators, and >0@ is the 1& î 1& matrix 

of auto/mutual induction coefficients. We now recall that, in writing the (1(� � �)

independent incidence equations (1.2.2), we chose to eliminate, among the (1(�� �)

dependent ones, the equation referring to the node representing the negative electrode 

of the generator. If we now decide to assign the value zero to the potential of the same 

node, i.e. we assume it as the reference one, it is possible to verify by direct inspection, 

that matrix >%@ of equation (1.2.23) coincides with the transpose of matrix >$@ of 

equation (1.2.2); therefore the solving system of the equivalent electric network, that is 

a set of (1& � 1(�+ 1) equations in the (1& � 1(�� 1) unknowns represented by the 

currents and the potentials, can be written as  
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System (1.2.24) can be solved directly to obtain the time evolution of the potential 

and currents circulating inside the SC region; when the vector ,(W) of all currents at time 

t has been calculated, the instantaneous distribution of current density can be 

reconstructed by means of equation (1.2.15). Moreover, also the instantaneous 

distribution of electric field can be determined by means of equation (1.2.7) and 

consequently, the distribution of power consumption inside the SC can be calculated, 

element by element, by taking the scalar product of current density times the electric 

field, and multiplying it times the volume of the element. However this way of proceed 

is not the best one in terms of calculation time and memory requirements; we will see 

in the next section how, by applying a tree-cotree decomposition of the equivalent 

circuit, it is possible to eliminate all the electric potentials from equations (1.2.24) and 

obtain a reduced solving system containing only (1& ± 1(�± 1) unknown currents. 
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����3UREOHPV�ZLWK� ORZHU�GLPHQVLRQDOLW\��7KH�WUHH�FRWUHH�
GHFRPSRVLWLRQ�RI�WKH�HTXLYDOHQW�QHWZRUN�DQG�WKH�UHGXFHG�
VROYLQJ�V\VWHP�

 

In section 1.2 we have seen how it is possible to study the full three dimensional field 

distribution inside a superconducting bulk by means of an equivalent electric network, 

whose topology and components can be defined on the basis of the mesh of the 

discretized problem. The circuit unknowns, i.e. the potentials of the nodes and the 

currents through the branches can be determined step by step by solving the system 

(1.2.24). However, although completely general, this approach is not the optimal one in 

terms of CPU requirements and calculation time because of the two following reasons. 

First of all, we must consider that there are problems with an intrinsically lower 

dimensionality, i. e. with one or more components of the current density that are not 

allowed to be different from zero. Since, by means of equation (1.2.15), the local 

component of the current density along a particular direction is due to the currents 

flowing locally through the faces oriented along that direction, if a component does not 

exist the relative currents could be omitted. This means that only a reduced number of 

branches must be introduced in the equivalent network. Moreover, even when the 

equivalent circuit is derived according to the actual dimensionality of the problem and 

only the minimum number of unknowns are introduced, the size of the solving system 

can further be reduced by applying a tree-cotree decomposition of the network.  

In order to better understand this points, let us refer to the superconducting cylinder 

of figure (1.2.1) and consider the case of zero transport current and uniform external 

magnetic field, produced by a very slim and long coil oriented along the ] axis and 

supplied by the time varying current ,FRLO(W). It is possible to demonstrate that in this 

case, only azimuthal currents can flow inside the SC cylinder, following a change with 

time of the uniform external magnetic field. Let us discretize the superconducting 

domain by means of the mesh of figure 1.2.2. The graph of the equivalent electric 

network associated to the problem in the most general case is represented in figure 

1.2.3. Since no current is injected in the SC cylinder by the generator, there cannot be 

currents flowing through the faces lying on the interface with the positive and the 
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negative electrode, therefore we can omit all the circuit branches connecting the two 

electrodes (nodes 73 and 74) with the remainder of the circuit. Moreover, since any 

change with time of the uniform and axial directed magnetic flux density induces 

currents in the SC cylinder that flow in the azimuthal direction, all the faces whose unit 

vector is oriented along the axial and the radial direction are not crossed by any current 

and consequently, the relative branches can be omitted as well. However, the 

elimination of all these branches yields a non connected graph; since, in the considered 

case, the axial and the radial directions are equipotentials, we can arbitrarily connect 

some couple of points lying along the same radial or axial line by means of a trivial 

(short circuit or having only passive components) branch, thus recovering the property 

of connection of the graph and avoiding the existence of floating nodes in the 

equivalent electric network. The graph of the equivalent circuit associated to the mesh 

according with the actual dimensionality of the physical problem is represented in 

figure 1.3.1, where a labeling of the currents of all branches is also quoted.  
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This graph contains 74 nodes, as the graph of the problem with full dimensionality 

(the number of the nodes does not change with the dimensionality), whereas the 

branches are 79 in place of 186. The reason why branches with currents ,�, ,��, ,��, ,��,
,��, and ,�� have been pointed out will be evident in a moment. The branches connecting 

the nodes 1-16, 25-40, 49-64 and 73-1, 1-25, 25-49, 49-74, which refers to radial and 

axial currents respectively, have been maintained only to allow the graph to be 

connected.  

The reduced electric network which arise from the graph of figure 1.3.1 contains the 

lowest possible number of unknowns, i.e. currents and potentials, allowed by the 

physics of the considered problem. The number 1& of unknown currents is equal to 79 

and the number (1( + 1) of unknown potentials is equal to 73. The circuit unknowns 

can be determined step by step by solving the system (1.2.24), associated to the reduced 

network. However this not the most convenient way to move forward; in fact, as it is 

well known from basic circuit theory, when a network is made only of current 

controlled branches, it is possible to obtain a solving system which contains only the set 

of the currents flowing through the branches of a whatever cotree of the graph as 

unknown. The equations of this reduced solving system are the voltage balance 

equations of the set of independent loops picked out by the cotree branches. The 

number 
7&

1 of branches of a tree of a given graph is equal to the total number of 

nodes less one. The number 
&&

1 of branches of the cotree is equal to the total number 

of branches of the graph less those belonging to the tree. In the case of graph of figure 

1.3.1 
7&

1 is equal to 73 and 
&&

1 is equal to 6. In order to define an algebraic 

algorithm which allow us to select a tree and a cotree of the graph, we start from the set 

of the first (1( + 1) equations of the full solving system (1.2.24), i.e. equations (1.2.2). 

This equations are the Kirchhoff’s current laws for all the nodes of the circuit less the 

reference one. They have a non homogeneous form because the superconducting bulk 

can be supplied by an external current generator which is not included in the equivalent 

network. Let us now apply to matrix >$@ of equations (1.2.2) the following procedure  

 

- s1. move on the left all the columns having only one element different 

from zero; let QFL be the number of this columns. This step implies a 

rearrangement of the vector of currents 
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- s2. rearrange the first QFL rows in way such they form an QF� × QF��identity 

minor which occupies the first rows and columns of matrix >$@. Apply to 

vector D the same rearrangement of rows carried out on matrix >$@ 
- s3. Starting from the (QFL�+ 1)-WK, find the next column having a non zero 

element on row (QFL�+ 1); move this column in position (QFL�+ 1). This step 

implies a rearrangement of the vector of currents 

- s4. By summing or subtracting row (QFL�+ 1), eliminate the other non zero 

element from column (QFL�+ 1)L. Apply to vector D the same sum or subtraction 

of rows carried out on matrix >$@��Upgrade the value of QFL with (QFL�+ 1). 

- s5. Repeat steps s3 and s4 until an (1(�� �) î (1(�� �) identity matrix is 

obtained on the left side of modified matrix >$@ 

Steps s1 and s2 are not essential; they could be omitted and the algebraic procedure 

could start from step s3, with initial value of QFL equal to zero. However, in the case of 

reference node with a lot of branches connected to it (this correspond to the case of 

negative electrode of the generator spanning a wide surface), steps s1 and s2 make the 

algorithm faster. 

After the above procedure is applied to equation (1.2.2), the following matrix relation 

is obtained 

 

( ) ( ) ( )W,WW WU

D,>&@,>,G@ −=+ &7 (1.3.1) 

 

where ,7(W) is the set of the first (1(�� �) components of the rearranged vector of 

currents, ,&(W) is the set of the (1& – 1(�– �) remaining ones, >,G@ is the (1( + 1) × (1( +

1) identity matrix, >&@ is an (1( + 1) × (1& – 1(� – �) residual matrix and D' is the 

modified vector D. Therefore the (1(�� �) currents of vector ,7 can be expressed as a 

function of the (1& – 1(�– �) currents of vector ,& at any instant as follow  

 

( ) ( ) ( )WW,W WU



&7 >&@,D, −−= (1.3.2) 

 

This means that the sets of branches where currents of vector ,7 and ,& flow form 

respectively a tree and cotree of the graph to which matrix >$@ refers to, and, 
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consequently, the residual matrix >&@ coincides with the matrix of the fundamental cuts 

associated to the tree.  

By applying the above procedure to the set of equations (1.2.2) relative to the graph 

of figure (1.3.1), and recalling that in the considered case no current is injected in the 

SC cylinder by the generator, the following equations are obtained 
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 0  0  0 -1  0  0 
 0  0  0  1  0  0 
 0  0  0 -1  0  0 
 0  0  0 -1  0  0 
 0  0  0  1  0  0 
 0  0  0 -1  0  0 
 0  0  0 -1  0  0 
 0  0  0  1  0  0 
 0  0  0 -1  0  0 
 0  0  0  0  0  0 
 0  0  0  1  0  0 
 0  0  0 -1  0  0 
 0  0  0 -1  0  0 
 0  0  0  1  0  0 
 0  0  0 -1  0  0 
 0  0  0 -1  0  0 
 0  0  0  1  0  0 
 0  0  0 -1  0  0 
 0  0  0  0  0  0 
 0  0  0  0 -1  0 
 0  0  0  0 -1  0 
 0  0  0  0 -1  0 
 0  0  0  0 -1  0 
 0  0  0  0 -1  0 
 -1  0  0  0  0  0 
 1  0  0  0  0  0 
 -1  0  0  0  0  0 
 -1  0  0  0  0  0 
 1  0  0  0  0  0 
 -1  0  0  0  0  0 
 -1  0  0  0  0  0 
 1  0  0  0  0  0 
 -1  0  0  0  0  0 
 0  0  0  0  0  0 
 1  0  0  0  0  0 
 -1  0  0  0  0  0 
 -1  0  0  0  0  0 
 1  0  0  0  0  0 
 -1  0  0  0  0  0 
 -1  0  0  0  0  0 
 1  0  0  0  0  0 
 -1  0  0  0  0  0 
 0  0  0  0  0  0 
 0 -1  0  0  0  0 
 0 -1  0  0  0  0 
 0 -1  0  0  0  0 
 0 -1  0  0  0  0 
 0 -1  0  0  0  0 
 0  0  0  0  0 -1 
 0  0  0  0  0  1 
 0  0  0  0  0 -1 
 0  0  0  0  0 -1 
 0  0  0  0  0  1 
 0  0  0  0  0 -1 
 0  0  0  0  0 -1 
 0  0  0  0  0  1 
 0  0  0  0  0 -1 
 0  0  0  0  0  0 
 0  0  0  0  0  1 
 0  0  0  0  0 -1 
 0  0  0  0  0 -1 
 0  0  0  0  0  1 
 0  0  0  0  0 -1 
 0  0  0  0  0 -1 
 0  0  0  0  0  1 
 0  0  0  0  0 -1 
 0  0  0  0  0  0 

±� (1.3.3)

Equations (1.3.3) show that the set of branches where currents ,�, ,��, ,��, ,��, ,��, and 

,�� flow form a cotree; this currents are pointed out in figure 1.3.1. The matrix of the 
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fundamental cuts shows also that the current flowing in the additional branches 

introduced to make the graph connected (,�, ,�, ,�, ,��, ,��, ,�� and ,��), are always zero.  

We have seen in the previous section that if we calculate the line integral of the 

electric field over a closed loop, it is possible to obtain an equation of the type of 

equation (1.2.22), stating the balance of the voltages acting along the loop, that 

involves all the currents of the equivalent electric network but does not involve any 

potential. If we apply this equation to all the 
&&

1 independent loops picked out by the 

cotree branches, and we substitute in them expression (1.3.2) of the tree currents, we 

obtain a reduced system made of 
&&

1 independent equations in the 
&&

1 unknowns 

represented by the cotree currents. In order to write the 
&&

1 independent loop 

equations, we can proceed in the following indirect way. Let us consider the matrix 

>$@7 appearing in the set of the last 1& equations of the full solving system (1.2.24), i.e. 

equations (1.2.23), and let us rewrite them in the following way 

 

( ) ( ) ( )( ) [ ] ( )WGW
GWW,GW

GW FRLO
FRLO7 ,0>,G@,>,G@0>,G@9>$@ +=− ) (1.3.4) 

 

where >,G@ represents the 1& × 1& identity matrix. Let us now apply to equations 

(1.3.4) the following procedure  

 

- s1. rearrange all the columns of matrix >0@ by placing first those relative 

to the tree currents and then those relative to the cotree ones. 

- s2. rearrange all the rows of matrix >$@7 by placing first those relative to 

the tree currents and then those relative to the cotree ones. Apply the same 

permutation of rows to matrix >,@.
- s3. Assign value zero to an index L.
- s4. Starting from the (L + 1)-WK, find the next row having a non zero 

element on column (L + 1); move this row in position (L + 1). Apply the same 

exchange of rows to matrix >,@.
- s5. By summing or subtracting row (L + 1), eliminate the other non zero 

element from column (L + 1). Apply to matrix >,@�the same sum or subtraction 

of rows carried out on matrix >$@7� Upgrade the value of L with (L + 1). 
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- s6. Repeat steps s4 and s5 until an (1(�+ 1)�î�(1(�+ 1) identity matrix is 

obtained on the top part of modified matrix >$@7

After that this procedure is applied, the following equation is obtained 

 

[ ] ( ) ( )

( ) ( )( ) [ ] [ ]
[ ] [ ]

( )
( )











+

=−




 +

W
W

GW
GW�W

W,GW
GW





FRLO
FRLO
1(

&

7
&7 ,

,
00
00>,G@,,>,G@

0>,G@9�
>,G@

2221

1211

1

)
(1.3.5) 

 

where 1+(1
>,G@ represents the (1(�� �) î (1(�� �) identity matrix, >�@ is an (1& ± 1(�

± �) î (1(�� �) matrix made of all zeros and matrix >,G@’ represents the modified matrix 

>,G@. Matrixes >0@�� and >0@�� are minors having (1(�+ 1) rows and (1(�+ 1) and (1& ±
1(�– 1) columns respectively, whereas the number of rows of minors >0@�� and >0@�� is 

equal to (1& ± 1(�– 1). Finally, by substituting equation (1.3.2) in equation (1.3.5), and 

considering only the last (1& ± 1(�– 1) rows, the following system is obtained 

 

[ ] ( ) ( ) ( ) ( )( )W,�W,�WWGW
G

FRLOWU&& ,, )0 = (1.3.6) 

 

where matrix [ ]0 and function ) are defined as follow  
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and  

 

( ) ( ) ( )( )

[ ] [ ]
[ ] ( ) ( ) ( ) ( )( )W,�WW,GW

GW,GW
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W,�W,�W
WUFRLO

FRLO
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Matrix >/@ of the above equations is made of the last (1& ± 1(�± �) rows of matrix 

>,G@’ and )’ is a non linear vector function with 1& components depending only on the 

cotree currents and on the applied transport current. It is possible to verify by direct 

inspection that matrix >/@ coincides with the matrix of the fundamental loops of the 

graph associated to the tree-cotree decomposition arising from equation (1.3.2). 

System (1.3.6) consists of (1& ± 1(�– 1) equations containing only the (1& ± 1(�– 1) 

cotree currents as unknowns, and allows to calculate numerically their time evolution. 

Due to the reduced number of unknowns, the calculation time and the CPU 

requirements are less onerous than those of the full solving system (1.2.24). The 

missing (1(�+ 1) currents circulating in the branches of the tree and, if required, the 

potentials of the nodes, can be determined at a later time by means of equations (1.3.2) 

and (1.3.5). The current density and electric field distributions inside the SC region can 

be calculated, at any instant, through equations (1.2.15) and (1.2.7) respectively, and 

finally, the resulting distribution of power losses can be calculated by taking the scalar 

product of current density and electric field element by element, and multiplying it with 

the volume.  
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����$�VLPSOH�D[LV�V\PPHWULF�SUREOHP�
 

In order to clarify many of the concepts presented in the previous sections, let us 

refer to a practical example and consider a normal conducting cylinder with no 

transport current and subject to an uniform axial magnetic field, varying with time 

following a ramp with 1 7/V rate. Let the cylinder have radius U = 1PP, length / = 1 P,

and electric conductivity = 3.07 × 109 −1m−1 and let the uniform magnetic field be 

produced by a coil made of 5000 turns, arranged in two layers of 2500 each, having 

inner diameter G,�= 19 PP, outer diameter G2 = 21 PP and length /FRLO = 10 P, oriented 

along the axis of the cylinder and supplied with a current changing with time following 

a ramp with 1592 $/V rate. Even if it is not a superconducting case, this example is 

convenient to understand how the numerical model works.  

Let us discretize the cylinder through the mesh of figure 1.2.2, made of 72 prisms, 

arranged in 3 section of 24 prisms each. Even though it does not enable us to reach a 

good accuracy in the numerical results, such a coarse mesh allows to fully work out the 

numerical details and to understand all the features of the numerical model. As we have 

seen in section 2.3, since in the considered problem no axial and radial components of 

current density are allowed, the equivalent circuit will contain only the branches which 

schematize the currents flowing in the azimuthal direction. The graph of the equivalent 

circuit of the cylinder under the specified conditions is represented in figure 1.3.1. In 

order to calculate the time evolution of the circuit unknowns, i.e. the currents of the 

branches and the potentials of the nodes, all the coefficients of the solving system 

(1.2.24) of the equivalent network must be defined. The calculation of the incidence 

matrix >$@ is straightforward. The elements of vector 0FRLO and matrix >0@ and the 

vector function ) can be calculated by using their definitions, provided in equation 

(1.2.18). In the considered case the function ) is linear because of the linear relation 

among current density and electric field and can be expressed as the product of a matrix 

with constant elements having the dimension of a resistance and the vector of all the 

unknown currents. Once the solving system is completely defined the reduction 

algorithm presented in section 1.3 can be applied. By applying to the incidence matrix 

the describe procedure and considering that no transport current is injected in the 

cylinder, equation (1.3.3) is obtained. This equation refers to the labeling quoted in 
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figure 1.3.1. The currents of the right side form a set of cotree currents of the equivalent 

circuit. By applying the second part of the reduction algorithm the following matrix >/@ 
of the fundamental loops is obtained 

 

0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1 -1 1 1 -1  1  1 -1  1  1 -1  1 1 -1 1 1 -1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0 1  1  0  0  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0 0  0  0  0  0  0  0  0  1 -1  1  1 -1  1 1 -1  1 1 -1 1 1 -1  1  1 -1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  1  0  0  1  1  1  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
0 0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1 -1  1  1 -1 1 1 -1  1  1 -1  1  1 -1  1 1 -1  1

>/@� �

 
(1.4.1)

This matrix is of course consistent with matrix >&@ of the fundamental cuts of 

equation (1.3.3). As an example we note that the loop equation relative to the cotree 

current ,9 (third row of matrix >/@) is made of the sum of the voltage balance equations 

relative to the branches having currents ,2, ,3, ,6, ,7, ,8 and ,9 flowing through, as 

confirmed by the graph of figure 1.3.1. By left multiplying vector 0FRLO and matrix >0@ 
and the vector function ) of system (1.2.24) with matrix >/@ and by substituting in it 

equation (1.3.3) the following reduce solving system is obtained: 

 

9.522E-10
1.360E-10
1.360E-10
9.522E-10
1.360E-10
9.522E-10

( )W,
GW
G

FRLO =

1.016E-08 ,53

3.385E-09 ,61

3.385E-09 ,9

1.016E-08 ,27

3.385E-09 ,35

1.016E-08 ,79

+

4.687E-12  3.151E-18  3.151E-18  2.205E-17  8.184E-13  2.205E-17
3.151E-18  4.735E-13  3.603E-20  2.522E-19  4.501E-19  8.184E-13
3.151E-18  3.603E-20  4.735E-13  8.184E-13  4.501E-19  2.522E-19
2.205E-17  2.522E-19  8.184E-13  4.687E-12  3.151E-18  1.765E-18
8.184E-13  4.501E-19  4.501E-19  3.151E-18  4.735E-13  3.151E-18
2.205E-17  8.184E-13  2.522E-19  1.765E-18  3.151E-18  4.687E-12

,53

,61

,9

,27

,35

,79

GW

G+

(1.4.2)

By multiplying the leftmost vector with the time derivative of the current of the coil 

(1592 $/V in the considered case) the values of the voltages of the independent 

generator of any loop are obtained. These generators represent the electromotive force 

induced in the loops by the time variation of the magnetic flux linked with them and 

sustained by the current flowing in the coil. It is easy to verify that they coincide 

numerically with the areas of the surfaces enclosed by the loops, since the external 

magnetic flux density is uniform and change with time with the rate of 1 T/s. The ratio 

of the voltages of the outer and the inner loop is equal to seven, being equal to seven 

the ratio of the relative areas (see figure 1.2.4). 
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The first terms of the right side of equation (1.4.2) represent the voltage drop 

associated to the power losses which occur all along the loop; these terms are linear 

because the considered material is linear. In the most general case they are expressed 

by means of a function of more than one current and are represented by a current 

controlled generator. Since in the considered case, in every branch of a loop it 

circulates the same current, the local current density along it depends only on this 

current and is constant in magnitude; therefore, by calculating the dissipative terms 

according to their definition (see equation (1.2.18)), it results that they are expressed by 

means of the product of a coefficient, which represents the loop resistance, times the 

relative current. It is worth to note that the resistances of the loops coincides with the 

product of the resistivity of the material times the length of the loop, divided by the 

area of the cross section of the sub-domain made of the elements which are crossed by 

the loop. The ratio of the resistances of the outer and the inner loop is equal to three, 

being equal to three the ratio of the relative lengths (see figure 1.2.4 or 1.3.1).  

As it can be seen from the matrix of the auto/mutual induction coefficients matrix of 

equation (1.4.2), the dominant inductive effect is represented by the auto inductance of 

any loop, together with the mutual inductance of two loops of the same section of 

elements. The coupling between loops of different section of elements is negligible. 

Figure 1.4.1 shows the reduced equivalent circuit of the normal conducting cylinder 

under the specified operating conditions, associated to the solving system (1.4.2). 
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The structure of the circuit reflects the structure of the mesh; in fact they can be 

distinguished three couple of loops, giving account of the axial distribution of the 

current density in the limit of the adopted discretization. The radial distribution at a 
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given axial coordinate, still in the limit of the discretization, is given by the two 

corresponding loops. Since the equivalent circuit is derived under the hypothesis of 

axial symmetry, no azimuthal distribution arises from it.  

By solving the equivalent circuit it is possible to calculate the currents circulating in 

the branches of the cotree, and applying afterwards equation (1.3.3), the currents 

circulating through all the faces of the mesh can be determined. The current density 

distribution can be reconstructed by means of equation (1.2.15). In the considered case 

a steady state distribution, independent from the axial coordinate, is obtained. Figure 

1.4.2 shows a plot of the calculated current density distribution in a cross section of the 

cylinder. 

 

ILJXUH��������FXUUHQW�GHQVLW\�GLVWULEXWLRQ�LQ�D�FURVV�VHFWLRQ�RI�WKH�F\OLQGHU�

 

The magnitude of the current density is equal to 4.43E+06 $/P2 for the innermost 

elements, 9.35E+06 $/P2 for the intermediate ones, and 1.09E+07 $/P2 for the 

outermost elements. The relative power losses result to be equal to 0.23, 1.02 and 1.40 

P: respectively. The total power consumption inside the cylinder is equal to 72.90 

P:.

It is important to note that the very simple structure of the equivalent circuit arises 

from the fact that, since no axial and radial components of current density were allowed 

in the considered problem, we have omitted since the beginning the branches which 

schematize the currents flowing in the axial and radial direction. By following a full 3D 

formulation and considering also these branches, the equivalent circuit becomes far 

more complex, with a very large number of unknowns. The graph of the equivalent 

circuit corresponding to the full 3D formulation is represented in figure 1.2.3. By 
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solving this equivalent circuit we obtain the same solution obtained by omitting the non 

azimuthal branches in terms of current distribution inside the cylinder, i. e. the currents 

flowing in branches oriented along the axial and radial direction are found to be zero a 

posteriori; however the calculation time and the CPU requirements are far more 

onerous. In table 1.4.1 a comparison of the two equivalent circuits in terms of number 

of circuit quantities and solving system size is presented.  

 

7DEOH��������FRPSDULVRQ�RI�WKH�WZR�HTXLYDOHQW�FLUFXLWV�
�

EUDQFKHV� QRGHV� XQNQRZQV�RI�WKH�IXOO�

VROYLQJ�V\VWHP�

XQNQRZQV�RI�WKH�

UHGXFHG�VROYLQJ�V\VWHP�

)XOO��'�IRUPXODWLRQ� 186 74 259 113 

2QO\�D]LPXWKDO�

EUDQFKHV�
79 74 152 6 
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����1XPHULFDO�UHVXOWV�DQG�DQDO\WLFDO�EHQFKPDUNV�
 

In order to validate the numerical model presented in sections 1.2 and 1.3 let us now 

consider the following three problems for which an analytical solution is available [31].  

 

������&\OLQGULFDO�QRUPDO�FRQGXFWLQJ�ZLUH�ZLWK�$&�WUDQVSRUW�FXUUHQW�
 

Let us consider a cylindrical normal conducting wire with length /, radius 5 and 

electrical conductivity σ, connected to an AC current generator which inject the current 

WVLQ,�W�, UPVWU ω= 2 inside it. The wire is connected to the generator by means of two 

equipotential electrodes which span its whole front and back section. With respect to a 

cylindrical coordinates system (U��ϑ� ]) centered in the centre of the wire and with the ]
axis oriented along its axis, if the condition / >> 5 holds, the current density 

distribution inside the conductor is ]-directed and depends only on the radial coordinate 

U, and can be expressed as follow [35]:  
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(1.5.1) 

 

where -� is the zero order Bessel function of the first kind, βP is the P�WK root of the 

first order Bessel function of the first kind -� (i.e. -�(βP) = 0) and P is a parameter 

expressed by 2
0

2 5�PP σµβ=α , where 0 is the magnetic permeability of the vacuum. 

The instantaneous power loss, developed by Joule effect inside the wire, corresponding 

to this current distribution is given by: 

 

( ) ( ) ( ) ( )( )∑∫
∞

=

ωα−









α+

−ωα+ω
σπ

=
σ

π=
1

2

2
2

22

0 1

2
2

P P

W
PUPV]

5 PHWFRVWVLQ
5
/,W�U-UGU/W3 (1.5.2) 

 



CHAPTER 1

41

Figure 1.5.1 shows the numerical calculated profile of current density, together with 

the analytical one, at instant W = 2 PV, inside a wire having length / = 1 P, radius 5 = 1 

PP and electrical conductivity σ = 3.07 × 109 6�P, in the case of transport current 

having ,UPV = 10 A and I = 250 +].
Figure 1.5.2 shows the numerical and the analytical calculated time evolution of total 

power loss which occur inside the wire during the first two periods of the transport 

current. 
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The mesh used for the calculation is made of 762 prisms with triangular basis, 

arranged in 3 section of 254 prisms each; any section covers one third of the entire 

length of the wire. The distributions of current density relative to the three groups of 

prisms are coincident, i.e. no dependence of the numerical results on the axial 

coordinate is observed. The numerical results obtained by means of more packed 



CHAPTER 1

42

meshes are superposed to those of figure 1.51 and 1.5.2; this means that the numerical 

convergence is reached. The numerical and the analytical results of figure 1.51 and 

1.5.2 are in a good agreement. 

 

������&\OLQGULFDO�QRUPDO�FRQGXFWLQJ�ZLUH�ZLWK�$&�H[WHUQDO�PDJQHWLF�ILHOG�
 

Let us consider the same normal conducting wire of section 1.5.1, now having no 

transport current and subject to an uniform and axial oriented magnetic density, 

produced by an external coil and varying with time following the law 

( ) ( )WVLQ%W% UPV ω= 2 . With respect to a cylindrical coordinates system (U�� ϑ� ])
centered in the centre of the wire and with the ] axis oriented along its axis, if the 

condition / >> 5 holds, the current density distribution inside the conductor is ϑ-

directed and depends only on the radial coordinate U, and can be expressed as follow 

[35]:  
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where ,0 is the zero order modified Bessel function of first kind, ,1 is the first order 

modified Bessel function of first kind, and N� is a complex parameter expressed by 

( ) δ+= �MN 1� , where the skin depth is defined as σωµ=δ 02 � . The instantaneous 

power loss, developed by Joule effect inside the wire, corresponding to this current 

distribution is given by: 
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The complex functions 61 and 60 are given by ( ) ( )
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220 ,

,
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where star denotes the conjugate operator. 

Figure 1.5.3 shows the numerical calculated profile of current density, together with 

the analytical one, at instant W = 9 PV, inside a wire having length / = 1 P, radius 5 = 1 

PP and electrical conductivity σ = 3.07 × 109 6�P, in the case of external magnetic flux 

density having %UPV = 1 7 and I = 250 +].
Figure 1.5.4 shows the numerical and the analytical calculated time evolution of total 

power loss which occur inside the wire during the second and the third period of the 

external magnetic flux density. 
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The mesh used for the calculation is made of 384 prisms with triangular basis, 

arranged in 3 section of 128 prisms each; any section covers one third of the entire 

length of the wire. Also in this case the distributions of current density relative to the 

three groups of prisms are coincident, i.e. no dependence of the numerical results on the 

axial coordinate is observed. The numerical results obtained by means of more packed 

meshes are superposed to those of figure 1.5.3 and 1.5.4; this means that the numerical 

convergence is reached. The numerical and the analytical results of figure 1.5.3 and 

1.5.4 are in a good agreement. 

 

������&\OLQGULFDO�VXSHUFRQGXFWLQJ�ZLUH�ZLWK�WLPH�YDU\LQJ�WUDQVSRUW�FXUUHQW�
 

Let us consider a cylindrical homogeneous superconducting wire with length /,

radius 5, connected to a current generator which inject inside it the following time 

varying current  
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where . and W0 are given parameters. The wire is connected to the generator by 

means of two equipotentials electrodes which span its whole front and back section. Let 

us assume the power law as constitutive relation for the superconducting material, i.e. 

in any point of the wire the magnitudes of electric field and current density are related 

through ( = (F (-/-F)1, where -F is the critical current density, (F is a conventional value 

and 1 is a given parameter. We assume this relation not to depend on the local 

temperature. 

With respect to a cylindrical coordinates system (U��ϑ� ]) centered in the centre of the 

wire and with the ] axis oriented along its axis the current density distribution inside the 

superconductor is ]-directed and depends only on the radial coordinate U. It can be 

expressed as follow 
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if the conditions / >> 5 and 
11
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hold. The instantaneous 

total power loss inside the wire, corresponding to this current distribution are given by:  

 

( ) ( ) ( )
WW
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1
/-(UGU/W3 ]]
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−π
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0

2
0

0 8
2 (1.5.7) 

 

Figure 1.5.5 shows the time evolution of the current supplied to the wire in the 

interval [0 V – 0.999 V] in the case of case of 1 = 6, W0 = 1 s and . = 2218 A. 

Figure 1.5.6 shows the numerical calculated current density, together with the 

analytical one, at instant W = 0.97 V, inside a superconducting wire having length / = 1 

P and radius 5 = 1 PP supplied by the current of figure 1.5 .5. The parameters of the 

power law used in the calculation are -F = 109 $/P�, (F = 10−4 V/m and 1 = 6. 
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Figure 1.5.7 shows the numerical and the analytical calculated time evolution of total 

power loss inside the wire 
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The mesh used for the calculation is made of 384 prisms with triangular basis, 

arranged in 3 section of 128 prisms each; any section covers one third of the entire 

length of the wire. The distributions of current density relative to the three sections of 

prisms are coincident, i.e. no dependence of the numerical results on the axial 

coordinate is observed. The numerical results obtained by means of more packed (both 

in the axial and in the radial direction) meshes are superposed to those of figure 1.5.6 

and 1.5.7; this means that the numerical convergence is reached. 

In the considered case, the current density begins to penetrate the wire from the outer 

part as the current injected in the wire increases; when the current injected current 

begin to grow very sharply, the current density propagates toward the center of the wire 

as a as a wave with a very sharp front. As it can be seen from figure 1.5.6, as long as 

the zone of the superconducting wire which is penetrated by the current is considered, 

the numerical calculated local current density agrees well with the analytical one. In the 

inner part of the wire an important disagreement is observed. For what concern the 

power losses, a significant discrepancy between analytical and numerical solutions at 

small time can be seen in figure 1.5.7. This is due to the fact that at small time the 

current is located in a thin surface layer, which thickness is far below the typical 

dimension of the cross section of the elements used. Since the model assumes an 

uniform current density in any element, the current is spread on an area wider than the 

surface layer. Therefore the numerical evaluated current density is lower than the 

analytical one and consequently, due to the (-- power law, the losses are 
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underestimated. When the penetration depth becomes significant, a better fitting of 

analytical current distribution and losses is achieved. 
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���� &RQVWLWXWLYH� UHODWLRQ� IRU� QRQ� KRPRJHQHRXV�
VXSHUFRQGXFWRUV�

 

The model of the equivalent electric network described in the previous sections can 

be applied to determine the field distribution inside a superconducting domain when the 

constitutive relation of the material is specified at any point. However, a great part of 

the superconducting element used in practical applications has a composite structure 

made of several materials. For example, a superconducting strand is made up by a large 

number of filaments, with diameter of few µP, embedded in a normal conducting 

material matrix and twisted together as schematically reported in figure 1.6.1. Such a 

structure is needed for reducing ac losses and improving thermal stability. The diameter 

of the strand is usually in the order of the millimeter.  

 

VXSHUFRQGXFWLQJ�
ILODPHQWV 

QRUPDO�FRQGXFWLQJ�
PDWUL[ 

ILJXUH��������VWUXFWXUH�RI�D�VXSHUFRQGXFWLQJ�VWUDQG�

 

Superconducting strands are used to built up superconducting coils; when large 

operating currents are required, cables made of the assembling of several strands are 

used.  

To study the current distribution inside an SC strand by means of the model of the 

equivalent electric network the mesh should fit exactly its structure, i.e. any elements 

should cover a volume filed only by an SC filament or by the normal conducting 

material of the matrix [36]. Due to the fact that the filament are twisted and have a 

diameter in the order of the µP, such an approach requires thousands of elements and 

full three dimensional calculation are practically impossible. However, if the detail of 
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the field distribution is not important and only the convergence of the numerical 

solution with respect to some integral quantities (particularly AC losses) is required, it 

is possible to follow a different approach and schematize the properties of the 

composite material by defining a continuous (non-linear) functional dependence of the 

electric field on the current density which applies for any point, regardless if it lies in 

the SC filament or in normal matrix [7,36]. This continuous relation can be obtained by 

averaging the (�-�characteristics of the SC and normal matrix material over a region 

which is small respect to the least dimension of the considered strand and large enough 

to contain a great number of SC filaments and normal matrix material areas [37]. The 

averaged relation is explicitly point dependent because of the twisting of the filament. 

Let us consider a generic point [ inside the strand and define the average electric 

field (*([) and the average current density -*([) of the point�by means of the following 

relations: 
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and  
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where the eventual time dependence of the field quantities is implicit. The limit 

appearing in equations (1.6.1) and (1.6.1) has not a mathematical meaning; it only 

means that the considered volume is small enough, compared to the entire volume of 

the considered strand, for the electric field and the current density to be considered 

local quantities, but is still large to contain a large number of superconducting filaments 

HPEHGGHG�LQ�WKH�QRUPDO�FRQGXFWLQJ�PDWHULDO��,QVLGH�WKH�YROXPH� 9([) the SC filaments 

are parallel and their direction is identified by the unit vector XW([). 

By introducing the ratio α between the volume filled by the SC filaments and the 

total volume of the strand, the average electric field (*
s([) and current density -*

s([) in 

the SC filaments lying around point [ can be expressed as: 
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and, in the same way, the average electric field (*
P([) and current density -*

P([) in 

the normal matrix around point [ can be expressed as: 
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By summing equations (1.6.3) and (1.6.5) and equations (1.6.4) and (1.6.6) it follows 

that 

 

( ) ( ) ( ) ( )[([([( P



V


 α−+α= 1 (1.6.5) 

( ) ( ) ( ) ( )[-[-[- P



V


 α−+α= 1 (1.6.6) 

 

The tangential component of the electric field cannot change at the interface between 

the filaments and the normal matrix. Moreover, for any surface charge density is 

neglected, also the normal component of the current density is continuous, therefore, 

considering in addition equations (1.6.5) and (1.6.6), the following relations hold  

 

( ) ( ) ( ) ( ) ( ) ( )[X[([X[([X[( W
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WV

 ⋅=⋅=⋅ (1.6.7) 

( ) ( ) ( ) ( ) ( ) ( )[X[-[X[-[X[- W
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 ×=×=× (1.6.8) 

 

where X([) is the unit vector pointing along the local direction of the filaments.  

The constitute relations of the superconducting and normal conducting material are 

expressed by ( ) ( )( )[-)[( V= and ( ) ( )[-[( Pρ= respectively, where P is the 

electrical resistivity of the normal material and )V is an assigned function which is 
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usually expressed by a power law. If we assume that in the vicinity of point [ the 

current density - of the superconductor is uniform and is equal to its average value 

V

- it follows 

 

( ) ( )( )[-)[( V



VV

 = (1.6.9) 

( ) ( )[-[( P



PP

 ρ= (1.6.10) 

 

By taking the scalar product of equation (1.6.6) with vector XW([) and substituting in 

it equations (1.6.7), (1.6.9) and (1.6.10), the following equation, relating vectors -*([)

and -*
s([) is obtained  
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By solving equation (1.6.11) with respect to -*
s([) it follows 
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By substituting equation (1.6.12) in equation (1.6.6) we obtain 
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and finally, by substituting equations (1.6.9), (1.6.12), (1.6.10) and (1.6.13) in 

equation (1.6.14) we obtain  
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 =α−ρ+α= 1 (1.6.14) 

 

This equation relates the local average electric field to the local average current 

density and can be used as “average” constitutive relation of the superconducting 
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strand. Its explicit dependence from the point arises from the twisting of the filaments. 

If we are for example interested in calculating the total power losses inside a strand 

subject to assigned operating conditions, it not important to know how the current 

density distributes over space scale in the order of few filaments diameters (tens of 

microns), and only the average distribution is important. Therefore a relatively non-fine 

discretization can be used, making the calculation time and the CPU requirements 

affordable, and equation (1.6.14) can be assumed as constitutive relation of the strand.  

In order to see more in detail how it is possible to obtain the “average” constitutive 

relation, let us consider, as an example, the case of the copper stabilized niobium-

titanium strand whose characteristics are listed below 

 

GLDPHWHU� � � � 0.825± 0.0025 PP�

 QXPEHU�RI�1E7L�ILODPHQWV� � 6534�

GLDPHWHU�RI�WKH�ILODPHQWV� � 6.0 ± 0.1 µP

&X�1E7L�UDWLR� � � � 1.9 ÷ 2.0 

 6&�WRWDO�YROXPH�UDWLR� � � 0.34 

 WZLVW�SLWFK�RI�WKH�ILODPHQWV� � 15.0 ± 1.5 PP 

FULWLFDO�FXUUHQW�DW�����DQG�.����7� � 387 A 

 UHVLVWLYLW\�RI�WKH�FRSSHU�DW�����.� � 3.4 10-10 ΩP

555� � � � � > 100 

 

This strand is produced by EUROPA METALLI S.p.A. and it will be used in the 

magnets of the LHC experiments, operating at a temperature of 4.2 K. Let us assume 

for the superconducting filaments the following constitutive relation 
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where -c is the critical current density of the NbTi at 4.2 . and 5 7, equal to 2.0 109

$�P�, (c is a conventional value equal to 1 µ9�FP, and the exponent 1 is equal to 20. 

The assumption of this material characteristic makes precautionary the calculation if 

the local temperature and magnetic flux density inside the strand never exceeds 4.2 K 

and 5 T respectively.  
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Let us consider a straight piece of strand having length / and assume a Cartesian 

coordinate system having the ] axis parallel to the axis of the strand. The inlet section 

lies is located on the plane with ]  ��. The unit vector XW([) parallel to the direction of 

the filaments, in the generic point [ = ([��\��]) can be expressed as  
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where 3S

π=ω 2
and 3 is the filament twist pitch (3 = 1.5 10–2 P, ωS = 837.758 

UDG�P). 

We now decompose the average current density -*([) and the current density -*
s([)

inside the SC filaments along the directions tangential and normal to the filaments, i.e.  
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and 
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By substituting equations (1.6.15), (1.6.17) and (1.6.18) in equation (1.6.11) we 

obtain  
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moreover, by substituting equations (1.6.17) and (1.6.18) in equation (1.6.8) it 

follows 

 

( ) ( ) ( ) ( )[X[-[X[- WQ
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Equation (1.6.19) and (1.6.20) allow to determine the components of -*
s([) as a 

function of the components of -*([).  

Let us assume that, if different from zero, the component of the current density along 

the direction normal to the filaments is locally uniform, i. e., in that direction the strand 

behaves like an homogeneous material. Under this hypothesis the average current of the 

superconductor can be expressed as  
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With this assumption equation (1.6.20) is satisfied for every value of -
V�W([). By 

substituting equation (1.6.21) in equation (1.6.19) we obtain  
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which can be solved numerically to find the value of -
V�W([). If we take the derivative 

of equation (1.6.22) with respect to the unknown -
V�W([) we obtain  
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As it can be seen from equation (1.6.23), as long as the condition N > 3 hold, the 

value of of -
V�W([) increases monotonically with -
W([), therefore equation (1.6.22) 

admit always an unique solution. Once the value of -
V�W has been determined by solving 

numerically equation (1.6.22), the value of -
P([) can be calculated from equation 

(1.6.6), i.e. 

 

( ) ( ) ( ) ( ) ( )[-[-[- V
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Finally, the electric field can be calculated from equation (1.6.5) as follow: 
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In the development of equivalent electric network as presented in section 1.2, we 

have made the assumption of uniform current density - inside any element of the 

discretization. The profile of vector - inside the considered domain is reconstructed by 

means of equation (1.2.15), after that the currents through the faces of the discretization 

are calculated, and it can be discontinuous at the interfaces between the elements. With 

such an assumption an actual distribution of current density can only be reproduced in 

an approximate sense; the finer the mesh the finer the approximation. In the following 

we consider the possibility of having a linear course of current density inside the 

elements. 

A linear current density ( )[-1
L at point [ of the generic element L can be expressed as 

 

( ) [ ][4-[- LLL += 01 (1.7.1) 

 

where 0
L- is a constant vector and >4L@ is a constant 3 × 3 matrix; therefore, to define 

vector ( )[-1
L , 12 parameters must be specified. The possible time dependence of the 

linear current density is implicit. 

Let us denote with 1)i the number of faces of element L and let ,M�L�be the current 

flowing through its M-th face. Let XM�L, with M = 1, 1)i, be the normal unit vector of the M-
th face of element L and let 6L�M be its surface area. Let us recall that, at this stage, the set 

of currents through the faces of the element is not subject to any constrain and can be 

whatever; the mathematical condition for the physical consistency of the currents are 

stated later by means of the incidence matrix.  

The fluxes of the linear current density through the faces of element L should coincide 

with the currents circulating through them, therefore vector ( )[-1
L should satisfy the 

system 

 



CHAPTER 1

58

( )

( )













=⋅

=⋅

∫

∫

�L1)
6

�L1)L

�L
6

�LL

L

�LL1)

L

L�

,G6
���

,G6

X[-

X[-

1

11
1

1

(1.7.2) 

 

By substituting equation (1.7.1) in (1.7.2) the following equation is obtained  

 

[ ] L
SDU
LL ,-3 = (1.7.3) 

 

where [3L] is an (1)L × 12) matrix, SDU
L- is the vector of the 12 parameters of the 

linear current density obtained by stacking vector 0
L- of equation (1.7.1) with the 

columns of matrix [4L], and ,L is the vector of all currents trough the faces of element L.
The M�WK row SM�L of matrix [3L] is defined as follow 

 

[ ]7
L�ML�MJ

7
L�ML�MJ

7
L�ML�MJ

7
L�ML�ML�M ]\[6 XXXXS = (1.7.4) 

 

where 
LMJ[ ,
,

LMJ\ ,
and 

LMJ] ,
are the coordinates of the barycenter 

LMJ ,
[ of face M�WK 

face of element L.
For determining vector SDU

L- from equation 1.7.3, matrix [3L] should have 12 rows, 

i.e. it should refer to an element having12 faces. However matrix [3L] depends on the 

shape of the three-dimensional element, and there can be some cases of element with 

twelve faces for which it is singular2. Therefore, in order to define a general method of 

linear reconstruction, which is independent from the shape of the element, a different 

approach has to be followed. Let us restrict ourselves to the case in which the number 

of currents flowing through the faces of an element is greater than 12. This condition 

could be reached by discretizing the domain of investigation through elements having 

more than 12 faces; however, since to built up such a mesh is not an easy, it is 

2
With reference to the two dimensional case it is easy to verify that the 6 × 6 matrix [3] corresponding to a 

regular hexagon is singular 
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convenient to refer still to simple elements (tetrahedron, prisms with triangular basis, 

parallelepipeds) and to introduce a further subdivisions of their faces. For example, by 

considering a prism with triangular basis and by subdividing, as shown in figure 

(1.7.1), its three rectangular faces in four sub-faces, an element with 14 currents 

flowing through is obtained. 

 

ILJXUH��������D�WULDQJXODU�EDVHG�SULVP�ZLWK����FXUUHQWV�

 

Henceforth we denote with 1)i the number of sub-faces of element L and with ,M�L the 

current flowing through its M-th sub-face. Moreover we denote with 1& the total number 

of currents of the discretization, each circulating in a sub-face which does not lie on the 

boundary. 

With reference to an element with more than 12 currents, system (1.7.3) do not admit 

solution for it contains more equations than unknowns. However a solution can be 

looked for in an approximate sense [38]; in fact an unique vector of parameters which 

minimizes the error among the fluxes of the corresponding linear current density and 

the assigned set of currents of the element exists and it can be determined by finding 

the minimum, with respect to vector SDU
L- , of the following error function  

 

( ) [ ] 2

2

1
L

SDU
LL

SDU
L) ,-3- −=  (1.7.5) 

 

By imposing the derivative of function ) respect to SDU
L- to be equal to zero the 

following equation is obtained 
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[ ] [ ][ ] [ ] �,3-33 =− L
7

L
SDU
LL

7
L (1.7.6) 

 

Since the number of rows of matrix [3L] is greater of the number of its columns, 

matrix [ ] [ ][ ]L
7

L 33 of equation (1.7.6) is always regular, therefore the unknown vector 

of the parameters can be calculated as  

 

[ ] [ ][ ] [ ] L
7

LL
7

L
SDU
L ,333- 1−= (1.7.7) 

 

By substituting equation (1.7.7) in equation (1.7.1), the following link between the 

linear current density of element L and the currents through its sub-faces is obtained 

 

( ) [ ] [ ] [ ] [ ]( )[,1,1,1,1[- LLLLLLLLL �� 12109764311 −−−− += (1.7.8) 

 

Equation (1.7.8) is obtained by recalling that vector SDU
L- is made of the stacking of 

vector 0
L- with the columns of matrix [4L], therefore matrix [ ]NK

L
−1 consists of the 

group of three rows of matrix [ ] [ ][ ] [ ]7
LL

7
L 333 1−

from the K�WK to the N�WK.

By introducing the (1)L × 1)L) identity matrix 
LL 1)1) ×>,G@ , where 1)L is now the 

number of sub-faces of element L, equation (1.7.8) can be rewritten as  

 

( ) [ ]

[ ][ ][ ]( ) [
,>,G@,>,G@,>,G@
,>,G@,>,G@,>,G@
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×××
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×××
−−−

−

L1)1)L1)1)L1)1)

L1)1)L1)1)L1)1)

L1)1)L1)1)L1)1)

LLL

LLL

LLLLLL

LLLLLL

LLLLLL�� 12109764

311

(1.7.9) 

 

As for the case of linear reconstruction of current density, let us now introduce the 

local-global correspondence matrix @>&OJ
L for currents of element L, having as many 

rows as the number of sub-faces of element L and as many columns as the currents of 

the entire discretization. Element K�M
OJ
LF of matrix @>&OJ

L is equal to 1 if sub-face where 
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K�WK current flows coincides with sub-face-face M�WK of element L and is otherwise equal 

to zero. If sub-face M of element L lies on the boundary, its current is zero and, 

consequently, row M�WK of matrix @>&OJ
L is made of all zeros. It follows that vector ,L of 

the 1)L currents through the sub-faces of element L is linked to vector , of the 1&

currents through the sub-faces of the entire mesh by means of the following relation  

 

@,>&, L
OJ
L= (1.7.10) 

 

By substituting equation (1.7.10) in equation (1.7.9) the following relation is 

obtained 
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(1.7.11) 

 

If follows that the linear current density at any point of the superconducting domain 

can be expressed as a function of all current through the sub-faces of discretization in 

the following concise way 

 

( ) ( )[ ] ( ) ( )[ ] ( )( )[ ][,[.,[.[- WWW� 10 += (1.7.12) 

 

where the possible time dependence of linear current density and unknown currents 

is now explicit. Both matrixes ( )[ ][. 0 and ( )[ ][.1 , having dimensions (3 × 1&) and 

(3 × 31)L) respectively,�are element-wise uniform matrixes, i. e. their elements are the 

same for all points [ belonging to the same geometric element of discretized domain. 

To determine the value of matrixes ( )[ ][. 0 and ( )[ ][.1 at a given point [’ is only 

necessary to find out the element L of the mesh to which point [’ belongs to and then to 

calculate them as reported in equation (1.7.11). Matrix ( )( )[ ]W, has dimension (�1)L ×

3) and it depends on all the unknown currents of the discretization. Matrix ( )[ ][. 0 is 
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very sparse; in fact only columns which are relative to currents flowing through the 

sub-faces of the element containing point [ are non zero. Also matrix ( )[ ] ( )( )[ ]W,[.1

depends only on these local currents. This means that the reconstruction of current 

density at any point is strictly local, i. e. it is only contributed by currents flowing in its 

proximity.  

The graph associated to the mesh of the discretized domain in case of linear 

reconstruction of the current density contains more branches respect to the case of 

uniform reconstruction because, in order to make solvable system (1.7.3), we have 

introduced a further subdivision of the faces of the element. Therefore the number of 

unknowns of the discretized problem is greater. However, also in this case a first set of 

(1( +1 ) physical constrains on the unknown currents, where 1( is the number of 

elements, can be expressed by means of the incidence matrix, according to equation 

(1.2.2). Moreover, a further set of 1&� independent equations can be stated by taking the 

line integral of the electric field over the paths associated at any current flowing 

through a sub-face of the mesh, according to equation (1.2.8). These equations involve 

also (1( +1 ) electric scalar potential that are unknown as well. In case of linear current 

density, equation (1.7.12) instead of (1.2.5) has to be substituted in equation (1.2.8), 

together with the constitutive relation of the material (1.2.7), thus obtaining  
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Differently form the case of linear reconstruction (see section 1.2, eq. (1.2.17)), now 

due to the point dependence of the linear current density, the integrand function of the 
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first right side integral cannot to be moved out; therefore this integral cannot be 

expressed by means of the product of a vector of geometric coefficients with a non 

linear function of all the unknown currents, and has to be calculated at any time step, 

making the calculation more computationally expensive. For what concern the 

adjunctive terms which appear in the auto/mutual induction coefficients, they can be 

calculated once and for all at the beginning since the link with the time derivative of the 

unknown currents is linear. 
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