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,QWURGXFWLRQ�
 

In this chapter the models of the equivalent electric and magnetic networks, 

developed in chapter 1 and 2 respectively, are coupled together to study the problem of 

a superconducting bulk interacting with a magnetizable body and a voltage-driven 

normal conducting coil. Through this configuration large number of superconducting 

devices can be schematized. The electric and the magnetic networks allow to calculate 

respectively the distribution of current density inside the superconductor and 

magnetization inside the magnetizable body; these two distributions are not 

independent, therefore the two networks result coupled. Moreover, since the current of 

the normal conducting coil is not an assigned quantity, both the networks are coupled 

with the circuit which drives the coil. 

In section 3.1 the mathematical formulation of the field problem is stated. In section 

3.2 the discretization technique yet developed in sections 1.2 and 2.2 is applied and the 

coupling between the electric and the magnetic network is discussed. In section 3.3 an 

expression of the voltage across the coil, as a function of the current of the 

superconductor and the magnetization of the magnetizable body is found. This relation 

allow the coupling of the two networks with the circuit which drives the coil. In section 

3.4 an equivalent circuit of a magnetic shield type SFCL is derived by means of the 

model and compared with standard equivalent circuits available in technical literature.  
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����7KH�PDWKHPDWLFDO�IRUPXODWLRQ�
 

Let us consider a system made of a superconducting (SC) domain placed in the 

vicinity of a magnetizable (M) region and subject to the magnetic field produced by 

currents flowing in normal conducting (NC) region driven by a time varying voltage 

generator. We assume that the TXDVLVWDWLF approximation holds, i.e. the unique source 

(the voltage generator) changes on characteristic time scales which are low enough 

compared with the time required by an electromagnetic wave to propagate over the 

entire extension of the system. We model the behavior of the superconductor by means 

of the induced shielding currents -, i.e. we assume that no magnetization is induced 

inside. The normal conducting region is also supposed to have a current distribution -H[W 

and zero magnetization. For what concern the magnetizable region we assume that an 

induced magnetization 0 can exists and no currents circulate inside. The electric field 

( at any point of the SC region is related to the local current density - by means of the 

constitutive relation of the superconducting material. Similarly, the magnetization 0 at 

any point of the M region is related to the local magnetic flux density % by means of 

the constitutive relation of the magnetizable material. 

In section 1.2 we have seen as, following the $−ϕ formulation of 

PDJQHWRTXDVLVWDWLFV, the electric field at any point of the space can be expressed 

through the sum of the gradient of an electric scalar potential ϕ and the time derivative 

of the magnetic vector potential $, both with the negative sign (equation 1.2.9).�
Moreover, in section 2.1 we have seen that the magnetic vector potential $ produced at 

any point by a distribution of currents and magnetization can be expressed as follows 
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It follows that the magnetic vector potential and the electric field at any point of the 

considered system are expressed respectively as  
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and 
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Moreover, in section 2.1 we have seen as, by applying the Clebsh decomposition, the 

magnetic field + at any point of the space can be split in two components, one related 

to the currents and one related to the magnetization. The first component is expressed 

by means of the Biot and Savart law and the second as the gradient of a magnetic scalar 

potential ψ. If follows that the magnetic field at any point of the considered system can 

be expressed as  
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where the relation (2.1.1) has been used. Equations (3.1.2) – (3.1.4), together with 

the property of solenoidality of vectors - and % and the constitutive relations of the 

superconducting and the magnetizable materials, form the basis of the model of the 

coupled equivalent electric and magnetic networks which is discussed in section 3.2. 
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���� 7KH� GLVFUHWL]HG� SUREOHP� DQG� WKH� HTXLYDOHQW� HOHFWULF�
DQG�PDJQHWLF�QHWZRUNV�

 

Let us consider the system of figure 3.2.1, made of a superconducting (SC) and a 

magnetizable (M) domain which do not intersect and subject to the magnetic field 

produced by the currents flowing in a normal conducting coil (NC) driven by a voltage 

generator. The dimensions of the SC, M and NC domains and the frequency of 

variation of external magnetic field are such that the magnetoquasistatic approximation 

holds. 
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The electric field ( at any point of the SC region is related to the local current 

density - by means of the constitutive relation of the superconducting material, that for 

homogeneous and time invariant superconductors can generically be expressed as 

 

( ) ( )( )W�W� [-)[( = (3.2.1) 

 

Similarly, the magnetization 0 at any point of the M region is related to the local 

magnetic flux density % by means of the constitutive relation of the magnetizable 

material that in the most general case is non linear and hysteretic, and for homogeneous 

and time invariant materials can be expressed as 
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( ) ( )( )W��W� % ≤ττ= [%[0 0 (3.2.2) 

 

Actually both the two constitutive relations depend also on the temperature; in the 

following we will assume the superconducting region as well as the magnetizable one 

to be in thermal equilibrium with assigned temperature, thus neglecting the effects of 

the local heating. For the cases where the thermal effects become important, 

particularly for the superconductor, the present electromagnetic model must be coupled 

with a thermal model which allow to calculate at any time, the temperature distribution 

inside the entire domains. Moreover the electric field of the superconductor depends 

also on the local magnetic flux density, but we do not indicate explicitly this 

dependence. 

In order to determine the distribution of current density inside the superconductor let 

us divide the superconducting and the magnetizable region in a finite number 1(_6& and 

1(_0 of three-dimensional elements, respectively. Let 1)_6& be the total number of faces 

of the discretized SC region and let 1&_6&� be the number of faces through which a 

current flows; any of these faces is shared by two elements. The remaining (1)_6&� ±��
1&_6&) faces lie on the boundary of the SC domain and do not carry any current. 

Concerning the magnetizable region, let 1)_0 be the total number of faces; 1)_0% of 

these faces lie on the boundary of the SC body while 1)_0, are inner faces. Let us also 

define a normal unit vector for all faces both of the SC and of the M region. We assume 

the following quantities as unknowns of the problem: 

 

- the set ,(t) of the 1&_6& currents flowing through all the faces of the 

discretized SC region which do not lie on the boundary 

- the set 9(t) of the 1(_6& – 1 electric scalar potentials of the centers of all 

the elements of the discretized SC region less one to whom we assign value 

zero (reference node) 

- the set )(t) of the�1)_0 magnetic fluxes through the faces of the discretized 

M region  
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- the set <(t) of the�1(_0 – 1 magnetic scalar potentials in the centers of all 

the elements of the discretized M region less one to whom we assign value 

zero (reference node) 

 

The current and the fluxes are assumed to be oriented according to the normal unit 

vector of the corresponding face. In order to expressed all the physical quantities 

involved in the calculation as a function of unknowns of the problem we assume the 

current density to be an uniform vector inside any element of the SC domain. Its value 

can be related to the currents through the faces of the discretization by means of the 

procedure of minimum error described in section 2.1, i.e.  

 

( ) ( )[ ] ( )WW� - ,[.[- = (3.2.3) 

 

Similarly we assume the magnetic flux density to be an uniform vector inside any 

element of the M domain an express it as a function of the fluxes through the faces of 

the discretization as follows  

 

( ) ( )[ ] ( )WW� % [.[% = (3.2.4) 

 

The details of the procedure of minimum error and the properties of matrixes 

( )[ ][. - and ( )[ ][. % are all listed at pages 18-20 and 74. Moreover, for what concern 

the current density of the normal conducting coil we assume that it distributes 

uniformly inside any turn and we express it as 

 

( ) ( ) ( )W,W� FRLO1&
H[W [N[- = (3.2.5) 

 

where N1&([) is the vector given by the ratio between the unit vector tangent to the 

direction of the turn at point [ and the area of its cross section and oriented in a way to 

be outgoing from the positive terminal of the coil and ingoing to the negative one. 

Let us associate, according to the procedures described in sections 1.2 and 2.2 (see 

pages 11 and 71) two graphs *6& and *0 to the meshes of the superconducting and 
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magnetizable region respectively. Concerning the graph *6&� we notice that the two 

additional nodes representing the electrode of the generator do not need to be 

introduced in the present case, for no transport current is considered in the 

superconductor.  

The solenoidality of vector - requires that all the currents flowing through the faces 

of any element of the SC mesh have zero algebraic sum. The 1(_6& − 1 independent 

equation of these type for the 1&_6& currents of the superconducting region can be easily 

expressed through the incidence matrix of graph *6&, as follows  

 

( ) �,@>$ =W6& (3.2.6) 

 

where the (1(_6& − 1)�î�1&_6& matrix @>$ 6& is extracted from the incidence matrix of 

graph *6&, by suppressing the row referring to a node chosen as the reference one.  

Similarly, the solenoidality of vector % imposes to all fluxes through the faces of any 

element of the M mesh to have zero algebraic sum. 1(_0 − 1 independent equation of 

these type for the 1)_0 fluxes of the magnetizable region can be expressed through the 

incidence matrix of graph *0, as follows 

 

( ) �@>$ =W0 (3.2.7) 

 

where the (1(_0 − 1)�î�1)_0 matrix @>$0 is extracted from the incidence matrix of 

graph *0, by suppressing the rows referring to a node chosen as the reference one and 

to node ∞.

Let us now consider equation (3.1.4) applied to a point [ lying inside the 

magnetizable region. This equation relates the total magnetic field to the currents of the 

superconductor and the coil and the magnetic scalar potential. By taking the line 

integral of the magnetic field over a path connecting whatever couple of points [K and 

[N belonging to the M domain and oriented from [K to [N the following equation is 

obtained: 
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All the terms of this equation have the dimensions of a magneto-motive force. By 

considering the mesh of the magnetizable domain, it is possible to associate at any face 

that does not lie on the boundary an equation of the same type of (3.2.8). In fact, to any 

of the 1)_0, inner faces it corresponds an integration path made of the union of the 

segments connecting the centre of the face to the centers of the elements which share it; 

this integration path is oriented according to the normal unit vector of the face. By 

substituting equations (3.2.3) - (3.2.5) in equation (3.2.8) and considering the 

constitutive relation (3.2.2) we obtain  
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The line integral from [K to [N can be split in the sum of the integrals from [K to the 

centre of the face shared by the two elements and from the latter to [N. Since matrix 

( )[ ][. % is element wise uniform, the integrating function 0% can be moved out and 

the second integral of the left side can be expressed as the product of a non linear 

function of the fluxes with a vector of geometrical coefficients. However, if the 

considered material is not homogeneous, the constitutive relation depends explicitly on 

the point and this manipulation cannot be applied.  

Equation (3.2.9) states a link, which in general is non linear and hysteretic, between 

the fluxes of the M region and the currents of the superconducting region and the 
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external coil. The link is linear in case of linear magnetizable material. Likewise the 

case of equation (2.2.8) equation (3.2.9) can be seen as the instantaneous balance of the 

magneto-motive forces relative to a magnetic circuit branch derived from two nodes K
and N with potential ([K,W) and ([N,W) respectively and containing a magneto-motive 

force generator PH[W
L(W) related to the current of the coil, a linear flux-controlled 

magneto-motive force generator P�
L(W) and a non linear flux-controlled magneto-motive 

force generator P0
L(W) related to the magnetization and an additional magneto-motive 

force generator P6&
L(W) related to the currents of the SC region. This latter contribute 

can be expressed as the product of a vector of dimensionless coefficients QL
6& with the 

vector of the unknown currents ,(W). A picture of the circuit branch is shown in figure 

3.2.2. 
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By using the symbols introduced in the figure, equation (2.2.7) can be rewritten as  

 

( ) ( ) ( ) ( ) ( ) ( )( )W�WW,QWW�W� L
L

7
LFRLO

FRLO
L

76&
LNK ≤ττγ−=−−ψ−ψ U,Q[[ (3.2.10) 

 

where 7 denotes the transpose operator. An equation of the type of (3.2.10) can be 

associated at every of the faces of the M domain which do not lie on the boundary; the 

set of these 1)_0, independent equations can be written concisely as 

 

( ) [ ] ( ) ( ) [ ] ( ) ( )( )W�WW,WW ,FRLO
FRLO6&7

0 5('
≤ττ+=−− 51,1@>$ (3.2.11) 

 

Matrix @>$
5('0 , having dimension 1)_0, î (1(_0�– �), is obtained from matrix @>$0

of equation (3.2.7) by eliminating the columns referring to the fluxes associated to the 

boundary faces, [ ]6&1 is the 1)_0, î 1&_6& matrix of reluctances obtained by staking 
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vectors QL
6& of all equations (3.2.10), 1FRLO is the vector of the 1)_0, coefficients QLFRLO,

>5@ is the 1)_0, î 1)_0 matrix of reluctances obtained by staking vectors 7
LU of all 

equations (3.2.10) and ( )( )W�, ≤ττ is the vector of the 1)_0, scalar function 

( )( )W�L
L ≤ττγ . The subscript , of function * denotes that it refers to inner faces.  

Matrix equations (3.2.7) and (3.2.11), being (1(_0�– � + 1)_0,) scalar equations, do 

not allow to calculate the potentials of the nodes and the fluxes through the faces when 

the current of the superconducting and the regions are specified, for the latter are (1(_0�

– � + 1)_0,� + 1)_0%) in total and therefore further 1)_0%� equations must be stated. 

However, as discussed in section 2.2, these 1)_0%�missing equations can be specified by 

relating the fluxes through the boundary faces to the magnetization M region and to the 

currents of the SC and NC regions. According to the stokes theorem the magnetic flux 

through a generic surface can be expressed by means of the loop integral over the 

border of the face of the vector magnetic potential, which is given by equation 3.1.2; 

therefore the magnetic flux ( )WM at time W through the generic face M lying on the 

boundary of the magnetizable region can be expressed as  
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where MΣ∂ represents the border line of face M. By substituting and the constitutive 

relation of the magnetizable material (3.2.2) and equations (3.2.3) − (3.2.5) in equation 

(3.2.12) it follows 
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The above equation allows to see the flux through face M lying on the boundary as 

composed by three contributes: a first contribute ( )WFRLO
M , proportional to the current of 

the normal coil through a coefficient 
FRLO
MO having the dimension of an inductance, a 

second contribute ( )W6&
M , given by the product of a vector VF

MO of coefficients with the 

dimension of an inductance and the vector ,(W) of the currents flowing through the faces 

of the SC region, and a third contribute ( )WP
M related to the magnetization of the 

superconductor, and expressed (in general) by a non linear and hysteretic function of all 

fluxes ( )( )W�E
M ≤ττγ , i. e.  

 

( ) ( ) ( ) ( )( )W�WW,OW E
M

6&
MH[W

FRLO
MM ≤ττγ++= ,O (3.2.14) 

 

Maintaining the circuit view of the problem we can see the flux through the boundary 

face M, to whom correspond a branch of the graph which converges to node ��� DV�
produced by two independent and a controlled flux generator, as shown in figure 3.2.3. 
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The node [Q coincides with the center of the element to which the boundary face M
belongs to, while the node � UHSUHVHQWV�WKH�IDU�VXUIDFH��SODFHG�DW�LQILQLW\��ZKHUH�DOO�WKH�
lines of the magnetic flux density shut up, as discussed in section 2.2 (see pages 80-81).  

The set of the 1)_0% independent equations of the type of the (3.2.14), which express 

the fluxes through the boundary faces as a function of all the fluxes and the currents of 

the superconducting and the normal regions, can be written in the following way 

 

[ ] ( ) ( ) [ ] ( ) ( )( )W�WW,W %
6&

FRLO
FRLO ≤ττΓ++= ,//6 (3.2.15) 

 

where >6@ is a matrix having dimension 1)_0%�î 1)_0, whose generic element VLM is 

equal to 1 if the M�WK flux of vector ( )W flows through the L�WK boundary face and is 

equal to 0 otherwise, FRLO/ is the vector of the 1)_0% coefficients OMFRLO of equation 

(3.2.14), [ ]6&/ is the 1)_0% î 1&_6& matrix of inductances obtained by staking vectors 

OM6& of equation (3.2.15), and ( )( )W�% ≤ττ is the vector of the 1)% scalar function 

( )( )W�E
M ≤ττγ . The subscript % of function * denotes that it refers to boundary faces.  

From equations (3.2.7), (3.2.11) and (3.2.15) it follows that the entire magnetizable 

domain can be schematized by means of an equivalent magnetic network, having 1)_0 
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branches and (1(_0 � �) nodes. The circuit unknowns are 1)_0 fluxes through the faces 

and (1(_0 � �) potentials of the nodes (the potential of the reference node is arbitrarily 

assumed to be equal to zero and the potential of node � FDQQRW�EH�GHWHUPLQHG���7KLV�
equivalent magnetic network, which allows to calculate the magnetization distribution 

inside the M region, contains forcing components (magneto-motive force and magnetic 

fluxes generators) which depend on the currents of the superconductor and the coil. An 

elemental cell of the magnetic circuit associated to an element of the mesh having the 

face Σ$%&' lying on the boundary of magnetizable domain is shown in figure 3.2.4, 

which is the assembling of figure 3.2.2 and 3.2.3. The linear and the non linear 

reluctances represent the linear and the non linear flux-controlled magneto-motive 

force generators of figure 3.2.2. Even though less rigorous, this latter representation 

coincides with the former one if we agree that the reluctances “feel” the fluxes of all 

the branches connected to the center of the considered element.  
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The solving system of the equivalent magnetic network, that is a set of (1)_0 � 1(_0 

� �) equations relating the (1)_0 � 1(_0 � �) unknowns can be written as  
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The vectors of the unknown fluxes and potentials cannot be calculated since system 

(3.2.16) contains forcing terms that depend on the currents ,(W) through the faces of the 

superconducting domain and the current ,FRLO(W) circulating in the coil, which are not 

known quantities. In order to specify the vector ,(W) let us now consider equation (3.1.3) 

applied to a point [ lying inside the superconducting region. This equation relates the 

electric field to the electric scalar potential, the currents of the superconductor and the 

coil and the magnetization of the M region. By taking the line integral of the electric 

field over a path connecting whatever couple of points [K and [N belonging to the SC 

domain and oriented from [K to [N the following equation is obtained: 
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(3.2.17) 

 

All the terms of this equation have the dimension of a voltage. By considering the 

mesh of the superconducting domain, it is possible to associate at any face that does not 

lie on the boundary an equation of the same type of (3.2.17). In fact, to any of the 1&_6& 

inner faces it corresponds an integration path made of the union of the segments 

connecting the centre of the face to the centers of the elements which share it; this 

integration path is oriented according to the normal unit vector of the face. By 

substituting equations (3.2.3) - (3.2.5) and the constitutive relations (3.2.1) and (3.2.2) 

in equation (3.2.17) and rearranging the terms we obtain  
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(3.2.18) 

 

By splitting the line integral from [K to [N in the sum of the integrals over the two 

segments connecting [K to the centre of the face shared by the two elements and the 

latter to [N and considering that both matrix functions ( )[ ][. - and ( )[ ][. % are 

element wise uniform, it follows that functions ) and 0% can be moved out of the 

relative integrals; the left side term can be then expressed as the product of a vector of 

geometrical coefficients with a nonlinear function of all currents. Similarly, the last 

right hand side contribution can be expressed as the product of a vector of geometrical 

coefficients with the time derivative of a nonlinear function of all fluxes. 

Equation (3.2.18) states a link between the currents of the superconducting region, 

the current of the normal conducting coil and the fluxes of the magnetizable region. 

Likewise the case of equation (1.2.18) equation (3.2.18) can be seen as the 

instantaneous balance of the voltage relative to a magnetic circuit branch derived from 

two nodes K and N with potential  ϕ([K,W) and ϕ([N,W) with respect to the reference node. 

As discussed in section 1.2 (see pages 22), the first term on the right side represents the 

local voltage drop associated to the Joule power consumption, while second and the 

third terms represent the voltage induced by the time change of the magnetic field 

produced by the current of the coil and the superconductor respectively. The last term 

takes in account of the voltage induced by the time change of the magnetic field 

produced by the magnetization of the M region. A picture of the circuit branch is 

shown in figure 3.2.5. 
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By using the symbols introduced in the figure, equation (3.2.18) can be rewritten as  
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(3.2.19) 

 

An equation of the type of (3.2.19) can be associated at every of the faces of the 

superconducting domain which can be crossed by a current; the set of these 1&_6& 

independent equations can be written concisely as 

 

( ) ( )( ) [ ] ( ) ( ) ( )( )W�GW
GW,GW

GWGW
GWW FRLO

FRLO7
VF ≤ττ+++= 00,9@>$ ,) (3.2.20) 

 

where 9(t) represents the set of the 1(_6& – 1 electric scalar potentials wtith respect to 

the reference node. The vector functions ) and / are obtained by staking the scalar 

functions IL and λL of any of equation (3.2.20). 0FRLO is the vector of the 1&_6& 

coefficients PL
FRLO and >0@ is the 1&_6&� î� 1&_6& matrix of auto/mutual induction 

coefficients.  

From equations (3.2.6) and (3.2.20) it follows that the entire superconducting domain 

can be schematized by means of an equivalent electric network, having 1&_6& branches 

and 1(_6& nodes. The circuit unknowns are 1&_6& fluxes through the faces and (1(_6& �
�) potentials of the nodes with respect to the reference one. The solving system of the 

equivalent electric network, that is a set of (1&_6& � 1(_6& � �) independent equations, 

can be written as  
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The equivalent electric network, that allows to calculate the current distribution 

inside the SC region, contains components (voltage generators) which depend on the 

fluxes of equivalent magnetic network. Since also the latter contains forcing 

components depending on the currents of the equivalent electric network, the two 

networks result coupled and cannot be solved independently. The coupling is non linear 

because in general, the constitutive relation of the magnetic material, equation (3.2.2), 

makes non linear functions *, and *% of system (3.2.16) and function / of system 

(3.2.21). An elemental cell of the electric circuit associated to an element of the mesh 

having the face Σ$%&' lying on the boundary of superconducting domain is shown in 

figure 3.2.6. Also in this case the non linear resistance represents the non linear current 

controlled voltage generators of figure 3.2.5. This representation, which is more 

physical but less rigorous, coincides with the former one if we agree that the resistance 

“feels” the currents of all the branches connected to the center of the considered 

element.  
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If the current ,FRLO(W) flowing in the coil is assigned, systems (3.2.16) and (3.2.20) can 

be solved together and the unknown vectors ,(W),�)(W),�9(W) and <(W) can be determined. 

In general this is not the case because the coil is usually voltage rather than current 

driven and the current ,FRLO(W) is not a known a quantity. Therefore systems (3.2.16) and 

(3.2.20) contains one unknown more than the equations. However, the voltage 9FRLO(W)
across the coil depends on the current of the coil itself, on the shielding currents of the 

SC region, coil and the SC domain and on the fluxes of the magnetizable region, i.e. in 

terms of circuit quantities, it depends on ,FRLO(W), ,(W) and )(W) and can be generically 

expressed as 

 

( ) ( ) ( ) ( )( )W���,YW9 FRLOFRLO ≤ττττ= , (3.2.22) 

 

The specification of this voltage characteristic, i.e. the definition of function Y, is the 

topic of the next section. However, by assuming, for the moment, that function Y is 

provided, and considering that the coil is driven by an external generator which 

impresses the voltage 9H[W(W) the following equation can be stated 

 

( ) ( ) ( )( ) ( )W9W���,Y H[WFRLO =≤ττττ , (3.2.23) 

 

Equation (3.2.23) can be coupled with systems (3.2.16) and (3.2.20) to obtain a 

system containing as many equations as the unknowns which can be solved and the 

time evolution of the current density at any point of the superconducting domain can be 

finally reconstructed by means of equation (3.2.3). 

If we are not interested in determining the magnetic scalar potentials at the center of 

the elements of the magnetizable region, it is possible to apply the algebraic procedure 

described in section 2.2 (see page 83) to eliminate them from system (3.2.16) and 

obtain a set of 1)_0 equations relating only the fluxes to the currents. In case of 

magnetizable region made of linear magnetic material, such a reduced system turns 

linear and the set of the unknown fluxes can be expressed directly as a function of the 

currents as follows 
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( ) [ ] ( ) ( )W,WW FRLOFRLO6& O/ += , (3.2.24) 

 

where [ ]6&/ is 1)_0�î�1&_6& matrix and FRLOO is a vector of 1)_0� coefficients. Both 

the elements of matrix [ ]6&/ and vector FRLOO have the dimension of an inductance. 

Due to the linearity of the material also function / turns linear and system (3.2.21) 

becomes 
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By substituting equation (3.2.24) in equations (3.2.23) and (3.2.25) it follows  
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where 
Y denotes function Y of equation (3.2.23) after the substitution. As discussed 

in section 1.3, by applying the tree-cotree decomposition algorithm, system (3.2.26) 

can be manipulated to obtain one containing only a reduced set of (1&_6& − 1(_6& + 1) 

currents plus the current of the coil as unknowns, thus allowing a considerable saving 

of calculation time and memory requirements; System (3.2.26) is quite suggestive of 

the fact that matrixes / and /6&� and vector OFRLO take account of the influence of the 

magnetizable region on the current distribution inside the superconducting one. It is 

worth to notice that in case of zero magnetization, i.e. in case of no magnetizable 

domains placed in the vicinity of the superconducting region and coil, matrix /
becomes zero and system (3.2.26) reduces to system (1.2.24), obtained by working 

since the beginning under this hypothesis.  



CHAPTER 3

140

����7KH�YROWDJH�FKDUDFWHULVWLF�
 

In the previous section we have seen that, in order to solve the equivalent electric and 

magnetic networks in the case where the coil is voltage driven, we must express the 

voltage across it as a function of the currents of the coil and the superconducting region 

and the fluxes of the magnetizable domain. In order to accomplish this task let us 

consider again the system of figure 3.2.1, which is also shown below for convenience.  
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When a current start to circulate in the coil some shielding currents and 

magnetization are induced in the superconducting and the magnetizable domain 

respectively, therefore some energy is passed to the system and stored in the magnetic 

form. Part of this energy can also be irreversibly transformed in heat due to Joule effect 

or hysteresis. However such an energy transfer is accompanied by the rise of some 

voltage across the terminals of the coil. Let us see this more in detail and start to apply 

the Poynting theorem to the volume 9, enclosed by the outward oriented surface �9
shown in the figure, thus to obtain  
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The second integral on the right side does not contributes, since for the considered 

system the magnetoquasistatics approximation holds and the displacement current can 

be neglected everywhere. By expressing the magnetic flux density % as the curl of the 

magnetic vector potential $ it is possible to rewrite the first integral on the right side of 

equation (3.3.1) as follows 
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By substituting equation (3.3.2) in equation (3.3.1) it follows 
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By expressing the field W∂
∂+ $( through the gradient of the scalar electric potential 

the last term of equation (3.3.3) can be given as 
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By substituting the Ampere law and equation (3.2.5) in equation (3.3.4) and 

considering that the first integral on the right side is zero for the integrand function has 

zero divergence at any point of 9, it follows  
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where it has been assumed that, at time W, the scalar potential is uniform and is equal 

to ( )W+ϕ and ( )W−ϕ over the small areas where the positive an the negative terminal of 

the coil intersect the surface ∂9 respectively. By substituting equation (3.3.5) in 

equation (3.3.3) we obtain  
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where ( )W9FRLO represents the difference of the instantaneous potentials of the positive 

and the negative terminal, i.e. the voltage across the coil.  

By splitting the volume integrals on the left side of equation (3.3.6) in the sum of the 

integrals over the volumes of the normal coil and the superconducting and the 

magnetizable regions (91&, 96& and 90 respectively), we see that the latter does not 

contribute at all for the current density is zero all over 90, therefore 
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Let us express the sum of the integrals over the SC volume as follows  
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where ∂96& represents the border surface of 96&. Both the integrals on the left side of 

equation (3.3.8) are zero; the first due to the fact that the current density has zero 

normal component at the interface ∂96& of the superconductor with the insulating 

media, and the second because of the solenoidality of -. This means that any thermal 

power produced inside the superconductor is accompanied by a decrease of the stored 

magnetic energy with an equal rate, no other sources participate to the balance. 

Therefore, by substituting equation (3.3.8) and the constitutive relation of the normal 

conducting material (the Ohm law) inside equation (3.3.7), it follows  
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where ρ is the resistivity of the coil material. By substituting the expression (3.1.2) of 

the magnetic vector potential, equations (3.2.3), (3.2.4) and (3.2.5), and the constitutive 

relation (3.2.2) inside equation (3.3.9) we obtain  
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Equation (3.3.10) which can be finally rewritten as  
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where the coefficient /FRLO is the auto inductance that the coil would have in the empty 

space, 5FRLO is the coil resistance, /6& is a constant vector, with 1&_6& components, which 

gives account of the contribution of currents of SC to the voltage and 0 is a scalar 

function of the fluxes of M region, which is linear in case of linear material. Equation 

(3.3.11) points out the dependence of the voltage across the coil on the unknown of the 

equivalent electric and magnetic networks. 
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Fault Current Limiters are regarded as key components for modern power systems 

[64]. Among all possible limiting devices, the superconducting ones offer ideal 

characteristics: negligible impedance in nominal conditions and passive, i.e. reliable, 

switch to high impedance state in case of fault. There exist two basic configurations for 

a superconducting device able to limit the fault current inside a circuit: the resistive 

[65] and the inductive [66] type. In the former case the current of the protected circuit 

passes directly through a superconducting element, which is designed in a way to keep 

the local current density below the critical value in normal operating condition. As the 

circuit current exceeds a quenching value, the superconducting element enters the 

dissipative (normal) state and a growing resistance appears in the circuit. In the 

inductive type the current of the protected circuit circulates through a normal coil 

coupled, via a ferromagnetic core, with a superconducting tube which shields, through 

the induced currents, the magnetic field. This configuration is also referred to as 

magnetic shield type SFCL. Also in this case the device is designed in a way to 

maintain the currents induced in SC tube below the critical value in normal operating 

condition. As the current exceeds a quenching value, the superconducting element 

enters the SC/N transition and the shielding effect reduces; as a consequence the 

magnetic field penetrates the core and an increasing reactance appears in the circuit. 

Even though very simple under the conceptual point of view, the SFCLs present several 

critical aspects when their actual design and manufacturing is concerned. First of all, in 

order to achieve acceptable cooling cost, only high temperature superconductors can be 

taken in consideration. Different materials, such as YBCO films, Bi2223 wires and 

Bi2212 bulk are available today, however, their brittle nature and the hot spot problems 

[14,67], make it necessary to adopt composite structures with a mechanical substrate 

and an electrical bypass. The optimal exploitation of the SC properties of such 

materials and their actual limiting ability depends very much on the device architecture.  

A great number of studies, both theoretical and experimental, has been carried out in 

recent years, showing the feasibility of both the two basic concepts of SFCLs [66-73]. 

Nevertheless, all these studies were mainly focused on the device only; though a crucial 

point, the interaction of these devices with power networks is still little investigated. 



CHAPTER 3

146

Actually, in order to evaluate how a SFCL can enhance the performance of a power 

system, a model of the device needs to be introduced in power system simulators [74-

78]. The more this model well reproduces the features of the limiting behavior, the 

more the technical and economical benefits are accurately estimated. By stating an 

appropriate mathematical formulation, and using an efficient numerical technique, it is 

possible to calculate, for a given operating condition, the time evolution of the field 

quantities inside the SFCL and to deduce on its base, the waveforms of some integral 

quantities, e.g. the voltage, which are of a greater practical interest. This is what we 

usually call a numerical model of the device. The voltage waveform can be measured 

and the accuracy of the numerical model can be tested on the base of the experimental 

data. However, the experimental conditions used for testing the model are quite simple 

and sometimes far from those to which the device is subject to when it operates inside a 

power system. In order to study the reciprocal influence of the SFCL and the power 

system we must either include the power system in the numerical model or export the 

numerical model of the device only in a simulation environment dedicated to power 

systems. The first approach is practically impossible to follow, for an accurate 

simulation of such an huge system would demand calculation times and computer 

requirements impossible to achieve. The second approach is more feasible but not 

trivial, because the integration, inside a simulation environment usually based on circuit 

theory, of a model based on a finite element formulation requires some attention; the 

easiest way to accomplish this task is to express the finite element problem in a circuit 

form.  

The model of the equivalent electric and magnetic networks presented in the previous 

sections, can be used to determine the equivalent circuit of a magnetic shield type fault 

current limiter. The equivalent circuit can be easily exported in a simulation 

environment dedicated to power systems to evaluate the reciprocal interaction.  

Let us refer to the to the experimental framework described by Ueda HW�DO� in [79], 

where a magnetic shield type SFCL is considered. A scheme of the device is shown in 

figure 3.4.1; the dimensions are quoted in mm 
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The SC element is a Bi2223 tube [80], the copper coil is made of 4 layers of 55 turns 

each and the ferromagnetic core is a laminated closed magnetic loop. The whole device 

is immersed in a liquid nitrogen bath. The test circuit, which is shown in fig. 3.4.2, 

consists of a protective resistance 5OLQH and a load resistance 5ORDG�series connected to the 

SFCL, and is supplied by a sinusoidal voltage generator. The circuit is controlled by a 

series connected switch SW1 and a secondary switch SW2, parallel connected to the 

load resistance, to command the fault event. A negligible shunt resistance, used for 

measuring the current, is also present. The values of the components of the test circuit 

are quoted in the figure. In the tests performed the control switch SW1 closes when the 

supply voltage crosses the zero; after three periods of the voltage waveform the switch 

SW2 closes and commands the fault and after a period both the switches open to allow 

recovering. Switch SW1 closes after a further period to verify the recovery. The 

expected nominal operation current has 10 A peaks while the non limited fault current 

has 80 A peak.  
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In order to define the equivalent circuit of the device, two meshes, one for the SC 

tube and one for the ferromagnetic core, are used. These meshes are shown in figure 

3.4.3. Each mesh is made of triangular prisms; the axis of each prism is vertical for the 

SC tube while it is in the horizontal direction for the ferromagnetic core. The SC tube is 

divided into three rings with 24 triangular prisms each. The three rings are stacked on 

each other axially. For each ring, the prisms are arranged in 12 couples spanning all the 

ring thickness. This allows only one current per ring circulating in the azimuthal 

direction; no details of current distribution in the radial direction comes out from this 

discretization. The iron core mesh is made of one layer of 12 prisms. For the sake of 

simplicity an equivalent square cross section has been assumed instead of the actual 

circular one. Simulations with different number of elements either for the SC tube mesh 

as for the ferromagnetic core mesh have been considered in order to verify convergence 

of the numerical solution. The results corresponding to higher number of rings are the 

same as those obtained in the 3 rings case. The results corresponding to lower number 

of rings are significantly different. 

To reproduce accurately the process of current penetration in the SC material a large 

number of elements is required for the SC mesh; however, when only the voltage 

across the normal conducting coil of the SFCL is considered, the difference in the 

numerical results arising from the details of current distribution, especially in the radial 

direction, is not significant. With reference to the SFCL voltage only, numerical 

convergence is reached even with coarse meshes of the SC tube, both in the radial and 

axial direction. Moreover, numerical simulations performed with packed meshes both 

in the radial and axial direction have shown that the radial and axial component of the 
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current density are negligible. Of course the equivalent circuit of the device refers to 

the smallest mesh which is able to reproduce the convergence value of voltage across 

the SFCL, with great advantages as long as simplicity of the equivalent circuit and CPU 

requirements are concerned.  
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The equivalent circuit of the device obtained by the two meshes above under the 

assumption of linear magnetic core is shown in figure 3.4.4, together with the test 

circuit. This is a simple example of integration between a power system simulator (the 

scheme of the test circuit) and the numerical model of the device. The power law is 

assumed as constitutive relation of the superconductor. The thermal effects are not 

taken in account, i.e. the whole SC bulk is supposed to be in thermal equilibrium with 

the assigned temperature of 77 K and the critical current density used for power law 

refers to this temperature. The assumption of zero electric conductivity for the magnetic 

core is justified because of the lamination. Moreover, thanks to the linearity, the 

influence of the core on the current distribution inside the superconducting tube and on 

the voltage across the device, is directly incorporated in the auto/mutual induction 

coefficients as discussed in section 3.2 (see page 133-134), and the equivalent electric 

network does not need to be considered apart. The non linear resistors of any branch 

are indeed non linear passive controlled components, for they refer not only to current 

flowing on the branch, but also to currents of adjacent branches, as specified in section 
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3.2 (see page 131). The linear inductances represent both the self induction coefficient 

of the branch current and the mutual induction coefficients with all other currents. The 

values of the parameters used for deriving the equivalent circuit, i.e. the relative 

magnetic permeability of the linear core µU, the electrical resistivity ρ&X of the copper 

coil, the critical current density -F of the SC tube and the exponent Q of the (-- power 

law [79], are also quoted in figure 3.4.4. 
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The waveforms of the current and voltage across the device calculated by means of 

the equivalent circuit, labeled with “1 rings”, are shown in figure 3.4.5 and 3.4.6 

respectively, together with the experimental ones1. As it can be seen from the figures, a 

good agreement between experimental and calculated values is obtained, in particular 

during nominal conditions and during the first quarter of the period after the fault 

occurrence; the accurate simulation of the device dynamic during this time interval is 

crucial for the assessment of the SFCL impact on the power systems. In nominal 

conditions the effect of the shielding currents that circulate in the SC tube without 

losses is well reproduced, and the calculated value of the device impedance agrees very 

well with the experimental one. During the first quarter of the period after the fault 

starts, the shielding currents of the SC tube grow and begin producing significant losses 

1 The experimental results shown appear by courtesy of Dr. Hiroyuki Kado, Central Research Institute of 
Electric Power Industry, Yokosuka (Japan) 
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which are responsible of the limiting effect; the numerical calculated current of the 

device reaches a peak of 34.7 A, which is very near to the experimental one of 34.3 A. 

Some discrepancy is observed in the shape of the current and voltage waveform after 

the peak current is reached. The discrepancy can be due to thermal effect in the SC 

tube, the related saturation of the magnetic core, and the magnetic field dependence of 

the SC (-- characteristic, which are not considered in this paper. The numerical 

simulation show that, in nominal conditions, the contributions to the magnetic flux 

density in the ferromagnetic core induced by the coil and the SC tube almost cancels 

each other. When the current of the coil exceeds the value of the ratio of the SC tube 

critical current and the number of turns of the coil (about 13 A), the SC tube enters the 

superconducting transition and a net magnetic flux density begins to appear in the core 

for the contribution of the SC tube does not any more cancel the coil one. However, 

when the device current reaches its maximum value, the corresponding total magnetic 

flux density is equal to 0.9 T, thus leaving the core out of the saturation region. At the 

same instant, the average current density in the SC tube is more than twice the critical 

current density. Notwithstanding, core saturation certainly occurs if the reduction of the 

critical current density, due to the heating, impairs the contribution of the tube. 

Anyway, during the first quarter of period of the fault the power losses inside the SC 

tube probably do not produces a remarkable effect and the assumption of linearity for 

of the core can be utilized, thus allowing a simpler equivalent electric circuit of the 

device, without a significant loss of accuracy in the current-voltage characteristic. 

Figures 3.4.5 and 3.4.6 show also the numerical waveforms, labeled with “1 ring”, 

obtained by using for the SC tube a mesh having no axial subdivisions (the 

corresponding equivalent circuit has no axial branches and an unique, rather than three, 

loop made of azimuthal branches); as it can be seen a significant discrepancy is 

obtained with respect to the 3 (or more) ring case.  
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For what concerns the current distribution inside the SC tube, the numerical results 

show that no appreciable current flows in the axial direction. Therefore, the circuit 

branch connecting neighboring elements belonging to different rings can be eliminated 

from the equivalent circuit shown in figure 3.4.4, which reduces to the one shown in 

figure 3.4.7. Currents denoted by L1, L2, and L3 are the azimuthal currents flowing in the 

three rings of the SC mesh. The non linear resistors 51, 52 and 53 are all defined by the 

law ( ) ( )LVLJQL�L.8 Q
F= , where LF is the critical current of the SC ring corresponding 
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to the circuit loop (one third of the critical current of the whole SC tube), and Q is the 

exponent of the power law assumed for modeling the SC material. The parameters of 

the SFCL equivalent circuit are reported in Table 3.4.I. The numerical results obtained 

by solving with a commercial circuit solver the reduced equivalent circuit agree with 

those obtained with the full equivalent circuit, shown in figures 3.4.5 and 3.4.6.  
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7DEOH������,��SDUDPHWHUV�RI�WKH�

UHGXFHG�HTXLYDOHQW�FLUFXLW�

5FRLO� 0.136 

/FRLO� 56.84 P+ 

/1 = /3� 1.172 µ+

/2� 1.169 µ+

01,2 = 02,3� 1.131 µ+

01,3� 1.121 µ+

01,FRLO = 03,FRLO� 0.2528 P+ 

02,FRLO 0.2539 P+ 

K 21.96 µ9

LF 933 A

Q 10 

The reduced equivalent circuit obtained with the described procedure in the case of 

SC mesh made of one single ring coincides with the standard equivalent circuit 

reported in the literature [81-83], made of two coupled linear inductors, one of them 

connected to the protected circuit and the second series connected to a non-linear 

resistor, which gives account of the superconducting transition. However, as it can be 

seen from figures 3.4.5 and 3.4.6, for the considered device, the one-ring SC mesh, and 
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consequently the standard equivalent circuit, does not reproduces the experimental 

results as well as the three-ring based equivalent circuit does. Since the tube height is 

comparable with the coil height, the axial non uniformity of magnetic field produced by 

the coil leads to non uniform electromotive forces induced along the tube height. 

Consequently the azimuthal current cannot be assumed uniform and a multiple-rings 

SC mesh has to be used. In case of devices made of tubes which are “short” respect to 

the coil, the standard equivalent circuit can yield a good precision in numerical results. 
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