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1. Introduction

Wireless power transfer (WPT), i.e., the transmission of electrical power without the last
cable or wire, has been studied for a long period of time. An extended review of the his-
tory is presented in [4]. The origin can be considered Maxwell's �Treatise on Electricity
and Magnetism�, published in 1873 [5], where he predicted that power could be trans-
mitted from one point to another in free space by means of electromagnetic waves, and
Hertz subsequent experiments to validate Maxwell's equations. At the early beginning
of the previous century other experiments to transmit electrical power from one point to
another without wires were carried out by Tesla, who patented systems for transmitting
electrical energy between two coils [6, 7] where resonance was considered. Originally,
one purpose was to employ the �invention on an industrial scale�as, for instance, for
lighting distant cities or districts from places where cheap power is obtainable�.
The increasing request for portability in electric and/or electronic appliances, which

follows the development of power electronics, has moved the e�orts devoted to the origi-
nal scheme of power transfer over long distances without any carrier medium to the need
to supply electrical energy to electric and/or electronic devices wirelessly, i.e., without
conductive paths or magnetic structures. Wireless electricity is potentially interesting
for a large number and variety of applications: it can be used to recharge batteries
in vehicular technology [8], to power and recharge implantable medical devices [9, 10]
or Radio-Frequency IDenti�cation (RFID) systems [11], or mobile appliances such as
portable computers or mobile phones [12]. In general, the applications can be divided
into two main areas: direct wireless powering of stationary or dynamic devices and auto-
matic wireless charging of portable/movable devices. In the former applications power is
supplied directly to the electrical devices, whereas in the latter a battery storing energy is
necessary. Wireless transmission of electrical energy can be achieved with techniques that
can be broadly classi�ed as far �eld (radiative) and near �eld (nonradiative). The for-
mer class is particularly suitable for transmitting information at low power. High power
radiative transfer is in fact undermined by the waste of energy in free space and thus
by the low e�ciency when omnidirectional antennas are used, and by safety issues and
the need for sophisticated tracking systems when directional antennas are used to supply
power to mobile objects. The technique which has been recognized so far as the most
promising for transmitting power belongs to the class of nonradiative techniques and is
based on the magnetic coupling in a resonant system (inductive power transfer). Several
applications of this technique have been proposed, which show that a high e�ciency in
transmission can be achieved; however, the distance of transmission and amount of power
are still limited thus restricting the practical applicability of this technique. It has been
shown that a higher e�ciency can be obtained at a distance of transmission a few times
larger than the largest dimension of both objects involved and can be reached with two
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1. Introduction

resonant coils of the same resonant frequency magnetically coupled [13, 14]. The reso-
nance condition in the coils is essential as the magnetic coupling between two air-core
coils is intrinsically weak [15]; it can be obtained by arranging capacitance in series or
in parallel with the coil inductance. The exchange of energy (and thus the e�ciency)
between the coils can in this way be raised, while the dissipation of energy into extrane-
ous o�-resonant object is limited. Moreover, high power transmission e�ciency can be
achieved by introducing intermediate coils between the emitter and receiver coils [16, 17].
There are several advantages that make this technique particularly appealing: absence
of conductors and connectors, lower risk of shock hazard, possibility of employment in
di�cult environmental conditions.
To date, di�erent approachs are used by researchers for analyzing WPT systems: in

particular the coupled mode theory (CMT) or the circuit theory (CT) are the most used in
order to explain the main topics generally investigated, for example, frequency splitting,
impedance matching and optimization design [18, 19, 20, 21, 22]. The �rst approach is
in general suitable for the study of the transmission energy between two resonators (this
approach was originally applied in the microwave �eld) [23]. The CT approach, on the
contrary, is widely used by researchers and engineers as it is more straightforward being
based on the mutual inductance model [24].
Anyway, in the last years, a novel type of wave propagation has been experimentally

and analytically studied, known as magnetoinductive wave (MIW) and supported by
magnetic metamaterials [25, 26, 27]. The magnetic metamaterials are, in general, peri-
odic arrays of resonant elements (also called metamaterial cells, composed of L-C series
resonant circuits) magnetically coupled each other in di�erent arrangements (planar or
axial) and tuned to a common resonant frequency. Usually, metamaterials are used for
telecommunication technologies and data transfer systems [28, 29] but very recently prof.
C.J. Stevens applied the MIW theory and metamaterials in WPT system, due to their
low loss in a wide bandwidth propagation [30, 31].
The aim of this thesis is to develop a depth analysis of the inductive power transfer

along a metamaterial composed of cells arranged in a planar con�guration, in order to
deliver power to a receiver sliding on them. In this way, the problem of the e�ciency
strongly a�ected by the weak coupling between emitter and receiver can be obviated,
and the distance of transmission can signi�cantly be increased. This study is made using
a circuital approach and the MIW theory, in order to simply explain the behavior of the
transmission coe�cient and e�ciency from the circuital and experimental point of view.
Moreover, �at spiral resonators are used as metamaterial cells, particularly indicated
in literature for WPT metamaterials operating at MHz frequencies (5-30 MHz[32, 30,
33]). Finally, this thesis presents a complete electrical characterization of multilayer
and multiturn �at spiral resonators and, in particular, it proposes new approach for the
resistance calculation through �nite element simulations, in order to consider all the high
frequency parasitic e�ects. Multilayer and multiturn �at spiral resonators are studied
in order to decrease the operating frequency down to kHz, maintaining small external
dimensions and allowing the metamaterials to be supplied by electronic power converters
(resonant inverters).
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2. Wireless Power Transfer and
Magnetoinductive Waves (MIW)

The transmission of electrical power is obtained via inductive resonant coupling between
two generic coils at least. One coil (emitter coil) is connected to a converter whose output
can be ideally represented by a sinusidal voltage source, whereas the other (receiver
coil) is connected to a load. In order to create resonant conditions, the two coils (each
represented by a self- inductance L) are connected in series or in parallel to capacitors,
C. This type of resonanting LC circuit is also brie�y called resonator. In both cases, the
resonant frequency of the circuits can be calculated with very good accuracy through the
following fundamental expression

fo =
1√
LC

(2.0.1)

2.1. Circuital analysis between two coupled resonators

In a system composed of two resonators, four topology combinations can be achieved:
parallel-parallel, series-series, parallel-series and series-parallel. These topologies have
widely been considered in literature [34, 35] to achieve maximum power transmission
and e�ciency. In [36], parallel-parallel and series-series topologies are accurately studied
in order to reduce the system with an equivalent impedance seen from the source.
Assuming a time-harmonic operation with angular frequency ω, the Kirchho�'s voltage

law for the emitter and receiver coils and for the parallel-parallel topology shown in Figure
2.1.1(a)can be written

V̂1 = R1Î1 + jωL1Î1 + jωMÎ2, (2.1.1)

−V̂2 = R2Î2 + jωL2Î2 + jωMÎ1 (2.1.2)

where V̂1 is the voltage source, V̂2 the voltage across the load, Î1 and Î2 are the currents
�owing in the emitter and receiver coils, respectively. The emitter coil is characterized
in terms of lumped-circuit parameters by the elements R1 and L1 (resistance and self-
inductance, respectively), whereas the receiver coil, characterized by the lumped-circuit
elements R2 and L2, is terminated into the load Ẑload. The emitter and receiver coils
are parallel compensated with the capacitances C1 and C2, respectively. The magnetic
coupling between the two coils is taken into account by the mutual inductance M . From
the equivalent impedance of the capacitive and load branches in parallel we obtain

V̂2 = ẐC,loadÎ2 (2.1.3)

13



2. Wireless Power Transfer and Magnetoinductive Waves (MIW)

(a)

(b)

Figure 2.1.1.: Circuit topologies for two mutually coupled coils. (a) Parallel-parallel
topology. (b) Series-series topology.

where

ẐC,load =
Ẑload

1 + jωC2Ẑload
. (2.1.4)

Substituting (2.1.3) into (2.1.2) yields

m̂ =
−jωM

R2 + jωL2 + ẐC,load
=
Î2

Î1
. (2.1.5)

By using (2.1.5) it is possible to represent the magnetic coupling between the two coils:
in fact, substituting (2.1.5) into (2.1.1) gives

V̂1 = R1Î1 + jωL1Î1 + jωMm̂Î1 (2.1.6)

where jωMm̂ represents the contribution to the parallel compensated receiver coil given
by the magnetic coupling:

jωMm̂ = jωM
−jωM

R2 + jωL2 + ẐC,load
=

ω2M2

R2 + jωL2 + ẐC,load
. (2.1.7)

The equivalent circuit for two mutually coupled coils with the compensation source
jωMm̂ used to represent the e�ect of mutual inductance is represented in Figure 2.1.2,
similarly as in [16].
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2.1. Circuital analysis between two coupled resonators

Figure 2.1.2.: Equivalent circuit of the parallel-parallel topology of Figure 2.1.1(a) with
compensation sources.

Equation (2.1.5) can be written as

m̂
(
R2 + jωL2 + ẐC,load

)
= −jωM (2.1.8)

which substituted in (2.1.6) yields

V̂1 = R1Î1 + jωL1Î1 − m̂2R2Î1 − jωm̂2L2Î1 − m̂2ẐC,loadÎ1 (2.1.9)

Equation (2.1.9) can be written as

V̂1 = R1Î1 + jωL1Î1 +R′2Î1 + jωL′2Î1 + Ẑ ′C,loadÎ1 (2.1.10)

where R̂′2 = (−m̂2)R2, L̂′2 = (−m̂2)L2, Ẑ ′C,load = (−m̂2)ẐC,load, Ĉ ′2 = C2/(−m̂2) and

Ẑ ′load = (−m̂2)Zload are the complex parameters of the receiver coil referred to the emitter
coil through m̂2. Furthermore, from (2.1.3) and (2.1.5), it follows Ẑ ′C,loadÎ1 = (−m̂)V̂2 =

V̂ ′2 where V ′2 represents the voltage across the load referred to the emitter coil. The
equivalent circuit of the parallel-parallel topology of Figure 2.1.1(a) seen at the input
terminals of the emitter coil is depicted in Figure 2.1.3.

Figure 2.1.3.: Equivalent circuit of the parallel-parallel topology of Figure 2.1.1(a) seen
at the input terminals of the emitter coil.
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2. Wireless Power Transfer and Magnetoinductive Waves (MIW)

In the same way, for the series-series circuit topology of Figure 2.1.1(b), we can write

V̂1 =
Î1

jωC1
+R1Î1 + jωL1Î1 + jωMÎ2, (2.1.11)

−V̂2 = R2Î2 + jωL2Î2 + jωMÎ1 +
Î2

jωC2
(2.1.12)

where the symbols have the same meaning as in the parallel-parallel topology with the
exception of the capacitances C1 and C2 which represent the series compensation of
the two coils. To represent the mutual coupling between the two coils we can use the
parameter

m̂ =
−jωM

R2 + jωL2 + ẐC,load
(2.1.13)

which is formally equal to (2.1.5); however, in the series-series circuit topology

ẐC,load =
1 + jωC2Ẑload

jωC2
. (2.1.14)

It is also possible to consider the equivalent circuit at the input terminals of the emitter
coil, as previously done for the parallel-parallel circuit topology.

2.2. Multiple resonator system

Figure 2.2.1.: Equivalent circuit of a system composed of n-coupled resonators.

Considering a generic system composed of n-resonators, as shown in Figure 2.2.1, the
circuital representation is expressed by n-equation system as follows

V̂ + Ẑ1Î1 + jωM1,2Î2 + ...+ jωM1,iÎi + ....jωM1,nÎn = 0

Ẑ2Î2 + jωM2,1Î1 + jωM2,3Î3 + jωM2,iÎi + ....+ jωM2,nÎn = 0
...

...
ẐiÎi + jωMi,1Î1 + jωMi,2Î2 + ....+ jωMi,nÎn = 0

...
...

(Ẑn + Ẑload)În + jωMn,1Î1 + jωMn,2Î2 + ....+ jωMn,iÎi + ...+ jωMn,n−1În−1 = 0
(2.2.1)
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2.3. MIW: Theoretical background and basic assumptions

where V̂ is the voltage source, Îi is the current �owing in the ith-circuit. The impedance
Ẑi = Ri+jωLi+

1
jωCi

, with 2 < i < n, is the impedance of the ith-resonator, in particular
Ri, Li, Ci (with 1 < i < n) represent the resistance, self-inductance and capacitance of
the same resonator. The impedance of the �rst resonator could be di�erent depending on
the resonance topology. If the capacitance is connected in parallel to the self- inductance
of the �rst resonator, Ẑ1 = (jωC1 + 1

(R1+jωL1)
)−1. Otherwise, Ẑ1 = Ẑi if the capacitance

is in series to the resonator. The Mi,j = Mj,i (with 1 < i < n , 1 < j < n and i 6= j) is
the mutual inductance between two generic i and j inductors.
The multiple resonator equivalent circuit may be more complex to solve because the

mutual inductance between each couple of cells must be taken into account. Hence, the
whole system could be easily represented in a matrix form through the following equation:

V̂ = ẐÎ (2.2.2)

where V̂ = [ V̂s 0 ... 0 ]T with V̂s the phasor supply voltage of the emitter coil, Î is

the complex vector of the current �owing in the cells, and Ẑ is the symmetric matrix of
the impedances de�ned for a n-cell system as follows

Ẑ =


Rs + Ẑ1 jωM12 ... jωM1n jωM1r

jωM21 Ẑ2 ... jωM2n jωM2r
...

...
. . .

...
...

jωMn1 jωMn2 ... Ẑn jωMnr

jωMr1 jωMr2 ... jωMrn Ẑr

 (2.2.3)

where Ẑi = Ri+ jωLi+ 1/jωCi (i = 1, 2, ...n) represents the impedance of each inductor
and Ẑr = Ẑn + Ẑload. Mij is the mutual inductance between the cells i and j.

2.3. MIW: Theoretical background and basic assumptions

The theory behind the magnetoinductive waves (MIW) has been widely discussed in
the literature [25, 37, 26]. In this work, the main considerations for wireless power
transfer applications and equivalent circuits are reviewed. Generally, a metamaterial is
a periodic array formed by resonator cells (L-C series resonant circuits) coupled to each
other magnetically. Considering a system composed of a �nite number n of equal cells as
shown in Figure 2.3.1, the associated equivalent circuit is analytically described by the
following system of n equations

V̂s +RsÎ1 + ẐÎ1 + jωM1,2Î2 = 0

jωM2,1Î1 + ẐÎ2 + jωM2,3Î3 = 0
...

...
jωMi,i−1Îi−1 + ẐÎi + jωMi,i+1Îi+1 = 0

...
...

jωMn,n−1În−1 + ẐÎn = 0

(2.3.1)
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2. Wireless Power Transfer and Magnetoinductive Waves (MIW)

(a)

(b)

Figure 2.3.1.: Metamaterial WPT system composed of n-coupled resonators arranged in
a line (a) and its equivalent circuit.
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2.3. MIW: Theoretical background and basic assumptions

where V̂s and Rs are the voltage source applied to the �rst inductor and its internal
resistance, respectively, Îi the current �owing in the ith-cell and Ẑ = R+ jωL+ 1/jωC
is the impedance considered the same for each cells, R is the AC resistance, L the self-
inductance, C the capacitance and ẐT is an optional termination impedance connected
to the last cell of the line. Hence, each cell is a resonant series L-C circuit tuned to a
single resonant frequency

f0 =
1

2π
√
LC

. (2.3.2)

Mi,i+1 = Mi+1,i = M is the mutual inductance between two adjacent resonators.
In the equivalent circuit, the mutual inductance between two nonadjacent resonators is
neglected. According to the MIW theory, the wave travelling along the metamaterial is
expressed in terms of current as

Îi = I1e
−γ̂(i−1)d (2.3.3)

where I1 is the value of the current �owing in the �rst cell, d is the periodic distance
between two adjacent cells and γ̂ is the propagation constant de�ned as γ̂ = α + jβ .
α and β are the attenuation and phase constants, respectively, and they could also be
expressed in terms of electrical parameters; in particular, it is important to express the
attenuation per cell because it represents the wave reduction along the metamaterial

α =
1

d
sinh−1(

1

kQ
) (2.3.4)

where k = 2M/L is the coupling coe�cient and Q = ω0L/R is the quality factor of each
inductor. The propagation waves is governed by the following dispersion equation

cos(βd) =

(
ω2
0 − ω2

kω2
0

)
(2.3.5)

from which it is possible to �nd the bandwidth in which the wave propagation is achieved
with very low losses [27, 29]

f0√
1 + ηk

≤ f ≤ f0√
1− ηk

(2.3.6)

where η = 1 in 1-D structure.
The sign of the mutual inductance M determines the type of magneto-inductive wave

propagation in the array: axial con�guration involves forward waves with phase and group
velocities in the same direction (given by M > 0). On the contrary, planar con�guration
involves a backword waves with opposite directions of the phase and group velocities
(given by M < 0).
It is known in literature that the matching condition is achieved introducing a ter-

mination impedance in the last cell equal to ẐT = jωMe−γ̂d (shown in Figure 2.3.1),
becoming purely real for f = f0 and equal to ZT = ω0M , as demonstrated in [27, 38]. Un-
der this condition, the no standing wave occurs along the metamaterial and the maximum
power can be delivered to the last cell at the resonant frequency. With the termination
impedance, the last equation of the system (2.3.1) is modi�ed as follows

jωMn,n−1În−1 + ẐÎn + ẐT În = 0 (2.3.7)
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2. Wireless Power Transfer and Magnetoinductive Waves (MIW)

Figure 2.3.2.: System shown in Figure 2.3.1with a receiver facing the metamaterial.

2.3.1. Metamaterial with a receiver

In the following discussion, some assumptions are made in order to simplify the system
in (2.3.1):

� All the resonators are equal. Ri = R, Li = L and Ci = C for 1 < i < n.

� Only the mutual inductances between adjacent resonators are taken into account
and considered equal for any coupled resonators M .

Consequently, considering a receiver inductor with a load Rload in series and facing the
ith-cell of the metamaterial as shwon in Figure 2.3.2, it is enough to add a further equation
in (2.3.1) in order to represent the whole system shown in Figure 2.3.3(a)

V̂s +RsÎ1 + +ẐÎ1 + jωMÎ2 = 0

jωMÎ1 + ẐÎ2 + jωMÎ3 = 0
...

...
jωMÎi−1 + ẐÎi + jωMÎi+1 + jωMi,r Îr = 0

...
...

jωMÎn−1 + ẐÎn + ẐT În = 0

jωMr,iÎi + Ẑr Îr = 0

(2.3.8)

where Ẑr = Ẑ +Rload with the subscript r identifying the receiver inductor.
The current �owing in the receiver can be expressed as

Îr = În−1(−
jωMr,i

Ẑ
) (2.3.9)
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2.3. MIW: Theoretical background and basic assumptions

(a)

(b)

Figure 2.3.3.: Equivalent circuit of a system composed of n resonator cells with a receiver
(a) and with the impedance Zd (b).
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2. Wireless Power Transfer and Magnetoinductive Waves (MIW)

Figure 2.3.4.: Equivalent circuit of the WPT in terms of an equivalent impedance Ẑeq.

and substituing the (2.3.9) into the ith-equation of (2.3.8), it is possible to obtain

(Ẑ +
(ωMr,i)

2

Ẑ
)Îi + jωMÎi−1 + jωMÎi+1 = 0. (2.3.10)

Hence, the receiver impedance seen from the nearest cell can be expressed as an
impedance connected in series to the resonator to which facing on, of value

Ẑd =
ω2M2

r,i

Ẑr
(2.3.11)

and for f = f0 this impedance is purely real

Zd =
ω2M2

r,i

R+Rload
(2.3.12)

The receiver impedance seen from the nearest cell can be expressed as an impedance of
value Ẑd = ω2M2

r,i/Ẑr connected in series to the cell (see Figure 2.3.3(b)). Consequently,
the equation of the ith-cell in (2.3.8) can be written as

jωMÎi−1 + (Ẑ + Ẑd)Îi + jωMÎi+1 = 0. (2.3.13)

In this sense, it is enough to set

Ẑd = ω0M (2.3.14)

in order to obtain the matching condition when the receiver couples to the last cell and
avoid a standing wave: this condition can be achieved, for example, by an accurate
adjustment of the inductances of the receiver, being Mr,i = kr,iL [38]. However, this
does not hold if the receiver inductor moves along the metamaterial as a re�ected wave
is generated and standing waves result in an extra frequency dependence to the input
impedance.

2.3.2. Input and equivalent impedances

The multiple resonator system can be simpli�ed with an equivalent impedance Ẑeq, rep-
resenting the whole metamaterial and connected in series to the impedance of the �rst
cell, as depicted in Figure 5.4.4.
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2.3. MIW: Theoretical background and basic assumptions

If the matching condition is satis�ed, then Ẑeq = ω0M [30]. In all the other cases, the
equivalent impedance can be also calculated analytically through a continued fraction
(as used in [39] for four resonators) whose value depends mainly on the position of the
receiver and a possible terminal impedance. For example, considering the receiver located
on the third cell of a metamaterial composed of 5 cells and a termination impedance ẐT ,
the equivalent impedance can be calculated as follows

Ẑeq =
(ωM)2

Ẑ +
(ωM)2

Ẑ + Ẑd +
(ωM)2

Ẑ +
(ωM)2

Ẑ + ẐT

(2.3.15)

and for f = f0

Ẑeq =
(ω0M)2

R+
(ω0M)2

R+ Zd +
(ω0M)2

R+
(ω0M)2

R+ ẐT

. (2.3.16)

The input impedance depends on the circuit topology of the cell supplied by source. If
the series resonance is achieved in the �rst cell (as in Figure 5.4.4), the input impedance
can be simply calculated as Ẑin = R + Ẑeq at the resonant frequency. If the parallel
topology is used, the input impedance is calculated as Ẑ−1in = (jωC + 1/(jωL+R+Ẑeq)).−1
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3. Transmission Coe�cient:
experimental analysis of wireless
power transfer system

For the analysis of the transmitted power, six identical samples of SR designed to resonate
at about 20 MHz were used. Furthermore, two equal solenoid coils were made as emitter
and receiver coils. The experimental setup and the coils used as emitter and receiver are
shown in Figs. 3.0.1(a) and 3.0.1(b), respectively. The geometrical dimensions of the coils
and SRs are indicated in the captions of the Tables 3.1 and 3.2, respectively. As regard
the SR dimensions, l is the external dimension, w the track width. With respects to the
emitter and receiver, d and D are the diameters of the turns of the solenoid coil and of the
coil, respectively. For both SR and coils, s and N are the distance between two adjacent
turns and the number of turns of both type of inductor, respectively. The period and the
total length of the resonator system were 85 mm and 505 mm, respectively. The emitter
and receiver coils were connected to the output and input ports of a Rohde&Schwarz
ESRP test receiver 10 Hz - 7 GHz with tracking generator, respectively.

Emitter and receiver coils are designed with the formulas reported in Appendix A, and
their calculated electrical parameters Le(r) are shown and compared with measurements
in Table 3.1.

Regarding the single layer �at spiral resonator, the self-inductance and stray capaci-
tance are well discussed in literature both analytically and experimentally [40, 41, 42]. In
particular, the formulas used in [43, 44] de�ning all the electrical parameters as a function
of the geometrical dimensions are thoroughly validated and supported by comparisons
with measurements in order to optimize the main electrical parameters predicting the
self-resonant frequency and quality factor with very good accuracy.

Table 3.2 shows the self-resonant frequencies fom measured for each sample of SR and in
Table 3.3 the calculated electrical parameters Lcal, Ccal are compared with measurements,
Lm, Cm. The measures of the self-resonant frequencies were performed with the ESRP
test receiver. The self-inductances of the SRs and coils were measured with a HP 4192
A impedance analyzer. The value of Cm is obtained introducing the values of Lm and
f0m into (2.0.1).
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3. Transmission Coe�cient: experimental analysis of wireless power transfer system

(a) (b)

Figure 3.0.1.: a) Experimental setup. b) Solenoid coils used as emitter (left) and receiver
(right) in transmitted power tests.

Table 3.1.: Calculated Le(r),cal and measured Le(r),m self-inductance of the emitter and
receiver coils with d = 1 mm, s = 0.3 mm, N = 2 and D = 70 mm.

Le(r),cal Le(r),m
0.735µH 0.76µH

Table 3.2.: Self-resonant frequencies f0m measured for each sample of SR with w = 0.4
mm, s = 0.9 mm, N = 28 and l = 80 mm.

Sample f0m [MHz]

SR1 19.55
SR2 19.56
SR3 19.52
SR4 19.52
SR5 19.52
SR6 19.3

The theoretical self-resonant frequency of the resonators f0th, calculated introducing
Lcal and Ccal in (2.0.1), is 19.4 MHz; the error between the values of the self-resonant
frequency calculated and measured is less than 5%. The Q factor of each resonator was
estimated about 230 at the resonant frequency.
The experiments were performed in order to analyse the transmission coe�cient in an

array of resonators and its variation for di�erent arrangements of the array. Hence, four
di�erent coplanar combinations were tested maintaining the same number of SRs. The
di�erent arrangements considered are shown in Figure 3.0.2. In each test, the distance
between two adjacent SRs was 5mm so the coupling coe�cient is calculated as k =
2Mcal/Lcal ≈ 0.16. Furthermore, as the receiver coil is connected to a spectrum analyzer
having an input impedance RL = 50Ω, the receiver coil was matched to the structure
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3.1. Numerical modeling and transmission coe�cient S21

at its end when it was positioned above the last resonator. This situation was achieved
by choosing the distance between the receiver coil and the SR equal to 23 mm so as to
satisfy the condition [38]

Mnr =

√
Mcal

2πf0th
RL (3.0.1)

The emitter coil was placed at the same distance from the array of resonators. The
relevant coupling coe�cient is almost ke(r)1 = Mr1/

√
LrLcal ≈ 0.17.

Table 3.3.: Calculated LSR,cal, CSR,cal and measured LSR,m,CSR,m electrical parameters
of the SRs.

LSR,cal LSR,m CSR,cal CSR,m
30 µH 28.9 µH 2.24 pF 2.28-2.35 pF

3.1. Numerical modeling and transmission coe�cient S21

If both the period and the total length of the structure are much smaller than the free-
space wavelength at the operating frequency, the retarding e�ects can be neglected and
consequently the mutual impedances between two resonators and each resonator and a
coil are purely imaginary, i.e., only the mutual inductances, due to magnetic coupling,
are e�ective [45]. Then, if only the emitter coil is supplied, the multiple resonator system
can be shown in terms of equivalent electrical circuit as in Figure 3.1.1, numerically
represented in matrix form through the following equation:

V̂ = ẐÎ (3.1.1)

where V̂ = [ V̂e 0 ... 0 ]T with V̂e the phasor supply voltage of the emitter coil, Î is

the complex vector of the current �owing in the cells, and Ẑ is the symmetric matrix of
the impedances de�ned for a n-cell system as follows

Ẑe +Rs jωMeSR1 ... jωMeSRn jωMer

jωMSR1e ẐSR1 ... jωM1SRn jωMSR1r
...

...
. . .

...
...

jωMSRne jωMnSR1 ... ẐSRn jωMSRnr

jωMre jωMrSR1 ... jωMrSRn Ẑr +Rl

 (3.1.2)

where Ẑe(r) = Re(r) + jωLe(r) and Ẑi = Ri + jωLi + 1/jωCi represent the impedance
of ith-inductor. In particular, the subscript e (r) identi�es the electrical parameter of
the emitter (receiver) coil. The emitter and receiver coils are designed with the pro-
cedure presented in [46] which allows their electrical parameters to be calculated ana-
lytically. The mutual inductances between each couple of inductors in the system are
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Figure 3.0.2.: Representation of the four arrangements tested: a) I-arrangement, b) II-
arrangement, c) III-arrangement and d) IV-arrangement. The receiver coil
is moved along the SR array.
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3.1. Numerical modeling and transmission coe�cient S21

Figure 3.1.1.: Equivalent circuit associated to the experimental system.

calculated with good approximation following the numerical calculation reported in sub-
section 3.1.1. In this form, the currents circulating in each resonator are calculated
inverting the impedance matrix

Î = Ẑ−1V̂ (3.1.3)

In this way, all the electrical dimensions are easly found and the transmisttion coe�-
cienc S21 could be calculated through the following expression [47]

S21 = 2
Vl
Vs

(
Rs
Rl

)1/2

(3.1.4)

3.1.1. Mutual Inductance Calculation

This subsection presents the numerical code implemented in Matlab� programme [48]
in order to predict the mutual inductance between two di�erent and general structure
(simply �laments or more complex polygons). The method is based on Sonntag et al.
work [49] but in this work is improved in terms of computation time.
The mutual inductance is calculated integrating numerically the following �ux linkage

formula between two �laments:

λ(i, j) =
µ0I1
4π

‰

i

‰

j

di • dj
|r − r′|

(3.1.5)

where µ0 is the free space permeability, I1 the current circuilating in the �lament
considered as primary, i, and j the countour of the second �laments. |r − r′| is the
di�erence between the vector pointing from the axis origin to the respective contour.
Hence, the (3.1.5) becomes numerically

λ′(i, j) =
µ0I1
4π

ai∑
α=1

aj∑
β=1

X∑
χ=0

E∑
ε=0

niα • n
j
β

|Kχ −Kε|
(3.1.6)

where
Kχ = qiα + (χ)(∆i)n

i
α (3.1.7)

Kε = qjβ + (χ)(∆j)n
j
β (3.1.8)
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X =
ciα
∆i

, E =
cjβ
∆j

In particular, ∆i and ∆j are the small integration elements, nim and njm are the nor-
malized position vectors for the respective structure �laments identi�ed by the peaks i
and j, respectively and de�ned as

ni,jm =
qi,jm+1 − q

i,j
l,k

ci,jm
, m ∈ [1...ai,j ]

ci,j is the Euclidean length, qi,j is the vector containing all the coordinate vertices. ai,j

is the ammount of the sides of the structure (hence the number of vertices is bi,j = ai,j+1).

Once calculated the �ux (3.1.6), the partial mutual inductance is obtained simply
dividing for the current I1.

Mp,ij =
λ′(i, j)

I1
(3.1.9)

Modi�cations added

The numerical calculation (3.1.6) can be a�ected by the processing time for accurate
integration, choosing ∆i and ∆j very small. Four summations are needed for the �ux
linkage between the two structures calculation: X and E depend only on the lenght of
each side and integretion element, αi and aj on the number of structure sides.

� Elimination of the calculation of perpendicular sides. As the mutual inductance
between two perpendicular �laments is equal to Mij⊥ = 0, a further matrix, βtest,
containing the number of non-perpendicular elements respect to α value is added
in the code. In this way, only the Mij 6= 0 are taken into account.

For example, considering two spiral structures with N = 2 and with a generic
distance g and length l, as in Figure 3.1.2 βt is equal to

βt =


1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4
5 6 5 6 5 6 5 6
7 8 7 8 7 8 7 8

 (3.1.10)
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Figure 3.1.2.: Example of mutual inductance between two spiral structur with N = 2.

hence if α = 1, β = 1, 3, 5, 7: it means that only the mutual between the �rst side of
the �rst structure and 1, 3, 5, 7 sides of the second structure are calculated. Then, α = 2
so β = 2, 4, 6, 8 because only the mutual inductances between the second side of the �rst
structure and 2, 4, 6, 8 sides of the second structure exist. When α = 3, β = 1, 3, 5, 7 and
so on.

� parallel processing. A parallel for-loops is implemented for running task-parallel
algorithms on multiple processors.

Results

The following table shows the processing time needed to calculate the mutual inductance
between generic structures performed with 3 di�erent numerical code:

� Numerical calculation proposed by Sonntag et al. (MutualSonntag);

� Mutual with only βt modi�cation (Mutualβtest);

� Mutual with βt modi�cation and parallel processing (Mutualβt−par).

In each simulation the track width is equal to the spacing (w = s = 1mm), track thickness
and distance between layers, tc and h, are 0.1mm, and the distance between structures
is g = 0.5mm. ∆l = ∆k = 0.85w.

3.2. Measurements and comparison with simulations

The analysis of the transmission coe�cient S21 was developed comparing experimental
measurements with analytically predicted results obtained with a Scilab computer code
[50]. The matrix of impedances (3.1.2) becomes as follows
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Table 3.4.: Comparison between processing time for three di�erent numerical calculations
of mutual inductance, M .

l [mm] N n MutualSonntag[s] Mutualβt [s] Mutualβt−par[s] M [µH]

40 4 1 9.3 4.3 2.1 -0.073
80 4 1 43.2 20 6.3 -0.28
40 4 2 43.2 20 7.7 -0.34
80 2 4 291.6 135.15 39.7 -2.45



Ẑe jωMeSR1 ... jωMeSR3 ... jωMeSR5 ... jωMer

jωMSR1e ẐSR1 ... jωMSR13 ... jωMSR15 ... jωMSR1r
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jωMre jωMrSR1 ... jωMrSR3 ... jωMrSR5 ... Ẑr


(3.2.1)

Clearly, the values of the mutual inductances depend on the type of the system under
test. Solving (3.1.3) with the impedance matrix given by (3.2.1), it is possible to obtain
the current Ir in the receiver coil and so the transmitted power 50I2r , being 50Ω the input
impedance of the spectrum analyzer to which the receiver coil was connected.
In Figs. 3.2.1, the transmission coe�cient S21 as a function of frequency for the

arrangements I and II is shown. As in each test the emitter coil is �xed in front of
SR1, the results depend on the position of the receiver coil and the arrangement of
the resonators under consideration. If the measured patterns are compared with the
analytically predicted ones, the trends are in agreement in particular under resonance
condition. These results are performed for the distance of 23 mm between the receiver
coil and the array that realizes the matching condition.

Figure 3.2.2 shows the peaks of the transmission coe�cient S21 for each arrangement of
the resonators and position of the receiver coil for the distance of 23 mm. In particular,
with reference to the calculated values, the S21 peak is higher when there is a direct
coupling between the emitter and the receiver coil located above SR2. A general decay
of the S21 peaks occur moving the receiver coil along the SR array as the mismatching
of the system generates standing waves. After a minimum value is reached, the S21
peak increases and a new maximum value is obtained on top of SR6. Moreover, the
system has a low e�ciency (between about 20% and 35%) due to the weak magnetic
coupling between the resonators. However, considering each arrangement of the array,
it can be noticed that the calculated values of the peaks vary in a narrow range. The
results obtained are corroborated by the results of the simulations presented in [30]. The
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3.2. Measurements and comparison with simulations

Table 3.5.: Values of the measured (fm) and calculated (fth) frequencies [MHz] of the
S21 peaks as a function of the arrangement of the SR array and position of
the receiver.

Receiver
I II III IV

fm fth fm fth fm fth fm fth
SR2 19.4 20.7 19.3 20 19.3 20 19.3 20
SR3 19.9 19.7 19.8 19.7 19.8 19.7 19.7 19.6
SR4 19.7 20.5 19.4 20.6 19.6 19.2 19.3 19
SR5 19.3 20.2 19.3 20.2 20.2 20.1 20.2 19
SR6 20 19.6 19.8 19.6 19.9 19.6 19.8 19.5

measurements of the S21 peaks show a similar trend to the calculations with a minimum
along the array although the di�erence between measured and calculated values increases
approaching the end of the array. This di�erence in the trends may be related to the
di�erent resistance values of the SRs due to imperfections determined by the fabrication
process. Further investigations are needed on this point.

In Table 3.5, all the values of the measured (fm) and calculated (fth) frequencies of the
S21 peaks are reported. It is important to observe that both the measured and calculated
values of the frequencies at which the peaks occur are slightly di�erent due to standing
waves wich arise when the receiver coil is not above SR6 in matching condition. Anyway,
the values of the peak frequencies are similar for each receiver position, regardless of the
type of arrangement. It can be noted that the theoretical frequencies when the receiver
coil is on the top of the SR6 are nearly coincident regardless of the arrangement; the
same result is obtained in the experiments, thus showing that an adequate matching
condition was achieved.that can be obtained with the same formula used for the partial
mutual inductance calculation. Ci is the total capacitance in series to the self-inductance
of each cell considering both the stray, Cp, and the lumped capacitances added, Cadd, to
tune the resonance condition (ω0 = 1/

√
L(Cp + Cadd))

3.2.1. Discussion of the results

A theoretical and experimental analysis of wireless power transfer through an array
of coplanar resonators is presented in this work. In particular, six identical SRs were
used to form an array and transfer power between an emitter and a receiver. The spiral
resonators are designed to resonate at about 20 MHz. Hence, the transmission coe�cient
is measured for four di�erent arrangements having the same number of resonators and
the experimental results are compared with the theoretical predictions, obtaining an
analogous behaviour with di�erences that may be related to the resistance values of the
SRs, which depend on the fabrication process. The values of the transmission coe�cient
peaks vary slightly for the considered SR arrangements. About the system e�ciency,
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3. Transmission Coe�cient: experimental analysis of wireless power transfer system

some considerations are made. First of all, the transmitted power of the system is a�ected
by the weak coupling strength between SRs and between SR and coils. This lack can be
reduced by using other con�gurations (for example axial) or other type of resonators, as
shown in [27]. On the other hand, the e�ciency along the SR structure is also reduced
by the matching condition which is obtained in the last position of the array only. It is
possible to improve the e�ciency mainly increasing the coupling strength between the
receiver coil and SR array so that most power is transmitted. Optimizing the system
presented can allow the wireless charging of consumer electronic devices regardless of the
receiver position and the arrangement of the SR array.
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3.2. Measurements and comparison with simulations

(a) (b)

Figure 3.2.1.: Measured and calculated transmission coe�cient S21 as a function of fre-
quency. These trends are for I-arrangement a) and II-arrangement when
the receiver coil is facing the SR6.
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3. Transmission Coe�cient: experimental analysis of wireless power transfer system

a) b)

c) d)

Figure 3.2.2.: Measured and calculated peaks of the transmission coe�cient S21 as a
function of the position of the receiver coil for each arrangement of the
array of SRs. a) I-arrangement, b) II-arrangement, c) III-arrangement and
d) IV-arrangement.
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4. Investigation of Termination
Impedance E�ects: Experiments and
Simulations

In a previous work, C.J. Stevens showed that the e�ciency can be improved along a
metamaterial line, as depicted in Figure 2.3.2, with the introduction of a termination
impedance connected to the last cell whose value depends on the receiver position [31].
This work extends the considerations in [31] with an accurate investigation of the e�ects
of the termination impedance on the transmitted power and e�ciency as a function of
frequency and receiver position. Moreover, e�ciency peaks are discussed in this Chapter.
Finally, a numerical characterization is also shown in order to predict with good accuracy
the performance of the system analyzed.

4.1. Experimental setup

The metamaterial used in this work consists of �ve equal resonators of square shape
mutually coupled and arranged in a planar line separated by gaps equal to g = 0.2mm.
The experimental system is shown in Figure 4.1.1.
The single metamaterial cell is fabricated with a printed circuit board (PCB) with

N = 1, l = 40mm, w = 1mm and s = 1mm. The value of the measured self-inductance
is 0.135µH, equal to the numerically calculated one. The mutual inductance between
two cells is calculated from measurement by resonance splitting and it is found equal to
−16.3nH (very close to the predicted one −18.7nH). As the stray capacitance is small,
a lumped capacitance equal to 1nF is added to each cell in order to tune the resonant
frequency to f0 = 13.56MHz (as it is a license free ISM band). All the capacitances are
parallel to the inductors. The source is connected in series as in Figure 2.3.1. Finally, the
measured and calculated AC resistances are equal to 0.303Ω and 0.152Ω, respectively.
The measured AC resistance includes also the solder connections and series resistance of
the lumped capacitances plus any radiation losses. The layout of the receiver resonator
used in these tests is identical to the cells of the metamaterial: a load resistance (Rload =
3.3Ω) is soldered in series to the lumped capacitance of 1nF. In case the emitter and
receiver coils are single-layer solenoid or single-layer spiral coils, they can be designed
with the procedure presented in [46].
An HP 8753 vector network analyzer (VNA) was used in order to supply the source

and measure the transmission coe�cient S21: the instrument output is connected to the
�rst cell and the received signal is measured across the load resistance. This type of
circuital connection involves an adjustment of the transmitted power measured as the
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4. Investigation of Termination Impedance E�ects: Experiments and Simulations

Figure 4.1.1.: Experimental setup.

internal impedance of the VNA is equal to Z0 = 50Ω, quite di�erent from Rload. Hence,
the measured value is smaller than the real one, consequently it is possible to adjust the
measure and �nd the e�ective e�ciency across the load through

η =
S2
21(1 + Z0/Rload)

1− S2
11

. (4.1.1)

In the e�ciency calculation, the error considered is ±2.5 dB for both S21 and S11
measurements given by the sum of the accuracy of the network analyzer output and
input characteristics assumed equal to ±1 dB, respectively, and Transmission/Re�ection
Test Set (Agilent HP 85044A 300kHz to 3GHz) equal to ±1.5 dB. The error bars are
calculated by the combined uncertainty uc(y), as suggested by the GUM guide (Guide
to the expression of Uncertainty Measurement) [51], using the following formula

uc(y) =

√∑n
i=1

(
∂f
∂xi

)2
u2 (xi) + 2

∑n−1
i=1

∑n
j=i+1

(
∂f
∂xi

)(
∂f
∂xj

)
u (xi)u (xj) r (xi, xj)

(4.1.2)
where y = f(x1, x2...xn) is the value of the measure given by the n measured quantities
(x1,x2...xn), u(xi, xj) = u(xj , xi) is the covariance between xi and xj . r(xi, xj) is a
correlation coe�cient whose value varies between 0 (if the measurements are indipendent
on each other) and 1 (if the measurements are dipendent on each other) .
Finally, according to the instrument speci�cations, the frequency measurement uncer-

tainty is 10 ppm and therefore we chose not to take it into account
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Figure 4.2.1.: Transmission coe�cient S21 as a function of the height of the receiver. The
receiver is located on the last cell.

4.2. Measurement results

The measurements are made for receiver heights from the metamaterial included between
1mm (�ground height�) and 31mm (�top height�). All the measurements are made with-
out termination impedance. Considering the receiver perfectly faced to the last cell, the
matching condition can be experimentally found by the transmission coe�cient measure-
ments at the resonant frequency and varying the receiver height from ground to top ones
(shown in Figure 4.2.1). As it can be noticed, the maximum power is delivered when
the receiver is located at about 9mm meaning that the matching condition is veri�ed for
this height (�matching height�). In Figure 4.2.2, the transmission coe�cient as a func-
tion of receiver position is plotted for ground, matching and top heights at the resonant
frequency. It is evident by the Figure that all the curves present similar trends: in fact,
all the behaviour of S21 alternates highs and lows and the peaks are located every two
cells where the maximum of the transmission coe�cient is achieved when the receiver
faces the I, III and V resonator (cell centres at 20, 100 and 180mm). Furthermore, for
the matching height, the values transmission coe�cient are almost similar to the ground
height ones. However, it is important to noticed that for 9mm S21 is larger than that
for 1mm when the receiver is perfectly located on the I, III and V suggesting that the
system is well matched. Otherwise, the transmission coe�cient related to the top height
is clearly lower than the ground and the matching ones.
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Figure 4.2.2.: Transmission coe�cient S21 as a function of the height of the receiver. The
receiver is located on the last cell.

4.2.1. Measurement at 9mm of distance between metamaterial and
receiver (Matching Height)

The transmission coe�cient and e�ciency are studied for three di�erent conditions, cor-
responding to di�erent termination impedance values. In particular:

� Condition A: ZT = 0Ω (corresponding to a short-circuited last cell);

� Condition B: ZT = 120Ω (much larger than ω0M);

� Condition C: ZT � 120Ω (corresponding to an open circuit last cell).

The measured values of the transmission coe�cient, S21, in dB for each termination
impedance considered as a function of frequency and receiver position are shown in
Figure 4.2.3. As it can be noticed, the plot of S21 regarding condition A is quite di�erent
from those relevant to the other two conditions, that are very similar. The maximum
values of the transmission coe�cient are distributed for di�erent frequencies and positions
depending on the considered condition. Particularly, in the frequency range between
about 12.4 and 15.5 MHz and when the receiver is positioned at 180mm, i.e., perfectly
faced to the last resonator, S21 is over -10dB for the condition A but much smaller for
the conditions B and C (-20dB). Moreover, for the condition A, the concentration of high
transmission coe�cient values around the resonant frequency means that the matching
condition is achieved. For the conditions B and C high transmission coe�cient values
occur for di�erent positions of the receiver along the metamaterial as it is con�rmed by
the measures of S21 and the adjusted e�ciency presented in Figure 4.2.4.
If the last cell is short-circuited (ZT = 0Ω) the maximum of the e�ciency is achieved

when the receiver faces the I, III and V resonator (con�rming the trends presented in
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Figure 4.2.3.: Measurements of S21 as a function of frequency and receiver position for
ZT = 0Ω (a), ZT = 120Ω (b) and ZT � 120Ω (c).
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Figure 4.2.4.: Measurements of S21 (a) and adjusted e�ciency (b) as a function of the
receiver position for the termination impedances used and at f = f0.

Table 4.1.: Equivalent impedance values, Zeq, and e�ciency, η, at f = f0 for di�erent
receiver positions and conditions calculated with (2.3.16).

Receiver ZT = 0Ω ZT = 120Ω

position ZT � 120Ω

Zeq[Ω] η% Zeq[Ω] η%

I cell 1.6 67% 7.2 30%
II cell 0.2 10% 1.1 58%
III cell 1.4 53% 6.2 5%
IV cell 0.3 5% 1.2 49%
V cell 1.3 43% 5.8 0%

Figure 4.2.2). The introduction of a high impedance (ZT = 120Ω or ZT � 120Ω)
involves a displacement of peaks by one cell: in fact, the e�ciency peaks occur when
the receiver is on the II and IV cell (cell centres at 60 and 140mm). Also, observing
the equivalent impedance values reported in Table 4.1, the value of Zeq is very close to
ω0M = 1.39Ω in positions where the e�ciency is maximum. Finally, the correspondence
of the peaks at the resonant frequency is further validated by showing the behaviour
of S21 as a function of frequency when the receiver is perfectly located on each cell, as
depicted in Figure 4.2.5. The behaviour of the transmission coe�cient is strongly a�ected
by the introduction of a termination impedance ZT which changes the distribution of the
transmission coe�cient peaks in the resonant frequency bandwidth. In particular, with
the connection or disconnection of the termination impedance, the maximum values of
S21 can be obtained at the resonant frequency in all the receiver positions.
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Figure 4.2.5.: S21 measured as a function of frequency for all receiver positions facing the
I (a), II (b), III (c), IV (d) and V (e) cell.
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Figure 4.2.6.: Comparison of measured and simulated e�ciency and e�ciency peaks and
optimum frequency for ZT = 0Ω (a) and (c) and ZT = 120Ω, (b) and (d),
respectively.
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4.3. Discussion of the results

4.2.2. Comparison with simulations

The measurements are now compared with numerical simulations, made implementing
the formulas presented in ChapeterXX in a Matlab programme [48]. In particular the
e�ciency, peaks of e�ciency and optimum frequencies are studied and taking into account
only two di�erent conditions, A (ZT = 0Ω, shown in Figure 4.2.6 (a) and (c)) and B
(ZT = 120Ω, shown in Figure 4.2.6 (b) and (d)), as conditions B and C (ZT � 120Ω) are
found to be equivalent. Peaks of e�ciency are de�ned as the maximum values of e�ciency
occurring at the resonant frequency and optimum frequencies as those frequencies at
which the peaks of e�ciency are achieved. As shown, all the simulations match with very
good agreement the experimental data. Considering the e�ciency, the largest di�erence
is obtained for the receiver centre between 0 and 60mm in the condition B (as it can be
noticed in Figure 4.2.6(b)). Moreover, a small di�erence (10%) is obtained for the receiver
centre between 80mm and 120mm, as regarding the peaks of e�ciency. Consequently, the
prediction of the optimum frequencies show a little disagreement with the measurement
for the same receiver positions (as shown in Figure 4.2.6(d)) even if the general behaviour
is similar to the measurement.
Finally, it is worth noticing that the e�ciency and e�ciency peaks are very close when

the receiver is perfectly aligned with the resonators I, III and V for the condition A (see
Figure 4.2.6 (a)) or to the resonators II and IV for the condition B (see Figure 4.2.6 (b)).
Correspondingly, in the same positions the optimum frequencies of both conditions A and
B are close to the resonant frequency, as shown in Figure 4.2.6 (b) and (d), respectively.
This behaviour enhances the assumption that the matching condition occurs every two
cells (as previously demonstrated by the equivalent impedance values, Table 4.1) .

4.3. Discussion of the results

The experimental analysis presented in this work shows the behaviour of the power deliv-
ered to a receiver sliding along a metamaterial for three di�erent values of a termination
impedance, ZT (the conditions A, B and C presented in Section 4.1). In the experiments,
it was found that the termination impedance a�ects the received power behaviour mod-
ifying the equivalent impedance Zeq and, hence, the position of the receiver where the
maximum value of e�ciency is achieved. In this way, it is possible to obtain the best
behaviour for any position of the receiver by varying the ZT value between 0 and a high
value (in this work 120Ω, almost a hundred times larger than ω0M) in order to main-
tain the equivalent impedance always about ω0M (as reported in Table 4.1). In Figure
4.3.1, the envelopes of the e�ciency and peaks of e�ciency obtained for the termina-
tion impedances of 0 and 120Ω with the respective optimum frequencies are shown as a
function of the receiver position. It can be seen that the envelope of the e�ciency has
globally higher values than the cases with constant termination impedances. Moreover,
the envelope of the e�ciency overlaps the envelope of the e�ciency peaks for a number of
receiver positions. Also, the optimum frequencies, with the exception for the �rst cells,
are closer to the resonant frequency: this is due to the equivalent impedance closer to
the matching condition.
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Figure 4.3.1.: Comparison between simulated envelopes of e�ciency and e�ciency peaks
(a) and optimum frequencies (b).

Transmitted power and e�ciency are investigated under di�erent termination impedance
conditions that improve signi�cantly the e�ciency at the resonant frequency. All the con-
siderations presented in this work are supported by circuital, numerical and experimental
results.
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5. Design of Metamaterial with
Multilayer Flat Spiral Resonators for
WPT

This Chapter presents a procedure to characterize a multilayer and multiturn �at spiral
resonator through 2D �nite element simulations and numerical calculations. The pro-
cedure is general and valid for both rectangular and square shapes. It considers all the
parasitic e�ects occurring for low frequencies (from kHz to few MHz) and for complex
structures (i.e., skin e�ect, crowding current density, proximity e�ect, stray capacitance
and dielectric losses). In particular, the work takes into account validated procedures
both proposed by literature and also new and more complete simulation methods (par-
ticularly regarding AC resistance). Two resonator samples with di�erent shapes and
dimensions are investigated, and with large number of turns and layers in order to val-
idate the proposed procedure. The characterization is supported by comparisons with
Sonnet software and allows the self-resonant frequency and quality factor, fundamentals
for the design of wireless power transfer via metamaterials, to be predicted with good
accuracy.
The Chapter is organized as follows: after a brief explanation of the design of the

single layer �at spiral resonator, an accurate modelling method of the multilayer �at
spiral resonator is reported. The numerical method used in this work to de�ne the AC
resistance, self-inductance and stray capacitance is detailed in Section 5.2. Also, after
the explanation of the electromagnetic model simulated with Sonnet, the main results
of the proposed method are shown in Section 5.3: they consist in analyzing the main
electrical parameters as a function of frequency and geometrical dimensions in order to
predict the self-resonant frequency and quality factor of the resonators. All the results are
compared with an electromagnetic programme (Sonnet [52]). Finally, in Section 5.3.2,
the conclusions and main considerations about the validation are discussed.

5.1. Modelling of multilayer �at spiral resonator

Flat spiral resonators are widely used in radio frequency (RF) applications, such as
ampli�ers, oscillators, �lters and sensors [53]. Recently, they are also considered by
researchers as intermediate resonators (spiral resonator, SR) or metamaterial cells in
wireless power transfer applications, thanks to their capability to tune the self-resonant
frequency to a few MHz with good performance [54, 32, 55]. Furthermore, the possibility
to design �at spiral resonators with di�erent shapes and frames (such as printed circuit
board, PCB, fabricated on a �exible substrate as polyimide or on the more rigid FR-4
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(a) (b)

Figure 5.1.1.: Examples of single layer and multilayer �at spiral resonators (a) and their
quasi-static equivalent circuit (b).

one) makes these resonators suitable for industrial and biomedical applications operating
below a few tens of MHz (such as the 13.56 MHz (license free Industrial, Scienti�c and
Medical, ISM, band).
In Figure 5.1.1(a), examples of single layer and multilayer �at spiral resonators are de-

picted. As it is known, the high frequency behaviour of an inductor is very di�erent from
that at low frequency because the stray capacitances cannot be neglected [56, 57, 46].
Also, the increase of the frequency involves an increment of the resonator resistance par-
ticularly due to the skin and proximity e�ects. For these reasons, referring to 5.1.1(b), the
resonator has to be electrically modeled with a lumped stray capacitance, Cp, connected
in parallel between the terminals of the winding which presents an AC resistance, R, in
series to the self-inductance, L. Finally, a parallel resistance RP is taken into account
to represent the substrate losses that worsen the quality factor and e�ciency also at low
frequencies [44, 58]. Consequently, the self-self-resonant frequency f0 and quality factor
Q are calculated as

f0 =
1

2π
√
LCp

(5.1.1)

Q =
Im(Ẑ)

Re(Ẑ)
(5.1.2)

with the resonator impedance de�ned as

Ẑ =
(R+ jωL)

(R+ jωL)(1/Rp + jωCp) + 1
(5.1.3)

5.2. Numerical characterization

The theoretical predictions of the self-inductance and stray capacitance are quite di�erent
and more complicated if a number of layers are considered: in fact, mutual coupling
between layers exists and stray capacitances between layers and turns must be taken into
account as they strongly a�ect the self self-resonant frequency calculation. Furthermore,
the AC resistance is a�ected from strong proximity e�ect. Nevertheless, as for the single
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layer, at high frequency a multilayer �at spiral resonator can be electrically modeled as
shown in Figure 5.1.1(b) and the self-resonant frequency is consequently calculated with
(5.1.1). The accurate design of a single metamaterial cell is of fundamental importance
for the system design and performance in terms of quality factor and losses (given by
magnetic e�ects and AC resistance), particularly for wireless power transfer systems.
Hence, this work proposes a numerical characterization of a multilayer �at spiral res-

onator that can be used as a metamaterial. The characterization presented is numer-
ical and use the �nite element programme FEMM for calculating the resistance, self-
inductance and stray capacitance [59] in order to validate and predict the parasitic pa-
rameters with very good agreement. In particular, a novel and accurate procedure for
the AC resistance calculation is proposed.
A detailed electrical model of the multilayer �at spiral resonator is now presented. The

numerical characterization proposed is totally generic and applicable for both square and
rectangular �at spiral resonators.
The main geometrical dimensions of a multilayer �at spiral resonator are shown in

Figure 5.2.1, namely:

� N , number of turns per layer;

� n, number of layers;

� l and lm larger and shorter external sides, respectively (for a square shape, l = lm
);

� w, metal track width;

� s, spacing between turns;

� tc, metal track thickness;

� h, distance between layers.

5.2.1. AC Resistance: skin and proximity e�ects

The resistance R of a multilayer �at spiral resonator must take into account all the para-
sitic e�ects dominating in AC frequency especially in complicated structures. In fact, skin
and proximity e�ects increase signi�cantly the resistance value with the frequency and,
particularly, number of layers, turns and closeness of the sides. This e�ect is enhanced
at a high degree decreasing h and s [46]. This subsection describes a novel approach for
calcualting the AC resistance through the Finite Element Method Magnetics (FEMM)
[59] by carrying out a 2D analysis on a transversal cross section of the resonator. The
parallel sides of the resonator are divided in elements such that facing elements have
the same length. The total number of layer elements is nl. An example of partition of
three parallel sides of a resonator with three turns is depicted in Figure 5.2.2(a). There
are three groups of elements with the same length: l1 = l2 = l3, l4 = l5 = l6 = l7 and
l8 = l9. The partition has to be carried out also for the other remaining parallel sides.
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Figure 5.2.1.: Particular of multilayer �at spiral coil: main geometrical dimensions (draw-
ing not in scale).

Following, the elements with the same length are simulated with FEMM and the per unit
length (p.u.l.) resistance of each ith-element Ri is found by applying a sinusoidal current
to it. In this way, all the di�erent current distributions are considered and resonators
can be quickly and accurately analysed through 2D �nite element simulations. Figures
5.2.2(b)-(d) show the current distribution in the elements in which the resonators has
been partitioned calculated with FEMM.
Consequently, the resistance of the whole rectangular resonator is obtained by summing

all the calculated resistances

R = 2

nl·n∑
i=1

Rili + 2

nl·n∑
i=1

Rilmi (5.2.1)

where li and lmi are the lengths of the ith-element of the considered external sides l and
lm, respectively. If a square shape resonator is considered l = lm and the total resistance
is obtained directly as R = 4

∑nl·n
i=1 Rili.

In Figure 5.2.3, the p.u.l. resistance R predicted with the proposed procedure and
compared with Sonnet simulations is shown. R is calculated as a function of the number
of turns N and for di�erent s, n and h. In each simulation w = 1 mm and f = 1 MHz.
As shown, the proximity e�ect is evident: R increases particularly with the number of
conductors and their closeness. In fact, considering the curves for n = 2, the augment
of N does not a�ect signi�cantly the p.u.l. resistance. On the contrary, if more layers
are considered, as for the resonator with n = 6, h = 1 mm and s = 1 mm, the number
of turns has a great impact on R, even more evident for smaller distances between sides
(n = 6, h = 0.5 mm and s = 0.5 mm).
Vice versa, reducing the number of turns, the proximity e�ect is much lower also for
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(a)

(b)

(c)

(d)

Figure 5.2.2.: Top view of the partition of a �at spiral resonator layer with N = 3. The
partition of the three parallel sides with nl = 9 is shown. The facing
elements have the same length (a). Current distribution in the partition
elements with l1 = l2 = l3 (b), l4 = l5 = l6 = l7 (c) and l8 = l9 (d)
simulated with FEMM for a resonator with N = 3, n = 2, w = 1 mm,
s = 0.5 mm, h = 0.5 mm and tc = 0.05 mm .
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Figure 5.2.3.: P.u.l. resistance as a function of the number of turns for di�erent layer
numbers (n), distances between layers (h) and turns (s). In each simulation
w = 1mm and f = 1MHz. Comparison between proposed procedure (`x')
and Sonnet simulations (`o').

the largest number of layers. The same e�ects are evident also for lower frequencies, even
if the p.u.l. resistance has smaller values particularly for large number of turns, as shown
in Figure 5.2.4 for f = 0.25 MHz.

5.2.2. Self-Inductance

As regards the self-inductance of a multilayer �at spiral resonator, L can be calculated by
means of the partial inductance concept, outlined by Ruehli in [60]. Brie�y, the method
consists in the calculation of the partial self- and mutual inductances of N ·n simpler and
straight sub-elements into which the whole resonator can be divided, as it is demonstrated
that an inductance contribution can be uniquely associated to each element of a closed
loop. The method holds also for incomplete loops. In this way, the self-inductance
of complicated shape resonators can be simply calculated (for example zig-zag spiral
resonators with uniform and nonuniform arms[36, 61], as reported in Appendix B). The
total inductance of a loop, L, is then equal to the sum of the partial self-inductance of
each straight element plus all the partial mutual inductances between the sub-elements:

L =

N ·n∑
i=1

N ·n∑
j=1

Mpij (5.2.2)

where Mpij (j 6= i) is the partial mutual inductance between any two sub-elements i
and j of the spiral resonator and Mpij = Lp when (j = i) representing the partial self-
inductance of the i-th rectangular track. As regards Mpij , the numerical calculation
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Figure 5.2.4.: P.u.l. resistance as a function of the number of turns, for di�erent layer
numbers (n), distances between layers (h) and turns (s). In each simulation
w = 1mm and f = 0.25MHz. Comparison between proposed procedure
(`x') and Sonnet simulations (`o').

validated and proposed in [49] is used and brie�y reported in Chapter 3. Lp is calculated
with FEMM. The partial self- and mutual inductances of straight conductors of rectan-
gular cross-sections can also be analytically calculated in approximate and exact forms
as shown in [62] and [63], respectively.

5.2.3. Stray capacitance and parallel resistance

The stray capacitance Cp is found as the sum of all the parasitic capacitances distributed
in every adjacent couple of conductors composing the multilayer �at spiral resonator.
Both the capacitances between turns Cp,tt and layers Cp,ll are considered. Cp,tt per layer
is easily found through the formula proposed in [44]. Regarding the Cp,ll calculation,
the method proposed in [64] is used, where the stray capacitance between layers is found
for multilayer spiral resonators with circular shapes and traditional or alternating wind-
ings. Brie�y, the method consists in the calculation of the stray capacitance through the
following expression

Cp,ll =
2Ect
V 2
t

=

N(n−1)∑
i=1

N(n−1)∑
j=1

Ecij

V 2
t

(5.2.3)

where Vt is the voltage source applied to the resonator and Ect is the total electrical
energy stored among layers in the resonator, obtained by the sum of the energy Ecij
between two metallic tracks i and j, given by Ecij = (1/6)Cij [V

2
Aij + V 2

Bij + VAijVBij ],
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Figure 5.2.5.: Electrical energy associated to each couple of conductors considered. Cross-
sectional view of the windings of a �at spiral resonator with N = 3 and
n = 4.

Table 5.1.: Main geometrical dimensions of the two �at spiral resonators considered, SRs
and SRr.

l lm w s tc h
[mm] [mm] [mm] [mm] [mm] [mm]

SRs 40 40 1 0.5 0.05 0.25
SRr 35 20 0.5 0.5 0.1 0.1

where VAij and VBij are the di�erence of potential between the start and end terminal
points, respectively, of tracks belonging to turns of facing layers. As an example, Figure
5.2.5 shows the electrical energyassociated to the �rst turn of the �rst layer and the �rst
turn of the second layer. Cij is the capacitance between the tracks i and j. Finally, the
total stray capacitance Cp is found by the following expression

Cp = Cp,ll + nCp,tt. (5.2.4)

The parallel resistanceRp is commonly neglected in many applications because its value
normally corresponds to a reactance much larger than the reactance Xp = 1/ωCp. In
addition, if lumped capacitances are connected to the resonator to tune the self-resonant
frequency to a value much lower than the intrinsic one (5.1.1), RP can be furtherly
neglected for frequencies smaller than the one yielding the maximum of the quality factor
[58]. However, multilayer resonators can have a low self-resonant frequency (5.1.1) and,
when operate at even lower frequencies, Rp may not be negligible any longer and it
may a�ect signi�cantly the Q value, as it is shown in Figure 5.2.6. In this case, once
the equivalent stray capacitance of the system is found (5.2.4), the equivalent parallel
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Figure 5.2.6.: Comparison between the quality factors with (QRp) and without (Qth)
dielectric losses performed with Sonnet. The simulated spiral resonator
has the geometrical dimensions of the resonator SRr tabulated in Tab.
5.1, with n = 6 and N = 8 and FR4 insulating layers. The self-resonant
frequency f0 is about 3.8 MHz.

resistance is simply approximated by means of the loss tangent, tan δ [65]

Rp =
1

ωCp tan δ
. (5.2.5)

5.3. Sonnet validation

All the numerical results presented in this Section are compared with those obtained with
Sonnet software [52], based on the Method of Moment (MoM) technique which takes into
account all coupling and radiation e�ects from DC to THz. It is usually used for �lters,
antennas and generally for printed circuit board (PCB) but, recently, it is also used for
Radio Frequency Identi�cation (RFID) tag and reader design [66].
All the electrical parameters are calculated through the admittance parameter Ŷ21 as

a function of frequency. The resistance RSonnet is thus predicted using

RSonnet = −Re

(
1

Ŷ21

)
(5.3.1)

and the self-inductance LSonnet with

LSonnet =
Im(1/Ŷ21)

2πf
. (5.3.2)
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Figure 5.3.1.: Self-inductance of the resonators SRs (a) and SRr (b) as a function of
the number of turns for di�erent layer numbers. Comparison between the
proposed model (`x') and Sonnet simulations (`o').
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The self-resonant frequency f0,Sonnet is calculated analyzing the behaviour of the self-
inductance as a function of frequency (swept from 0.1 MHz to the self-resonant fre-
quency). As regards the stray capacitance, it can be calculated using (5.1.1) once the
self-inductance and self-resonant frequency are found. In each simulation, FR4 insulating
layers (εr = 4.4 and tan δ = 0.02) are interposed between the inner resonator layers.

5.3.1. Results and comparisons

Two di�erent resonators, SRs and SRr, are considered; their geometrical dimensions
are tabulated in Table 5.1. SRs has a square shape and SRr a rectangular one. The
electrical parameters L and Cp of both samples are studied as a function of turnsfor
di�erent layers numbers and are shown in Figs. 5.3.1 and 5.3.2, respectively. In Figure
5.3.3 the self-resonant frequency of the resonators is plotted.
As widely con�rmed in the literature, an increase of the number of turns and layers

involves a signi�cant augment of the self-inductance, as both resonators show in Figs.
5.3.1(a) and (b). However, di�erent considerations must be done as regards the stray
capacitance shown in Figure 5.3.2. In fact, although the stray capacitance CP increases
with the increase of the number of turns, it radically drops with the number of layers.
For example, with reference to Figure 5.3.2(a), the simulated Cp for the resonator SRs
with N = 11 falls down from beyond 70 pF for n = 2 to about 35 pF for n = 8. The same
considerations hold for the resonator SRr in Figure 5.3.2(b). Anyway, for an increasing
layer number, the increment of the self-inductance is larger than the stray capacitance
decrease, resulting in a reduction of the self-resonant frequency, as shown in Figs. 5.3.3(a)
and (b), with a signi�cant variation particularly when the number of turns is small.
Thus, once all the parasitic e�ects a�ecting the resonator have been considered, the

quality factor as a function of the geometrical dimensions and frequency can be predicted
through (5.1.2). The Q of SRs and SRr is shown in Figure 5.3.4 and investigated versus
the number of turns and layers and for frequencies up to the relevant quality factor peak.
As it can be noticed, the peak of the quality factor collapses drastically with the increase
of N and n and occurs at frequencies lower than those corresponding to maximum value
(N = 2, n = 2). However, at the lowest frequencies the increment of N and n involves
a slight increment of Q. In fact, with reference to Figure 5.3.4(a), for f = 0.1 MHz the
quality factor increases from 5 with N = 2, n = 2 to 21 with N = 11, n = 8. The same
behaviour is also found for the resonator SRr, whose quality factor is depicted versus
the number of layers and turns as a function of frequency in Figure 5.3.4(b).

5.3.2. Discussion of the results

Multilayer and multiturn �at spiral resonators are components that present a di�cult
electrical characterization. In particular, a large number of conductors and their prox-
imity may enhance parasitic e�ects like crowding current density, proximity e�ects and
stray capacitances. This Chapter presents a complete modelling of this type of resonators
analyzing the main electrical parameters as a function of the geometrical dimensions and
frequency. The proposed design is supported by numerical simulations and can be im-
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Figure 5.3.2.: Stray capacitance of the resonator SRs (a) and SRr (b) as a function of
the number of turns for di�erent layer numbers. Comparison between the
proposed model (`x') and Sonnet simulations (`o').
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Figure 5.3.3.: Self-resonant frequency of the resonators SRs (a) and SRr (b) as a function
of the number of turns for di�erent layer numbers. Comparison between
the proposed model (`x') and Sonnet simulations (`o').
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Figure 5.3.4.: Quality factor of the resonators SRs (a) and SRr (b) for di�erent number
of layers and turns as a function of frequency. Comparison between the
proposed model (`x') and Sonnet simulations (`o').
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plemented and interfaced with �nite element programme in a computing environment
in order to obtain accurate results. The validation of the procedure is made comparing
the results with those obtained with the Sonnet software. In particular, regarding the
self-inductance, the largest di�erence in the comparison is found for the maximum num-
ber of turns and layers, as shown in Figure 5.3.1(a). Di�erently, the stray capacitances
agree with those found in the electromagnetic simulations for di�erent dimensions and
shapes. Referring to Figure 5.3.2, a di�erence is found for both resonators SRs and SRr
for the maximum number of turns and minimum number of layers (e.g., 15 pF for SRs
with n = 2 and N = 11) but the general behaviour is well predicted. Consequently, the
self-resonant frequency is predicted with good accuracy, as Figure 5.3.3 shows.
As regards the quality factor, the biggest di�erence is found near the peaks (as shown

in Figure 5.3.4). The biggest di�erence in the Q prediction is about 15 and is obtained
for the SRr for the maximum number of turns and layers, due to the di�culty in the
resistance estimation (as demonstrated by the p.u.l. resistance shown in Figure 5.2.3).

5.4. Metamaterial modelling

According to the magnetoinductive waves theory (MIW), the current �owing in the res-
onator ith can be expressed as Îi = I1e

−γ̂(i−1)d, where I1 is the phasor of the current
�owing in the �rst cell, d is the periodic distance between two adjacent cells and γ̂ is the
propagation constant de�ned as γ̂ = α + jβ . α and β are the attenuation and phase
constants, respectively, and they could also be expressed in terms of electrical parameters
[27]. The attenuation constant is particularly interesting because meaning of the wave
losses per cell and it can be de�ned as follows[29]:

α =
1

d
ln[

1

kQ
+

√
1 +

1

kQ
] (5.4.1)

where k = M/L is the coupling coe�cient between two adjacent resonators and the
quality factor of the each resonator can be approximated at low frequency as Q = ω0L/R.
From the coupling coe�cient it is possible to obtain the bandwidth in which the wave
propagation is achieved with very low losses, f0/

√
1 + k ≤ f ≤ f0/

√
1− k [27, 29].

5.4.1. Investigation on |kQ| product

In Figs. 5.4.1 and 5.4.2 the quality factor Q and coupling coe�cient k are shown as a
function of the number of turns and for di�erent layer numbers, at f0 = 300kHz. In
respect of Figure 5.4.1 , the quality factor strongly depends on the geometrical dimen-
sions: Q tends to increase with the number of turns achieving a peak for any number
of layers. Furthermore, the peak augments its value increasing the number of layers (in
this case from 23 with n=2 to 35 with n=8) and it occurs for a decreasing number of
turns. Di�erently, the magnitude of the coupling coe�cient signi�cantly decreases with
the number of turns but its value can be considered quite similar increasing the layer
numbers.
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Figure 5.4.1.: Quality factor as a function of the number of turns for di�erent layer num-
bers.
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Figure 5.4.3.: |kQ| product as a function of the number of turns and layers.

However, with respect to (5.4.1), it could be also important to monitor the |kQ| product
as a function of the number of turns and layers. Figure 5.4.3 shows that the |kQ| product
collapses for an high number of turns and its peaks are located for a very low number of
turns: in fact, the highest value of the |kQ| product is achieved for the maximum value
of layers (n=8) and N=2.

5.4.2. Matching condition

A second important aspect for the metamaterial design is about the matching condition:
it is demonstrated that if the receiver is located on the last cell it is possible to set
Zd =

(ωMr,i)
2

Rr+Rload
= ω0M and match the system at the resonant frequency [38] by adjusting

its self-inductance or the mutual inductance between the receiver and the last resonator.
Under this condition, a system composed of a number of resonators can be represented
with a single impedance in series to the resistance of the �rst cell whose value is close
to Zeq = ω0M [30]. Furthermore, as noted in literature, the maximum power transmit-
ted is achieved if the input impedance is equal to the complex conjugate of the source
impedance. If the source impedance is a resistance Rs:

Re{Ẑin} = Rs. (5.4.2)

The input impedance depends on the resonance topology (i.e., series resonance SR
or parallel resonance PR, as depicted in Figure 5.4.4) of the �rst cell by the following
expressions {

Ẑin,SR = ω0M +R

Ẑin,PR = ( jω0C + 1
ω0M+R+jω0L

)−1
(5.4.3)
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(a) (b)

Figure 5.4.4.: Lumped equivalent impedance with the �rst cell in series (a) and parallel
(b) resonance.

at the resonant frequency f0.
Consequently, from the equations reported in (5.4.3), it is possible to design the self-

inductance of the cell expressing all the parameters as a function of the self-inductance
and neglecting the resistance to a �rst approximation{

LSR = Rs
ω0k

LPR = kRs
ω0(1+k2)

. (5.4.4)

Considering the series resonance SR, the self-inductance LSR satisfying the condition
(5.4.2) is easy calculated from

Rs = Re

{
ω0M +R+ j(ωLSR −

1

ωC
)

}
. (5.4.5)

Thus, expressing M = kL and assuming ω0M � R at ω = ω0, the input impedance is
real and it is possible to obtain

LSR =
Rs
ω0k

. (5.4.6)

.
Considering the paralle resonance PR, LPR can be calculated from:

Rs = Re

{(
jωC +

1

(R+ ω0M + jωLPR)

)−1}
. (5.4.7)

Taking the previous considerations into account, at the resonant frequency it is possible
to consider that ω0C = 1

ω0LPR

Rs = Re

{(
j

ω0L
+

1

(ω0kL+ jω0LPR)

)−1}
(5.4.8)

Rs = Re

{(
k

ω0LPR(k2 + 1)
+

jk2

ω0LPR(k2 + 1)

)−1}
(5.4.9)
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Figure 5.4.5.: LSR and LPR designed with (5.4.4) as a function of source resistance and
for di�erent frequencies.

hence

LPR =
kRs

ω0(1 + k2)
. (5.4.10)

In Figure 5.4.5, the values of the self- inductance for the two di�erent topologies
are shown as a function of the source resistance Rs up to 50Ω, for di�erent resonant
frequencies and coupling coe�cient equal to k = −0.15. It is important to notice that
in the parallel topology, the self- inductance is considerably lower, suggesting that the
parallel topology can be more e�ectively used for high value of Rs or at very low resonant
frequency. However, this consideration about L must take into account the resistance
associated to the resonator that should allow good values of |kQ| to be achieved.

5.5. Electromagnetic simulations (f0 = 300kHz)

In this study the metamaterial is tuned to 300kHz and composed of multilayer �at spiral
resonators with one turn (N = 1) and four layers (n = 4) and whose dimensions are
tabulated in Table 5.2. With respect to the Figure 5.4.5, if the source resistance is chosen
equal to 50Ω (like the input source of a network analyzer), the self- inductance of the cell
with the lumped capacitance in parallel should be about 4µH and the coupling coe�cient
at least k = −0.15. Furthermore, the single cell is designed with large conductor width,
w, and thickness, tc, in order to satisfy large quality factor value. Also, the resonator
shape is rectangular being l is the larger external dimension and lm the smaller one. The
number of turn, N, and the layers, n, are chosen to satisfy the considerations made in
the previous Section 5.4.1, regarding the maximization of |kQ| product. Consequently,
the single cell presents theoretical values of self- inductance, L, equal to 3.87µH and AC
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Table 5.2.: Geometrical dimensions of the single cell of the simulated metamaterial.
l [mm] lm [mm] w [mm] s [mm] h [mm] tc [mm]

80 60 4.5 2.5 0.5 0.6

resistance equal to 0.084Ω. In this way the theoretical quality factor Q at the resonant
frequency is 86. Finally, considering the distance between two cell equal to 0.25mm, the
predicted coupling coe�cient is k = −0.12, which involves ω0M = 0.9Ω.

5.5.1. Transmission coe�cient and e�ciency

The performances of a metamaterial for WPT can be described in terms of transmission
coe�cient and e�ciency [67]. In this Section, a metamaterial is simulated with Sonnet
Software, for the �rst time used for this kind of simulation. Hence, a short metamaterial
composed of 5 cells is implemented; its total length is 301mm. Each cell has a lumped
capacitance equal to C = 75nF connected in parallel with each self-inductance. The �rst
cell is supplied by a port whose internal resistance is 50Ω. The signal is received by a
port with internal resistance setted equal to ω0M in order to represent the receiver coil
(Zd) matched to the metamaterial line. The whole system is represented in Figure 5.5.1.

It is important to underline that the simulations are performed following the consider-
ation introduced in the Chapter 2. Brie�y, it consists in the introduction of a termination
impedance which is inserted in series with the last cell. By varying its value depend-
ing on the position of the second port (i.e., the receiver location) between 0 (when the
second port faces the I, III and V cells) and ZT � ω0M (or non-resonating cell, when
the second port is aligned to the II and IV cells), the peaks of transmission coe�cient
can be obtained along the whole metamaterial at f0, as depicted in Figure 5.5.2. Con-
sequently, the maximu e�ciency can be obtained for any position of the receiver along
the metamaterial and its value is plotted in Figure 5.5.3 as a function of the second port
position. As it can be noticed, the simulated e�ciency ranges between 60% and 80% and
it is calculated through the simulated transmission and re�ection coe�cients S21 and
S11, respectively

η =
S2
21

1− S2
11

. (5.5.1)
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5.5. Electromagnetic simulations (f0 = 300kHz)

Figure 5.5.1.: Metamaterial composed of 5 cell implemented in Sonnet Software.
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Figure 5.5.2.: Transmission coe�cient as a function of frequency when the second port
faces the I (a), II (b), III (c), IV (d) and V (e) cell.
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5.5. Electromagnetic simulations (f0 = 300kHz)
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Figure 5.5.3.: E�ciency at f0 as a function of the second port position.
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6. Original Contribution and Conclusions

� This thesis presents a deep study regarding Wireless Power Transfer (WPT) sys-
tems composed of a number of resonators arranged in a planar con�guration (i.e.,
metamaterial line) and trasmitting power to a receiver sliding on them.

� The thesis starts from a circuital analysis which allows the equivalent and input
impedances of the system to be calculated. This study is carried out from an
analytical and numerical point of view.

� Two experiments are developed and described in order to analyse the behaviour of
the transmitted power along short metamaterial lines. The �rst veri�cation con-
cerns a system composed of six planar resonators designed to resonate at 20MHz.
Two non-resonating coils are used as emitter and receiver and matched using the
novel approach based on magnetoinductive waves theory (MIW). In this case, the
maximum transmitted power occurs only when the receiver coil is located on the
last resonator and this laboratory experience is con�rmed for four di�erent ar-
rangements. The second experimental veri�cation is made with �ve resonators
tuned to 13.56MHz whose purpose is to analyse the real e�ects of the termina-
tion impedance on the WPT metamaterial e�ciency. Based on previous works of
prof. C.J. Stevens, this thesis shows that, by appropriately varying the value of an
impedance connected with the last cell of the metamaterial, it is possible to achieve
the matching condition and enhance the power transmitted to the receiver along
the metamaterial for the same resonant frequency. This study analyses the e�ects
of the termination impedance on the transmission coe�cient and e�ciency in terms
of the receiver position and frequency. All the experimental tests are made with
�at spiral resonators and supported by numerical simulations based on formulas
proposed by literature.

� A numerical electrical characterization of multilayer and multiturn �at spiral res-
onators is presented: a novel approach to calculate the alternating current (AC)
resistance is proposed (considering skin, proximity and crowding current e�ects)
and self-inductance, stray capacitance and dielectric losses are taken into account.
The characterization is made interfacing a numerical code with a �nite element one
and validated through comparisons with electromagnetic simulations. The numer-
ical characterization is proposed for multilayer and multiturn �at spiral resonators
with both square and rectangular shapes. Multilayer �at spiral resonators can
achieve large values of self-inductance and a low self-resonant frequency showing
the possibility to be applied at low operating frequencies (kHz - a few MHz) in order
to be supplied by electronic power converters. Finally, important considerations for
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the design of metamaterial composed of multilayer spiral resonators are detailed in
this thesis, particularly with regards to the product between the coupling coe�-
cient magnitude |k| and Q factor and the self-inductance of the metamaterial cell in
order to reduce the losses per cell and match the system. All these considerations
are used to design a WPT metamaterial operating at 300kHz: the electromag-
netic simulations show an e�ciency between 60% and 80% along the metamaterial
length.

� Finally, simultaneously to the multilayer �at spiral resonator, the inductance char-
acterization is made and validated with experiments regarding single layer solenoid
coils and, especially, planar zig-zag spiral inductors. In particular, it is shown
that zig-zag spiral inductors with uniform and nonuniform arms can increase their
self-inductance up to 40%, dependently on the spiral angle, mantaining the same
external dimensions.
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A. Resistance and Self-inductance of
Single Layer Solenoid Coil

This appendix presents a validation of formulas for calculating the resistance and self-
inductance of solenoid coils, used to design the emitter and receiver in Chapter 3. This
validation is based on the electrical characterization of a WPT system proposed in [46].
The analytical formulas that calculate the lumped-circuit parameters of the solenoid coils
were assessed by comparison to the numerical simulations with Flux 2D. The resistance
was calculated per unit length (p.u.l.) for both circular and rectangular cross sections, tak-
ing both skin and proximity e�ect into account. Several calculations of the self-inductance
of the coils were carried out varying the coil radius, distance between turns and number
of turns. The frequency and geometrical parameters considered in the analysis have the
variability intervals shown in Table A.1.

Resistance

The resistance of a multiturn coil depends on the distribution of the current over the
conductor cross section, which is determined by two factors: the skin e�ect, which causes
for high frequencies a concentration of the current near the outer surfaces of the conduc-
tor, and the proximity e�ect, due to currents in adjacent conductors, which forces the
current to the outside edges [68, 69, 70]. The latter is particularly important for sys-
tems with several closely spaced conductors, as the variation in the current distribution
can increase the resistance of the conductors with a contribution even larger than that
produced by the skin e�ect. The skin e�ect and proximity e�ect can be reduced using
litz-wire windings [71, 72]. The analytical expression for the resistance which takes both
skin e�ect and proximity e�ect into account used in the calculations can be written as

R = Rs(n+ kp), (A.0.1)

Table A.1.: Variability intervals of the frequency and geometrical parameters considered
in the analysis.

Parameter Minimum value Maximum value

Frequency 100 kHz 300 kHz
Coil radius 10 mm 400 mm

Distance between wire turns 1 mm 15 mm
Number of turns 2 10
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A. Resistance and Self-inductance of Single Layer Solenoid Coil

where Rs is the p.u.l. resistance of a conductor that takes the skin e�ect into account
and n is the number of adjacent conductors; kp is a conventional normalized coe�cient
which represents the contribution to the resistance value due to the proximity e�ect. For
conductors of circular cross section [73]

Rs =
1

2πa

√
µω

2σ
(A.0.2)

where µ and σ are the magnetic permeability and electrical conductivity of the conduc-
tor, respectively, and a is the cross-sectional radius of the conductor coil, whereas the
coe�cient kp is a function of the geometry of the coil (number of turns, distance between
conductors, coil diameter, etc.)

kp =
1

2

n∑
m=1

t∑
s=1

|âms|2 . (A.0.3)

In (A.0.3) t is the number of Fourier series terms used to represent the current density.
The complex coe�cients âms can be found solving a system of coupled integral equations
following the procedure detailed in [74] (method of least squares).

The results of the comparison between the predictions given by (A.0.1) and the nu-
merical calculations with Flux 2D are shown in Figure A.0.1 for the resistance (at the
frequency of 180 kHz) versus the coil radius of single-layer solenoid coils with four and
ten turns of circular cross section of 5 mm radius. It can be noticed that the resistance
calculated with (A.0.1) is constant regardless of the coil radius, whereas that calculated
with Flux 2D increases signi�cantly for small values of the radius. An explanation may be
that (A.0.3) fails to represent the proximity e�ect for coils with small radius. The errors
decrease increasing the coil radius and are within 10% for radii of practical dimension
(radius greater than 10 cm), such as those used in the experiments. For coils with four
and ten turns (A.0.1) and Flux 2D are in good agreement for a radius greater than 20
cm and 30 cm, respectively. This results shows that the less the number of turns, the less
is the import of the proximity e�ect in calculating the coil resistance. The calculation
is more complex for rectangular cross-section coils, probably because the current is less
uniformly distributed than in circular cross-section coils. The error between predictions
and Flux 2D ranges between 13 and 15% for radii of practical dimension. In particular,
referring to the experimental setup described in [46], the error between the calculations
with (A.0.1) and Flux 2D of the resistance of the emitter coil is about 6%, whereas it is
larger for the receiver coil (about 13%). The validation of the resistance calculation was
completed experimentally for the receiver coil; the measurement resulted in good agree-
ment with (A.0.1). Instead, it was not possible to measure the emitter coil resistance
with a good accuracy as the coil terminals were too large with respect to the impedance
analyzer clip �xtures to consider the measurement reliable. The validation results are
summarized in Table A.2.
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Figure A.0.1.: Resistance versus coil radius of single-layer solenoid coils calculated with
(A.0.1) and with Flux 2D (frequency of 180 kHz).

Table A.2.: Calculations and experimental measurements of the emitter and receiver coil
resistance (frequency of 180 kHz).
Coil Analytical formula (A.0.1) Flux 2D Measurement

[mΩ] [mΩ] [mΩ]

Emitter 4.97 5.3 �
Receiver 6.53 7.5 7.35
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A. Resistance and Self-inductance of Single Layer Solenoid Coil

Table A.3.: Self-inductance of emitter and receiver coils calculated and measured.
Coil Analytical formula (A.0.4) Flux 2D Measurement

[µH] [µH] [µH]

Emitter 0.815 0.773 0.860
Receiver 1.280 1.147 1.262

Self-inductance

Among the numerous formulas which have been proposed for calculating the self-inductance
of single-layer solenoid coils, the predictions closest to the numerical calculations of Flux
2D were obtained with the expressions given by [1, 2, 3]. The comparison was carried out
varying the radius, the number of turns and the distance between turns of single-layer
solenoid coils. In Figure A.0.2 the self-inductance versus the coil radius of a single-layer
solenoid coil (four turns, conductor radius 5 mm and distance between turns 10 mm)
calculated according to [1, 2, 3] and with Flux 2D is plotted; the relative error of the
analytical calculations with respect to Flux 2D is plotted in Figure A.0.3. The self-
inductance versus the number of turns of a single-layer solenoid coil (coil radius of 87.5
mm, conductor radius 5 mm and distance between turns 10 mm) is plotted in Figure
A.0.4; the relative error of the analytical calculations with respect to Flux 2D is plotted
in Figure A.0.5. The average error for the three analytical formulas with respect to Flux
2D is plotted in Figure A.0.6.
Although it did not always yield the best agreement with Flux 2D calculations, Almeida's

formula [3]

L = 4π10−4N2b

{
ln (1 + πF ) +

1

2.3 + 1.6/F + 0.44/F 2

}
(A.0.4)

was chosen due to its easiness of implementation into the Scilab computer code. In
(A.0.4) N is the number of turns, b is the coil radius and F = b/l, with l the coil axial
length. The self-inductance values of the emitter and receiver coils calculated with (A.0.4)
were compared to those obtained with both Flux 2D and experimental measurements;
the results are reported in Table A.3 and show that the the predictions obtained with
(A.0.4) are in very good agreement with the measurement.
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Figure A.0.2.: Self-inductance versus coil radius of a single-layer solenoid coil calculated
according to [1, 2, 3] and with Flux 2D.
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Figure A.0.3.: Relative error of the analytical calculations of Figure A.0.2 with respect
to the calculation with Flux 2D.
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Figure A.0.4.: Self-inductance versus number of turns of a single-layer solenoid coil cal-
culated according to [1, 2, 3] and with Flux 2D.
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Figure A.0.5.: Relative error of the analytical calculations of Figure A.0.4 with respect
to the calculation with Flux 2D.
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Figure A.0.6.: Average error of the analytical calculations with respect to Flux 2D for
the self-inductance of a single-layer solenoid coil.
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B. Inductance of Planar Zig-zag Spiral
Inductors with Uniform and
Nonuniform Arms

An analytical procedure for the calculation of the inductance of planar zig-zag spiral in-
ductors is proposed. The procedure is based on the partial inductance concept and models
the inductor as a series of a number of parts. The self-inductance of each individual
part, which has the shape of a parallelogram, and the mutual inductance between any two
parts of the inductor are determined. The inductance of a planar zig-zag spiral inductor
can thus be obtained for any width, length and angle of the saw-tooth con�guration. The
procedure is validated with experimental measurements; the agreement between estimated
and measured inductances is very good. Then, the inductances are analysed as a function
of the main geometrical dimensions, particularly the spiral angle; also, spiral inductors
with nonuniform zig-zag arms are considered. The calculated results of the self-inductance
are compared with those obtained by a programme based on magnetoquasistatic analysis
showing a good agreement.
�������
In this Appendix, an analytical procedure for the calculation of the inductance of a

planar spiral inductor with saw-toothed shaped sides based on the partial inductance
concept is presented. This geometry is derived from the spiral antenna with zig-zag arms
[75] and its structure is shown in Figure B.0.1. This type of inductor can be of interest
in several applications where there is a need to increase the total length of the inductor
and its inductance without changing its external dimensions.

Figure B.0.1.: Planar zig-zag spiral inductor subdivided in N parts.
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Figure B.0.2.: Particular of a single side with its geometrical dimensions.

Figure B.0.3.: Two parallel thin parallelograms b).

The zig-zag spiral inductor has a constant cross section of width w and negligible
thickness along its length, as shown in Figure B.0.2.
The angle of the spiral is θ, with 0 ≤ θ < π/2, and the length of each spiral element is

l. The inductor may then be thought as a bundle of parallel �laments, each of width dx
and carrying a current density constant along the length of each �lament. The current
density is then assumed uniform throughout the zig-zag spiral inductor. With reference
to Figure B.0.3 the partial self-inductance of a thin parallelogram can be evaluated as
a four-fold integral from the de�nition of the partial mutual inductance between two
parallel thin parallelograms p and q each with a constant current density

Mpq =
µ0
4π

1

wp

1

wq

×
ˆ wp

0

ˆ wq

0

ˆ lp

0

ˆ lq

0

dx1dx2dz1dz2√
(x2−x1+d)2+[z2−z1+(x2−x1) tan θ+s]2

(B.0.1)

where µ0 is the magnetic permeability of free space, wp, lp and wq, lq are the width
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and the length of the parallelograms p and q, respectively, d = xq1 − xp1 and s =
zq1 − zp1 . As the current density is assumed constant along the length of each �lament,
the partial mutual inductance between two �laments of the two parallelograms is given
by Neumann's formula

Mf =
µ0
4π

ˆ l1

0

ˆ l2

0

dz1dz2
r

(B.0.2)

where r is the distance between two elements of length dz1 and dz2 of the two �laments
of length l1 and l2, respectively.
The partial self-inductance of a thin parallelogram can be found from (B.0.1) by per-

forming the integration over the same area. The two parallelograms p and q are then the
same, and thus letting wp = wq = w, lp = lq = l, d = 0 and s = 0 in (B.0.1) we get the
expression for the partial self-inductance Lp = Mpp of a thin parallelogram as

Lp=
µ0
4π

1

w2

ˆ w

0

ˆ w

0

ˆ l

0

ˆ l

0

dx1dx2dz1dz2√
(x2−x1)2+[z2−z1+(x2 − x1) tan θ]2

. (B.0.3)

In general, the solution of the four-fold integration is obtained by introducing new vari-
ables u = x2 − x1 and v = z2 − z1 which yields the expression

Lp=
µ0
4π

1

w2

ˆ w

0
dx1

ˆ w−x1

−x1
du

ˆ l

0
dz1

ˆ l−z1

−z1

dv√
u2+(v+u tan θ)2

. (B.0.4)

The partial self-inductance of a thin parallelogram of width w and length l is then

Lp = µ0
4π

1
6w2

[
4t
(
w3 + l3

F 3
5

)
log(F5 − t) + 4w3F5 + 4l3

F 2
5

−2(F1 + F2)
(
w2 + l2

F 2
5

)
+ 2w2(3l + wt) log

(
wt+F1+l

w

)
+2w2(3l − wt) log

(
−wt+F2+l

w

)
+ 6wl2

F5
log
(
F1F5+F3

l

)
+6wl2

F5
log
(
F2F5+F4

l

)
+ 2l3t

F 3
5

log
(
F1F5+F3
F2F5+F4

)]
(B.0.5)

where
F1 =

√
w (wt2 + w + 2lt) + l2,

F2 =
√
w (wt2 + w − 2lt) + l2,

F3 = wt2 + w + lt,
F4 = wt2 + w − lt,
F5 =

√
t2 + 1,

and t = tan θ. It can be veri�ed that (B.0.5) reduces to the expression of the self-
inductance of a thin rectangle [60, 63, 76, 77] for t = 0.
It is not straightforward to �nd a closed form expression for the partial mutual induc-

tance between any two parallel thin parallelograms p and q of the planar spiral inductor.
An approximation can then be adopted for the parallelograms, which are represented as
straight �laments. The segments forming the axis of the planar zig-zag spiral inductor
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may be chosen as the �laments representing the parallelograms, as Figure B.0.4 shows.
The partial mutual inductance between two parallelograms can then be calculated as
the partial mutual inductance between two �laments, which is given by the Neumann's
formula (B.0.2). Campbell [78] �rst proposed a general solution of the Neumann integral
for any two straight wires with negligible thickness in any relative location in space. Here
we propose the solutions in a form more suitable for implementation in a computer code.
There are three possible con�gurations for any two �laments of a planar zig-zag spiral
inductor: i) the �laments are parallel, ii) the �laments are incident at a point forming an
angle to each other, iii) the �laments are perpendicular. The last case is the simplest as
the partial mutual inductance between any two perpendicular �laments is always zero.
The possible �lament con�gurations are shown in Figure B.0.5(a) and (b).

Partial mutual inductance between parallel straight �laments

The partial mutual inductance Mpf between any two parallel �laments AB, ab in any
relative position in space can be found from Neumann's formula (B.0.2), where r2 =
Pp2 + (S− s)2. With reference to Figure B.0.5(a), P ≡ A, Pp is the common perpendic-
ular of the two �laments, S and s are the distances from the common perpendicular Pp
of the two elements dS and ds in the positive directions along AB and ab, respectively.
From [78], we �nd

Mpf =
µ0
4π

[√
(pa− PA)2 + Pp2 −

√
(pb− PA)2 + Pp2

−
√

(pa− PB)2 + Pp2 +
√

(pb− PB)2 + Pp2

+(PA− pa) log
(√

(pa− PA)2 + Pp2 + pa− PA
)

−(PA− pb) log
(√

(pb− PA)2 + Pp2 + pb− PA
)

−(PB − pa) log
(√

(pa− PB)2 + Pp2 + pa− PB
)

+(PB − pb) log
(√

(pb− PB)2 + Pp2 + pb− PB
)]

(B.0.6)

that being PA = 0 can be simpli�ed as

Mpf =
µ0
4π

[√
pa2 + Pp2 −

√
pb2 + Pp2

−
√

(pa− PB)2 + Pp2 +
√

(pb− PB)2 + Pp2

−pa log
(√

pa2 + Pp2 + pa
)

+pb log
(√

pb2 + Pp2 + pb
)

−(PB − pa) log
(√

(pa− PB)2 + Pp2 + pa− PB
)

+(PB − pb) log
(√

(pb− PB)2 + Pp2 + pb− PB
)]
. (B.0.7)
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A particular case of this con�guration occurs when the two �laments are aligned and
o�set. In this case, P ≡ A ≡ p and thus Pp = PA = 0 so that (B.0.7) reduces to

Mpf =
µ0
4π

[−pa log(2pa)− (PB − pa) log 2(pa− PB)

+pb log(2pb) + (PB − pb) log 2(pb− PB)] . (B.0.8)

Partial mutual inductance between straight �laments
incident at an angle

The general case of the partial mutual inductance Mif between any two coplanar �la-
ments AB, ab incident at an angle θ that do not share a common point can be derived
from Neumann's formula (B.0.2), where r2 = S2 − 2Ss cos θ + s2. In fact, with refer-
ence to Figure B.0.5(b), P ≡ p and then Pp = 0; S and s are the distances from the
point P ≡ p of the two elements dS and ds in the positive directions along AB and ab,
respectively. From [78], we get

Mif=
µ0
4π

cos θ[
pa log

(√
−2paPA cos θ + pa2 + PA2 − pa cos θ + PA

)
+PA log

(√
−2paPA cos θ + pa2 + PA2 − PA cos θ + pa

)
−pa log

(√
−2paPB cos θ + pa2 + PB2 − pa cos θ + PB

)
−PB log

(√
−2paPB cos θ + pa2 + PB2 − PB cos θ + pa

)
−PA log

(√
−2PApb cos θ + PA2 + pb2 − PA cos θ + pb

)
−pb log

(√
−2PApb cos θ + PA2 + pb2 − pb cos θ + PA

)
+pb log

(√
−2pbPB cos θ + pb2 + PB2 − pb cos θ + PB

)
+PB log

(√
−2pbPB cos θ + pb2 + PB2 − PB cos θ + pb

)]
.

(B.0.9)

The case of two �laments starting from a common point is readily available from (B.0.9)
letting P ≡ p ≡ A ≡ a and thus PA = pa = 0:

Mif=
µ0
4π

cos θ [−PB log (PB(1− cos θ))− pb log (pb(1− cos θ))

+pb log
(√
−2pbPB cos θ + pb2 + PB2 − pb cos θ + PB

)
+PB log

(√
−2pbPB cos θ + pb2 + PB2 − PB cos θ + pb

)]
.

(B.0.10)
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Figure B.0.4.: Planar zig-zag spiral inductor with its axis.

(a) Parallel straight �laments. (b) Incident straight �laments forming an angle
θ to each other.

Figure B.0.5.: Con�gurations of any two �laments of a planar zig-zag spiral inductor.
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Results

The total inductance of a planar zig-zag spiral inductor is then calculated using (B.0.5)
for the partial self-inductance of the individual parts of the inductor and (B.0.7), (B.0.9)
for the partial mutual inductance between any two parts of the inductor. The procedure
was implemented in a Matlab� computer code. In the calculation we proceed through the
elements of the spiral inductor in one of the two possible directions. For example, choosing
the clockwise direction, we start from the part in the top left corner of the planar zig-zag
spiral inductor (see Figure B.0.4). The zig-zag spiral inductor is de�ned through the
overall dimension of the outer side, l0, the width w and spacing s of the lands, the angle
of the spiral, θ, and the number of turns, n. According to the geometrical dimensions,
the outer and inner contours of the spiral are built in a cartesian coordinate system, from
which the axis is obtained. The axis is subdivided into segments, each one corresponding
to an individual parallelogram of the zig-zag spiral inductor; the coordinates of the start
and end points of each segment, as well as the angle the segment connecting the two
points makes with the positive x axis, are collected in an array. A N × N matrix of
the partial self- and mutual inductances of the N spiral parts is then built. For each
individual parallelogram of the spiral inductor, the partial self-inductance is calculated
with (B.0.5). The partial mutual inductance between the straight �laments representing
any two parallelograms of the spiral is calculated as follows. In case the �laments are
parallel, the code calculates the projection of the point P ≡ A of the segment AB on
the segment ab (see Figure B.0.5(a)) and calculates the partial mutual inductance with
(B.0.7). If the two segments AB and ab belong to the same line, then the code calculates
the partial mutual inductance with (B.0.8). For �laments incident at an angle di�erent
than π/2, the intersection between the lines connecting A and B and a and b is found
(point P ≡ p, see Figure B.0.5(b)), and the partial mutual inductance is given by (B.0.9).
If the �laments AB and ab are incident and share a common point (viz., P ≡ p ≡ A ≡ a),
the partial mutual inductance is calculated with (B.0.10). Di�erently, the partial mutual
inductance is equal to zero if the �laments are perpendicular. The partial self- and mutual
inductances of the planar zig-zag spiral parts are then collected in a N ×N symmetric
matrix Lp

Lp =



Lp1 Mp12 · · · Mp1i · · · Mp1j · · · Mp1N

Mp12 Lp2 · · · Mp2i · · · Mp2j · · · Mp2N
...

...
. . .

...
. . .

...
. . .

...
Mp1i Mp2i · · · Lpi · · · Mpij · · · MpiN
...

...
. . .

...
. . .

...
. . .

...
Mp1j Mp2j · · · Mpij · · · Lpj · · · MpjN
...

...
. . .

...
. . .

...
. . .

...
Mp1N Mp2N · · · MpiN · · · MpjN · · · LpN


(B.0.11)

where Lpi is the partial self-inductance of the element i, and Mpij is the partial mutual
inductance between the elements i and j. The sum of the elements of Lp along any ith
row or column yields the partial inductance of the ith part of the planar zig-zag spiral
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inductor; the sum of all the elements of Lp yields the total inductance of the planar
zig-zag spiral inductor

LZSI =

M∑
i=1

M∑
j=1

Mpij (B.0.12)

The analytical calculations are validated by means of measurements carried out with
an Agilent 4263B LCR impedance analyzer, at the operating frequency of 100 Hz. Seven
planar zig-zag spiral inductor samples were fabricated with the photochemical etching
technique. The characteristics of the samples are summarized in Table B.1. Samples
I, II and III have the same overall dimension of the outer side, same land width and
spacing between lands of adjacent turns; their angles are π/6, π/4 and π/3, respectively.
With these geometrical parameters, the three samples have di�erent number of turns (11,
9 and 6, respectively), and di�erent number of parts (1056, 720 and 336, respectively).
Samples IV, V and VI have the same overall dimension of the outer side and are designed
in order to have the same number of turns and parts being their angles π/6, π/4 and
π/3, respectively. To obtain this, they present di�erent land width and spacing between
lands of adjacent turns. Sample VII was built with a larger outer dimension than all
other samples and an angle of π/3. Samples I to VI are shown clockwise from the top
left in Figure B.0.6. The calculations and measurements of the inductance of the planar
zig-zag spiral inductors are collected in Table B.1; as it can be noticed, the comparison
shows a very good agreement. Table B.2 shows the comparison between the partial self-
inductance values of each part of the considered planar zig-zag spiral inductors obtained
with the exact expression (B.0.5), Lexact, and approximated with the self-inductance of
a rectangle, Lrectangle. It can be noticed that the use of the exact expression (B.0.5)
allows a minor error in the calculation of the total inductance of the planar zig-zag spiral
inductor. As it can be expected, the di�erence between the partial self-inductance of a
parallelogram calculated with (B.0.5) and that of a rectangle increases with the angle of
the parallelogram, as Table (B.3) shows.

Inductance VS Spiral angle (Nonuniform Zig-zag Arms)

The results presented in this section are given in order to analyse the variation of the
inductances as a function of the main geometrical dimensions, in particular the spiral
angle. The developed procedure was implemented in a Matlab� computer code and the
calculations of the self-inductance were validated with the FastHenry programme [79], a
multipole-accelerated 3D inductance extraction programme based on magnetoquasistatic
analysis.
In Table B.4, the comparison between the self-inductance values obtained with the

proposed procedure, LZSI , and FastHenry, LZSI,FH , for two di�erent types of planar zig-
zag spiral inductors with di�erent outer dimension, land width and spacing are reported
for various spiral angles. With reference to this table, n is the number of turns, N is the
number of elements for each zig-zag spiral, lo is the outer dimension of the inductor, w
and sl are the width of the land and the spacing between adjacent lands, respectively, and
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Table B.1.: Comparison between the total inductance values obtained with (B.0.12),
LZSI , and with experimental measurements, LZSI,m.

Sample n N l0 θ w s LZSI LZSI,m

[mm] [mm] [mm] [µH] [µH]

I 11 1056 60 π/6 1.0 1.2 3.34 3.5

II 9 720 60 π/4 1.0 1.2 2.51 2.6

III 6 336 60 π/3 1.0 1.2 1.54 1.5

IV 12 1248 80 π/6 1.0 1.7 5.35 5.7

V 12 1248 80 π/4 1.0 1.2 5.54 5.6

VI 12 1248 80 π/3 0.7 0.9 6.88 6.4

VII 14 1680 130 π/3 0.9 1.1 14.13 13.5

Figure B.0.6.: Samples I to VI of planar zig-zag spiral inductors of Table B.1.
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Table B.2.: Comparison between partial self-inductance values of each part of the planar
zig-zag spiral inductor obtained with the exact expression (B.0.5), Lexact, and
approximated with the partial self-inductance of a rectangle, Lrectangle.

Sample l0 θ w l Lexact Lrectangle

[mm] [mm] [mm] [nH] [nH]

I 60 π/6 1.0 1.47 0.516 0.523

II 60 π/4 1.0 2.2 0.911 0.935

III 60 π/3 1.0 4.4 2.35 2.42

IV 80 π/6 1.0 1.8 0.695 0.703

V 80 π/4 1.0 2.2 0.911 0.935

VI 80 π/3 0.7 3.2 1.73 1.78

VII 130 π/3 0.9 4.35 2.32 2.39

Table B.3.: Partial self-inductance [nH] of parallelograms of di�erent dimensions calcu-
lated with (B.0.5) as a function of the angle θ.

θ w = 1, l = 10 w = 1, l = 20 w = 2, l = 20

[mm] [mm] [mm]

arctan(0.0) 7.06 5.74 14.11

arctan(0.5) 7.05 5.72 14.1

arctan(1.0) 7.03 5.68 14.06

arctan(1.5) 7.00 5.62 13.99

arctan(2.0) 6.95 5.54 13.91

arctan(2.5) 6.91 5.45 13.81

arctan(3.0) 6.85 5.36 13.71

arctan(3.5) 6.80 5.25 13.59

arctan(4.0) 6.73 5.15 13.47
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Table B.4.: Comparison between the self-inductance values obtained with the proposed
procedure, LZSI , and with FastHenry, LZSI,FH .

Sample n N l0 w sl θ LZSI LZSI,FH
[mm] [mm] [mm] [µH] [µH]

I 11 44 50 1.0 1.2 0 2.52 2.38
II 11 1056 50 1.0 1.2 π/6 2.82 2.85
III 11 1056 50 1.0 1.2 π/4 2.97 2.97
IV 11 1056 50 1.0 1.2 π/3 3.55 3.23
V 11 44 100 2.0 2.4 0 5.03 4.76
VI 11 1056 100 2.0 2.4 π/6 5.65 5.70
VII 11 1056 100 2.0 2.4 π/4 5.95 5.95
VIII 11 1056 100 2.0 2.4 π/3 7.09 6.47

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

number of turns

se
lf−

in
du

ct
an

ce
 [µ

 H
]

 

 

60
45
30
0

(a)

1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

number of turns

se
lf−

in
du

ct
an

ce
 [µ

 H
]

 

 

60
45
30
0

(b)

Figure B.0.7.: Self-inductance values of the inductors listed in Table B.4. (a) Samples
I-IV, (b) Samples V-VIII.

Table B.5.: Mutual inductance and coupling coe�cient values obtained with the proposed
procedure for some sample con�gurations.

Sample 1 Sample 2 M |k|
[µH]

V V -0.094 0.019
VI VI -0.090 0.016
VII VII -0.104 0.018
VIII VIII -0.115 0.016
VIII VI -0.091 0.014
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Figure B.0.8.: Nonuniform planar zig-zag spiral inductor. (a) Layout (b) Self-inductance
as a function of the turn number.

Figure B.0.9.: Layout for the mutual inductance calculation between samples VIII and
VI.
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θ is the spiral angle. The self-inductance values obtained with the proposed procedure
are thus in good agreement with those obtained by FastHenry. As it can be noted, the
values of the self-inductance signi�cantly increase with the spiral angle: for example, for
the inductor with lo = 50 mm, LZSI changes from about 2.52 µH to 3.55 µH for θ =0 and
θ = π/3, respectively, with an increase of about 40%. The increase is also appreciable in
Figure B.0.7, where the self-inductance values of the same inductors listed in Table B.4
are plotted as a function of the turn number. It can also be noticed that doubling the
outer dimension, the inductance values also double.
Figure B.0.8(a) shows a planar zig-zag spiral inductor with nonuniform arms; the geo-

metrical dimensions are the same of the samples V-VIII. The spiral angle varies linearly
from π/3 to 0 with steps of π/30. The self-inductance versus the turn number is plotted
in Figure B.0.8(b). For n = 11 the self-inductance obtained with the proposed procedure
is 5.98 µH, whereas the one obtained with FastHenry is 5.75 µH. Hence, it is shown that
the self-inductance increases signi�cantly with the spiral angle (40% passing from θ =0 to
θ = π/3), with �xed outer dimension, land width and spacing and number of turns. The
absolute value of the mutual inductance between zig-zag spiral inductors also increases
with the angle, although the magnetic coupling is highest for θ =0.
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