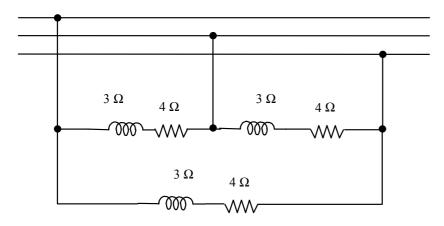

Esercizi sui sistemi trifase

Esercizio 1: Calcolare la potenza attiva e la potenza reattiva assorbite dal carico di figura ed il valore efficace della corrente su ogni fase. Il carico è alimentato da una rete trifase (in regime sinusoidale permanente) simmetrica diretta con un valore efficace della tensione concatenata pari a 380 V alla frequenza di 50 Hz.

Nota: sullo schema del circuito sono riportati direttamente i valori delle reattanze associate agli induttori (α L) alla frequenza di funzionamento.


Soluzione:

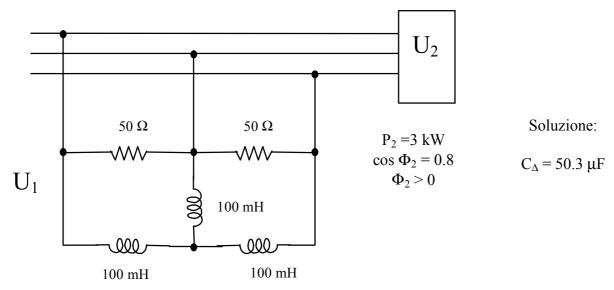
$$P = 23.1 \text{ kW}$$

 $Q = 17.3 \text{ kVAr}$
Assorbite

$$|\underline{\mathbf{I}}_1| = |\underline{\mathbf{I}}_2| = |\underline{\mathbf{I}}_3| = 44 \text{ A}$$

Esercizio 2: Calcolare la potenza attiva e la potenza reattiva assorbite dal carico di figura ed il valore efficace delle correnti di linea. Il carico è alimentato da una rete trifase (in regime sinusoidale permanente) simmetrica diretta con un valore efficace della tensione concatenata pari a 380 V alla frequenza di 50 Hz.

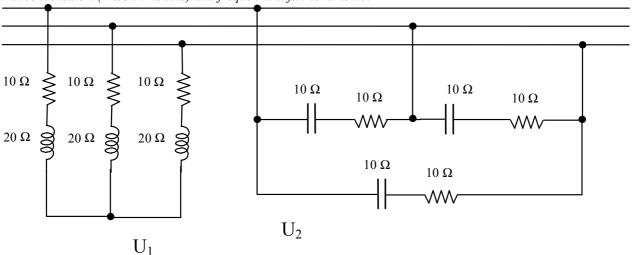
Nota: sullo schema del circuito sono riportati direttamente i valori delle reattanze associate agli induttori (α L) alla frequenza di funzionamento.


Soluzione:

$$P = 69.3 \text{ kW}$$

 $Q = 52 \text{ kVAr}$
Assorbite

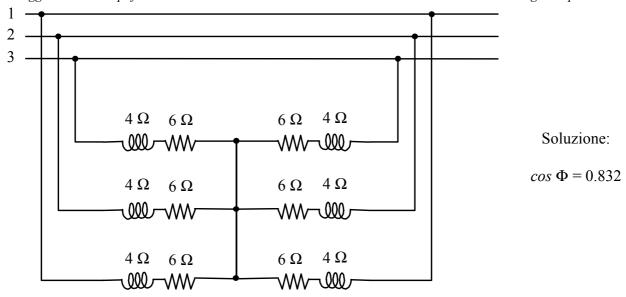
$$|\underline{\mathbf{I}}_1| = |\underline{\mathbf{I}}_2| = |\underline{\mathbf{I}}_3| = 132 \text{ A}$$


Esercizio 3: Rifasare a $cos \Phi = 1$ il carico $U_1 + U_2$ con un banco di condensatori a triangolo. Determinare la capacità C_{Δ} dei condensatori. I carichi sono alimentati da una rete trifase (in regime sinusoidale permanente) simmetrica diretta con un valore efficace della tensione concatenata pari a 380 V alla frequenza di 50 Hz.

Suggerimento: si noti che i due resistori sono direttamente sottoposti alla tensione concatenata.

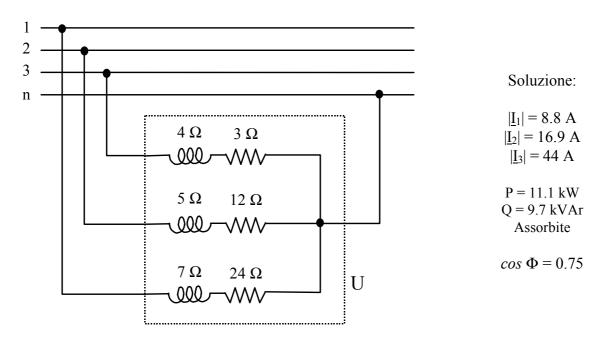
Esercizio 4: Calcolare i fattori di potenza del carico U_1 , del carico U_2 e del carico $U = U_1 + U_2$. I carichi sono alimentati da una rete trifase (in regime sinusoidale permanente) simmetrica diretta.

Nota: sullo schema del circuito sono riportati direttamente i valori delle reattanze associate agli induttori (ωL) ed ai condensatori ($1/\omega C$ in modulo) alla frequenza di funzionamento.

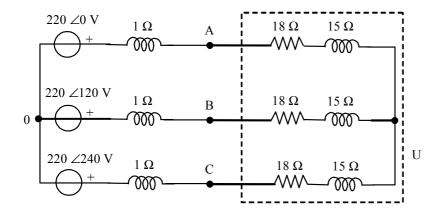


Soluzione
$$\cos \Phi_1 = 0.45$$
 $\cos \Phi_2 = 0.71$ $\cos \Phi = 0.84$

Esercizio 5: Calcolare il fattore di potenza del carico illustrato. La rete trifase (in regime sinusoidale permanente) è simmetrica diretta.

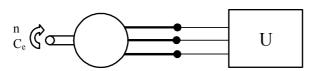

Nota: sullo schema del circuito sono riportati direttamente i valori delle reattanze associate agli induttori (α L) alla frequenza di funzionamento.

Suggerimento: semplificare il circuito notando che i rami delle due stelle sono a due a due collegati in parallelo.


Esercizio 6: Calcolare i valori efficaci delle correnti su ogni fase del carico di figura; calcolare la potenza attiva è la potenza reattiva assorbite; calcolare il fattore di potenza. La rete trifase con neutro (in regime sinusoidale permanente) è simmetrica diretta con un valore efficace della tensione concatenata pari a 380 V alla frequenza di 50 Hz.

Nota: sullo schema del circuito sono riportati direttamente i valori delle reattanze associate agli induttori (α L) alla frequenza di funzionamento.

Esercizio 7a: Calcolare modulo e fase (in gradi) della tensione V_{A0} , e la potenza attiva P_u assorbita dal carico U del circuito in figura, operante alla frequenza di 50 Hz.


Nota: sullo schema del circuito sono riportati direttamente i valori delle reattanze associate agli induttori (α L) alla frequenza di funzionamento.

Soluzione:

$$V_{A0} = 214 \text{ V}$$

 $\phi_{VA0} = -1.83^{\circ}$
 $P_u = 4.51 \text{ kW}$

Esercizio 7b: Il circuito di cui sopra rappresenta il circuito equivalente di una macchina sincrona che alimenta un carico equilibrato U. Supponendo che la macchina sia a 4 poli, calcolare l'angolo di carico δ , la coppia meccanica C_e , e verificare l'uguaglianza fra potenza meccanica assorbita e potenza elettrica P_e erogata al carico (si noti che il circuito equivalente si riferisce al caso ideale di assenza di perdite nella macchina).

Soluzione:

$$\delta$$
 = 1.83°
 C_e = -28.7 Nm (negativa perché
coppia resistente)
 P_e = - ω_m C_e = 4.51 kW