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AN ANALYTICAL SOLUTION
FOR THE CURRENT DISTRIBUTION
IN TWO 3-STRANDS RUTHERFORD CABLES
COUPLED WITH A RESISTIVE JOINT

M. Fabbri

Abstract — Utilizing the geometrical properties of the auto/mutual induction coefficient matrix
among the strands of a 3-strand Rutherford cable, the solution for the general linear case of
two cables connected through a resistive joint is given.
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1. Introduction

Consider, as shown in the figure, two equal 3-strand cables of length L connected through a resistive
joint. Moreover, assume that the flowing current is equally distributed on the three input strand and on the

three output strands.
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The longitudinal resistance (r) of the strands ant the external voltage (v¥"') applied to the cables are as-
sumed to be zero. The currents and the voltages on the terminals between the input cable and the joint and

between the joint and the output cable are labeled with A and B, respectively.

2. Cable Model

Consider, as shown in the figure, the input 3-strand cable with the flowing current equally distributed on
the input strands and formally known on the output strands.

1(t)/3 —» o— Lo —» i)

(/3 —»> e— —e —» i)

(/3 —> &— —e —> i3(1)
L

The longitudinal resistance (r) and the external voltage (v) are assumed to be zero. Consequently, the cur-
rents flowing in the 3-strand cable are described by the following system:
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[GIMI S (x. 0+ (1) =0

i t= =
(P) i(x,t=0)=0 with i, i* O R, t> 0,0 < x <L

=00 = (=00 = (k=00 = U

3
i(x =L, t) =i*(t)

with 1(0) = 0 and i*(0) = 0, and where [M] and [G] are the following constant-coefficient circulant sym-
metric matrixes:

mp; My, My —-2g, g2 g2
[M] =|mp myp My, [G] =l 812 - 2g, 12
m;, mp; My 12 212 - 2g,

Defining the orthonormal spectral basis by, with k =1, 0, —1, that it’s the same for [M] and [G]:

1 1 2 : 1 0
b, =—1l1 b =\/:—1/2 b, =—<1
BRG] 1 1 3 -1/2 L2 -1
the matrixes [M] and [G] can be written as
[M] = Agbobg +Abbl +A_b_bT, [G] = yobobg +ybb] +y_b_bT,
with eigenvalues given by
Ap =my; +2my, Yo =0
A=A =my —my, Yi = VY- =738

$ 2.1 - Time domain Currents

Decompose i and i* as follows
i(x, 1) = no(x. g + 1y (x.t)by + 1y (x, )by
i*(t) = ng (b +ni (o, +n2i (O,

Note that (compatibility condition)

INAYERE W YAYEE I I A aga] It
05 0) =031 () = [0+ 120) v 0] =T

~—

Problem (P) is stated as:

X2
P) i(x.t=0)=0 with t> 0, 0 < x <L
RPN (()
l(X_ODt)_ﬁbO
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Defining

(1) =i, 1) - i;)[l Xy it
gives
O] (c.0)+ 95 (1) = —[G][M1(l3 (1= Xy + m)ﬁj
(P) qu(x,t=0)=0 with t> 0,0 <x <L
u(X =0, t) =0
u(X =L, t) =0

where the prime denotes differentiation with respect to the argument. Decomposing u as follows
u(x, t) = Ho (x, thog + 1, (x, oy + iy (x, b,

Problem (P,) is simply divided in the following three problems:

9%,

(PuO) 0X2

Ho(x,t=0)=0, po(x=0,t)=pe(x =L, t)=0

(x,t)=0

witht>0,0<x <L

0 9? ,
(P) YAy % (x,t)+ ?L;l (x,t) = —y,A it (t)%

w(x,t=0)=0, p(x=0t)=p,(x=L,t)=0

witht>0, 0 <x <L

op_ 0% ,
Voihoy S ) + agzl(x,t):—y_l)\_ln_’}(t)% 1200 < x <L

o (x,t=0)=0, p(x=0,t)=p_,(x=L,t)=0

Problem (Pyo) has the simple solution L, (X, t) = 0, while problems (P,+;) can be written compactly as:

(Pu— 1 )

04, 02“11 =— A) X
yil)\iIT(X’t)-'- %2 (x.1) = V¢1)\¢1n¢1(t)f witht>0,0<x <L

Ko (6 t=0)=0, py(x=0,t)=py(x=1,t)=0

which has been already treated [1] and gives:

L t
o (. ) = =2 fag [ ar (- ) 2 (. 8.1)
0 0

where [ has the two equivalent representations [1]:

=3 L) ) 278

L

or
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(The indexes has been dropped from the eigenvalues since A; =A_; and y; = Yy_;). Thus since

Uo(xat):no(xat)—%(l—%j—bgiA(t)%:r]o(x,t)—I\S_t)+i%)i I\%)I)i rlo( )%

Mo (x, 1) = Ny (x, 1) = b LA (t)% =N (x. 1) =N (t)%
which implies
I{t
ufe.t) = 0
Y -
N, (x,t) = na (t)= —IdEIdrmm TEI_(X,E,T) witht>0,0<x<L
and the currents in the inlet cable are (fort >0, 0 <x <L):
s.8) = Wb, [ 0o, + 0 0 | - —jdejdr[n by + (- by | 2.1

Note that the currents in the inlet cable are completely known if the functions n:;* are available.

For what concerns the currents in the outlet cable, since it’s formally symmetric to the inlet one, the

solution for i, and for n4; also, can be obtained changing A with B and considering 2L - x instead of x, as
follows:

L

Lt
ﬂil(xat): nzl(t)zL_x —%J.dEJ.dT r]f{(t—T)%l_@L—x,E,T) witht>0,L<x<2L
0 0

and the currents in the outlet cable are (for t > 0, L <x <2L):

i(X,t):%bo"'[r]F e, _1]2L X _IdEIdT[n +n" (t—T)b_l]%r(ZL—X,E,T)

Again, note that the currents in the outlet cable are completely known if the functions N+;” are available.

$ 2.2 - Time domain Voltages

®) The correspondence is simply demonstrated, since defining x' = 2L —x, the points x = L becomes x' =

2 2
L, the points x = 2L becomes x' = 0, and the derivatives results to be: i = - i, and 6_ = 9 . Thus
ox ox ax?  ox'?

the leading equation is invariant and the boundary conditions correctly match.
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For what concerns the voltages in the inlet cable, taking into account that

[G]V(x, t) = g—l (x, t) witht>0,0<x <L
X

and decomposing v as follows
v t) = Wl by + W (x, tby + W (x, th

the following relations are obtained:

yill]JJ_,l(x, t) = agil (x, t) witht>0,0<x<L

X

Moreover, since

Vo3 (x, t)

Woi(x,t) =blv(x, 1) = % [vo(x,t) = vs(x,t)] = 72
w201 = e 230 e vt

and v, (t) = vi2 (x = L, t), va3"(t) = va3 (x = L, t) the voltages at the end of the inlet cable can be stated as:

VA () =42y = L) 0= b “L0- 0 b =L

Now, since the voltages vi,*(t) and v,3*(t) at the end of the inlet cable are given in terms of (X, t), that
are related to the spatial derivatives of N:(x, t) which are dependent from the currents at the end of the
inlet cable (expressed in terms of N (), it’s apparent that it is possible to obtain a voltage- current
characteristic of the inlet cable, that can be seen as an active tripolar component.

For what concerns the voltages in the outlet cable, since it’s formally symmetric to the inlet one, the
solution for VlzB(t) and V23B(t), can be obtained changing A with B and considering 2L - x instead of x, as
follows:

B0 =20 =L BO= 2 0 =10 Fu =1

(where )1; have to be evaluated referring to the spatial derivatives of n.; evaluated for the outlet cable)

To obtain the voltage-current characteristic for the inlet cable, define:
o(2F ¢
é(x,t)Zl—L& I}[dﬁfr(x,{,t) witht>0,0<x<L

Thus, substitution gives:
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an 1 92 £
+1 —nA Y4 rA
pa 0= 52 (028 0 - 507 foef (-0 )
1 Alx,T)-1

=niit) -+ fdtrmt—f)—XL) = t>0,0<x<L

— A 1 [A ]T—t

_r]+1( _+_J-dT r]+1 t_T)A( T)__r]+l(T)T=0
and, since N+ "(t = 0) = 0, this gives:

l]J+1(x t )A( T) witht>0,0<x<L

Moreover, in the same way the voltage-current characteristic for the outlet cable, are obtained:

l]Jil(x,t):— B(t—T)é(2L—x,T) witht>0,L<x <2L

(the sign is due to the x-differentiation: see footnote at p. 4) Finally, the voltages at the end of the inlet
cable can be stated as:

W () %jd A (- AL )

viy (t) = j. [\/_r] nlt—t]ALr

(where the index on Yy has been dropped for brevity) and the voltages at the beginning of the outlet cable
results to be:

VB (1) = %jd 7 - (L)

vﬁ&)z—;ﬁj;idtkfh+1t—T n'% ]AI,I

§ 2.3 - Laplace domain Currents

As it was shown, the currents flowing in the inlet 3-strand cable are described by the following prob-
lem (P):

di 0% _
G2 (.0 + 22 () =0
(P) Jilx,t=0)=0 witht>0, 0 <x <L
i(x=0,t)=
i(x =L,t)=i%(t)
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Decompose i and i** as follows
i(x, t) =no(x, thhg + 1y (x, oy +ni(x, tho

i*(t) =ng (b +ni (b, +n? (b,

with the compatibility condition

. 1 . . It
0= 0500 =B 0+ 2 0+ 0] =1
Problem (P) is simply divided in the following three problems:
2
IMo (5 1) =0
(Po) 0x 1) witht>0, 0 <x <L
t
No(x,t=0)=0, ny(x=0,t)=ny(x =L, )=_3
on, N [y
(P1) Vi ( ,t)+ ox> (x,t)—O witht>0,0<x <L
r]l(x,t = 0) =0, rh(x = O,t) =0, rh(X = L,t) = ﬂf(t)

witht>0, 0 <x <L
N (x,t=0)=0, n_(x=0,t)=0, n_(x=L,t)=n%(t)

Problem (Py) has the simple solution n, (x, t) = % , while problems (P+;) can be written compactly as:
on 0°n
)\ +1 , t)+ +1 , t) = 0
() {7 Ty bt ox bt with t>0, 0 <x <L

ntl(xﬂt = 0) =0, nil(x =0, t) =0, nil(x =L, t) = nil(t)

Applying the Laplace transform L to problems (P4;) gives:

with 0 <x <L

Consider now the solution for n.;(x, t) given before:

Lt
2 . .
r]ﬂ(x, t) =N (t)% —E‘([dﬁ‘([dt nﬁ(t - T)%r(x, &, T) witht>0,0<x <L

Noting that the time integration is of the convolution kind it can be easily Laplace-transformed:
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L

L L
. = mA ()X L A 214 & AR 2 &
1ol =TT B2 it el nﬂ(s)[L {2 el )H
By comparison it can be deduced that

——SL{ IdE } sinxm
sinLM

where the index has been dropped for brevity. To obtain the Laplace-transform of the characteristic func-
tion A, differentiate the last equation with respect to x:

__SL{ 2fakr } el

Taking into account the definition
o (27 ¢
Alx,t)=1-L—|—|d¢=T(x,¢&,t
_( ) GX{L'([ EL ( ¢ )}

and since L {1} =1/s, it results:

cos|x4/syA] 1 1 é(x,t)} S ~
A = gL - =53
R Ry vy IR S{L L= hbs)

where A(x, s) = Ls{é(x, t)} Thus, finally

Bl s) = Lfayn S AL, o) = & Jagn S
S

sin LM

§ 2.4 - Laplace domain Voltages

As it was shown before, the voltages at the end of the inlet cable and at the beginning of the outlet ca-
ble can be stated as time-convolutions. Therefore, they can be easily transformed in the Laplace domain:

54.6) =22 78, (5)sA(L.5) T86) =~ Y2 72, (6)sB(L. )

YL - yL

1) = (30 6) - (Al Ta)= -5 ) - (kAL

§ 2.5 — Properties of the A function

As it was shown before, the current-voltage characteristic of the inlet and outlet cables are summarized
in the A function. In this section some properties of the A function are given. Starting from the definitions:

t)=g extv(nLn)z Sin(?} Sin(%] Alx,t )‘I—L—! j dE = 1 (x Et)]

(0 <& <L and 0 <x <L) and taking into account that
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gives

<1028, ) o= § o1 ) (et 0<x
X = ~ € COS L CcOoS Il (S COS L cos\n , X

n=-—o

In order to obtain a different (and with faster convergence) representation of the A function consider that

cos cos =— [cos(p + cos(p + q)] and that the elliptic theta function 93 admit the following rep-
resentation (where the summation terms are non-oscillating)[2]:

1’1T[

N

n=-c n=-oo
Therefore
* (o ’ )
é(x,t):%niz_m e)\v(Lj cos(n?’( D+_nz_00 e ( j COS(nV’(l—%D:
2 2
21’93 E[1+§j,e)‘ty(gj +l,f)3 E[l_ij’e?\t\/[gj -
2 2 L 2 2 L
2
L [-AY M£L2 nL) L [-Ay <& M(L; nLj
w2 o X
that gives
L+X_ 2 Ay(L-x 2
,_)\ Lj +et(2 nLj ,0<X<L

In particular, A(L, t) becomes:

t (nm)? _ +oo AV
Ze (] é(L,t):L/%Zet(L)

n=-o n=-—oo
Correspondingly, in the Laplace domain A( has the following three different representations [3]:
~ b / o1 [T / A cos|L4/s
é(L, S) — Z 1 . L S Z 2L+/—sA ‘n‘ Y y
n=—co 1 (nnj = s sin{L/syA
S —— JE—
Ay\ L
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3. Joint Model

$ 3.1 — Time domain Model

Consider, as shown in the figure, the resistive joint with the flowing current known formally on the in-
put and on the output strands.

A R R,® . B
1 (tl ° W / ,1 . 1 (t)

vi (O} ' 0 vi2 (t)

2, o AAN

A
V23A(t)

(0,

AN

The LKC on the central nodes gives:

and, defining

i 0 0 1
i%(t) = in [Q]=|1 0 0
i3 010
the LKC can be compactly written as:
i*(0)+i%() =i () + [Q]i (1)
Now note that
[Q]bo =b, [Q]b1 = _%b1 +§b_1 [Q]b_1 = _?M _%b_l

Decomposing i, i® and i? as follows

the following equations holds:
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1)+ 2 =) - Ln2()- 2 ng,()

W40+ n% 0= () + 2 02~ Lng 0

This system can be easily solved for r]tlQ, leading to:

ne :%[ﬁ(rﬁ —I‘]{A)—(ﬂ]—sl _r]él)]

nd = %[(n? i)+ 37 - niﬁ)]

The LKT on the left and right sides of the joint gives:

vib (t) =RMp (t) -R%iy (t) —Rysipp (t) Vi (t) = -R7ip (t) +R5i7 (t) — Ryl (t)
vay (t) =R%i% (t) -R{i5 (t) —Ryips (t) VD (t) = _Rlz?’izB(t) + R?i?(t) —Ryips (t)
Vi (t) =R{i% (t) -Rpif (t) - Rji5 (t) v (t) = -RYi} (t) +R7ip (t) —Ryi5 (t)
and, defining
vy Vi RY -RY 0 R? -R5 0
vA (t) = V% vB (t) = VZB3 [RA] = 0 RzA - R3A [RB] = 0 R]23 - R?
A B -Ry* 0 R% -Ry 0 R}
V31 V31

lRQJ = diag{R12 ,Ry3, R31} , the LKT can be compactly written as:
VA () = [RA]iA () - [R 2 fie ) vB () = R PJi% () - [R2Ji 1)
Moreover, note that

b [RA|=b[RE|=0 vis (6 + Va5 (6) + v (1) = vi (6) + v3s () + v3i (t) = 0
This last property led us to write:
iy 1 0 .
VA(t): v =vi 0 byl =vf§\/§b1 +[V%+\5V§3jb—1
—vA A -1 -1 2
Vi2 T~ Va3

(the same is true for v®) Thus, decomposing v* and v® as follows
vA(t) = B5 (o + B (b, +B2 ()b,

vB(t) =BG ()b +BE(t)b, +BE (t)b_,

it can be easily proven then

Bo =0 By =0
A _ _A 3 B _ B 3
Bl 12\, 2 [31 12 2
A Vi [5 oA B vy /> B
— V12 — V12
B—l - \/E ++2 V23 B—l - \/E +v2 Va3

Finally, defining
oZ, =by [R*]b, , withh, k=0, 1,-1,and Z=A, B, Q
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the LKT can be written as:

B =pfong +ehint +eiind —pdng et -ping

Bﬁ = pé1,0ﬂg + pémﬂf + pé1,—1ﬂé1 - p?l’or]OQ - 991,1"]? - p?l,_lr]gl
B =-ProNo —PLINT —PL-NZ — PG —PRNE —Proin

BE, = _pl—gl,o"l(])3 - pl—gl,lth - pl—gl,—ln]—gl - p%,o"](()2 - pgu”? - p91,—1n91
0=pgong +Pginy +P5-iN%

Note that, since r]J_rlQ was expressed in terms of r]J_rlA and r]tlB, and the last equation can be immediately

solved for r]OQ, the resulting system of four equations, containing r]ﬂA, r]ilB and BilA, BilB, can be solved

providing the current-voltage,i.e. N-B, characteristics of the input and output cables.
For what concerns the coefficients, a simple but cumbersome calculation leads to (with Z = A, B):

1 1
oy = (R ) Py =R + RS ot =~ Lk
p%lo :L(RIZ+R§—2R3Z) pZ =L[RZ—1RZ+RZJ p%l_l :lR§+R32
. J6 -1,1 NE PTyR 3 , 5
Furthermore, it can be easily demonstrated, since [RQ] is symmetric, than ph,kQ = pk,hQ. Therefore:
_1 2 R, +R _ 1
p(?,o B §(R12 TRyt R31) pSO = g(RIZ _%j 991,0 - E(st _R31)
2 R, +R 1
981 = g(Rlz "‘%) 991,1 2\/—( Ro; +R31) 991,—1 = E(RB + R31)

To reduce the size of the solving system the last equation is solved for No%:

Q
901 Po,-1
ng =-—5-nf - —5-n%
po 0 Po.o
Consequently, defining (for h, k = +1)
_ o PPgy
h — pk,h Q
Po.o

and substituting, the following reduced system (containing only I‘]tlA, I‘]ﬂB and V12A, V23A, V12B, V23B) 1S
found:

VQ\F plo\f"'pnm +prand - q“ [‘f( _nl)_(n]—3 _nél)] 2{( —n1)+\f( )]
%*'\EV%: 1of+p 11'11 +p1 1'11 a- “[\f( _ﬂ?)_(ﬂi_ﬂ/—ﬁ)] ol 1[( —nf*)+\/§(ni31—

23 243
—vFZ\F plofﬂmm +prn® 1+&[f(n1 )= 02 -t )+ czhfl( —nt )+ 302 -na)
fﬁ V2vh plof+pum +p%n® 1+Q[f(m —nt)- (e - n)] qz\l/gl[( i)+ 3 -

5

%)

For what concerns the coefficients, a simple but cumbersome calculation leads to:

_3Rp (Ry; +Ry)) _ _ _ﬁ R, (Ry; —Ry) _1 Ry (Ry; + Ry ) + 4R Ry,

di,1 —

1 =q. = -1,-1
2R, Ry Ry B =91 2 R, +Ry; +Ry, 2 Ry + Ry + Ry

A simpler form can be obtained introducing the star-equivalent resistances:
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_ R;R _ R{;R _ R 3R
R,y = 121831 R,y 121823

R, + Ry + Ry Rj; + Ry + Ry R, +Ry3 + Ry
And thus
3 3 R,y +R
dur = E(RZY * RIY) Qi,-1 = 4q-11 = _g(Rzy ~Ryy) Q11 = - S+ 2R;y

§ 3.2 —System solution in Laplace domain
Coupling the joint equations, written in the Laplace domain as follows

A di,1

V12\/§ p1oj—+p11n1 +piof’ 1_2\/—[\/_( _nl) (N—B _ﬁél)]_ii/_gl [(ﬁF_ﬁﬁ)"'\/g(ﬁ—Bl_ﬁél)]

N

vy =ty e oh it ot - NP -t ) e - - e e e it - )

243
-2 = oy ol b + BL AP - at)- (-t Jo 22 fop <)o -]
_%_ 2y =pt 1,0 \/N— +p- 11”1 +p? 1, ) 2\/% [\/g(n{g _ﬁlA)_(ﬁ—Bl _ﬁél)]+ qz_\l/%l [(ﬁlB _ﬁﬁ)”L\/g(ﬁ—Bl _ﬁ-Al)]

with the input and output cables characteristics leads to (after reordering)

335 A i1 di,-1 \/385 A di,;0 91-1 di,i |, 91,1 di,1 , 91,-1
S P T~ TS Pt -t -t
2yL 2 243 2yL 243 2 2 23 243 2 R
~ ~ ~A
V3B —ph - d-11 _ 9-1-1 3sQ oA L -1 d-1 | 9-1-1 _ 9, 9o M PLo
P ToA ) P T T 2 2 0 23 2 A _ el T
Q. _ Gy Ch -1 ﬂ B _qu 9 _ 3sD —pB AT T 1§ pr, NE]
2 23 2L T2 23 L M a3 2 e o8
q 1,-1 94 N q-1,-1 \/ESE _oB - d-1,1 _ 9-1,-1 3sA o+ d-11 _ 9d-1,-1 ’
2 WA 2[ 2 L M 2 a3 oL M a3 2

In order to symplify the matrix, let us perform the following operations: 1*) (Rowl)x 3+ (R0w2); 2 (R0W2)X\/§ _ (Rowl); 31
(Row3)x+/3 + (Row4); 4™) (Row4)x~/3 — (Row3). This leads to:
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yL 2 243 2 3 2
or —p \/§+CI11_Q1,—1_Q—1—1 24358 A oA 53— LI -3
11 -1,1 NG > L 1,-1 \/— 1,-1 >
Cl1,1\/g + + q-1,-1 i + q1,-1 + q-1,-1
-1 T
2 23 2 \3 2
di1 |, 91-1 | 9-111 di,1 q 1,—1\/g
- + + = " di-
2 3 2 2.3 2
Cl1,1\/g rq + q-1,-1 _ (h,l + Ch,—l + q-1,-1
2 ’ 24/3 V3 2
~A
(_ Aui | Qi1 Q—l,—lJ c111 “q, L 4oV L3 Ni prov3 +pl
2 3 2 b 2 A plo\/5 Pro i
2\/§s§ B_[3_oB ql,lx/g q-1,-1 B [3_oB A, 91,-1 9-1-1 ﬁF p10\/5 +p° 1,0 V3
3 “PV3 —pPI -~ ) ~q-1 _ﬁ “PLV3 Pl t y NG - B
Y 5 N- p- 10\/5 pl,O
q“ _9i-1_9-111 2\/555 di q-1-1V3
V3 + - = pr -pE VB g
(pll pll NG > VL P1-1 ~P-1,-1 3 di,-1 >
Fortunately, the involved coefficients can be simply expressed in terms of resistences, as follows
qll\/g q 1,-1 4R1Y +R2Y +R3Y dip0 |, 91,1, 9-1-1 _ d11 q- 1\/§
S T - B + =Ry =Ryy —L g +— = =3(Ryy +R
5 q1,-1 2\/— \/5 ) \/g ) 2\/5 1,-1 > ( 3Y ZY)
(with Z = A, B)
4 R% +R%
_P11\/_ p11—_ERlz_% pll\/_— Pl 1\/_ p1 1—R2 R3Z
Pt =P V3 = _\/E(Rg + R3Z) P20 +PloV3 = \/72R1 -Rj _R3) ~pfo +p%3 = \/E(Rg _R3Z)

These expressions can be further simplified defining the following mean resistances
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RY=R1Y+R2Y+R3Y RA:R?+R12A+R? RB
" 3 " 3 m 3
Finally, multiplying all the rows by —yL/2 V3 , the following system is obtained:
_S§+£(R?+R$+R1Y+RmY) ;\\//E (Rz +Roy — R?_Rw)
_VL(RA+R2Y R?_RsY) _SA+VL(R§+R?+R2Y+R3Y)
23 2
—-VyL - VL
; (Ryy +R,y) 2\\//— (Ryy —Ryy)
—-yL -yL
2\\//— (Ryy —R,y) — (Roy +Ryy)
- ~\L
—=(Ryy +Ryy) 2\\//— (Rsy ~Ryy) N V2 ( : m)
_ - ni VL
L - YL Y (RA _RA
NG (Ryy —Ryy) ) (Roy +Rsy) A _ NG ( 2 3) i
_SA"'E(RI +R51+R1Y+RmY) .C (Rz +Ryy — R3B_R3Y) A’ il L (RF—REl) V3
L 3 L Ay |2
= (Rz +Roy - R?_RW) _Sé"'y—(RzB"'R?"'RzY"'RW) __VL(RB_RB)
2\/_ 2 ] \/g 2 3

Now defining w= SE(L, s), the solution of this system can be easily found following Cramer’s rule:
_ T(s) DZsA(L, s
17(s) = 1) DaRA(L-s)

V3 DGA(L.9)

where the D functions are defined as follows (all are determinants):
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31‘?«

T(Rw + RmY)

23

(R3Y

"2L(RB+RB +R;y +R, )

23

yL

243

VzL(RB +RY + R,y +R3Y) &

23

2

(Rz +Ryy — R? _R3Y) yZL(Rz +R3 +R,y +R3Y)

-YyL
2\\//— (R3Y RzY)

- VL
Ty(RzY + R3Y)

(RB +R,y —RY _R3Y)

2[ (Rsy —R,y)
_;L (RzY +R3Y)

(RB +R,y R} _R3Y)

AL (Rz +RY +R,y +R3Y)
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VZL(RA FRA4R,, +R,,)-w
-yL

23

(RA +R2Y R3 RSY)

Ry +R,)

2\/—( 3y _Rzy)

(RA +R2Y R R3Y)

2\/_

%(RZA +R3A +R2Y +R3Y)_('0

2

—-YL
S AT,

_RZY)

—-VvL —-VvL
2V (RIY +R,, ) %(Rf ‘Rﬁ
-VyvL -vL
2\7—( RzY) %(R? _RsA

VzL(RB +RE 4R, +R,,)-0 _T‘;L(R? ~R®
Y (RP+R,, -RP-R,,) _-(r®-RE)

23 6

L " " - VL
yz (Rl +RA +Rpy +R Y)_w 2\\//— (RA +R,y —R% _R3Y) - (Riy +Rpy) 2\\/% (Ryy —Ryy)
—-vyL L - VvL - VL
( ) 2\\//— (Rz +R,y —R% _R3Y) yz (Rz +R$ + R,y +R3Y) 2\\//— (R3Y RZY) Ty(Rzy +R3Y)
Dlw) =
- VL - VL L L
- (Ryy +R,y) 2\\//— (Ryy —Ryy) VZ (Rl +Rp +Ryy +R,, ) w 2\}% (RB +R,y —RY _R3Y)
- VL - VL - VL L
2\\//— (R3Y RzY) - (RzY +R3Y) 2\\//— (RB +R,y —RY - R3Y) \/2 (RB +RY +R,y +R3Y) W

It’s apparent from the definition that D(w) is a polynomial of fourth degree in w, while Dp (w) are polynomials of third degree in w. Moreover, con-
sidering the equation
D(w)=0
which is clearly involved in inversion of the Laplace transformation of the solution found, it can be seen that it can be viewed as the secular equa-
tion for a symmetric real matrix D. Therefore, the eigenvalues are themselves real. To simplify the following calculation it is assumed that these ei-
genvalues (denoted by Wy, 0, W, W) are distinct, i. e.
dD( ) % 0 for W= i, Gy, s, Gy

Moreover, Gershgorin theorem [4] provides bounds on them, i.e. for each eigenvalue one of the following relations is satisfied (with Z = A, B):

L —yL —yL “YL
‘w_y?(Rlz +Ry +Ryy "'RmYX = ‘R2 +Ryy — RS R3Y‘ e (Riy +Rpy )+ V |R3Y Roy|
L - ~VL L
‘w_V?(Rg +R5 +R,y +R3Y1 ST‘Rg +Ryy —RY ‘R3y‘+%|R3Y R2Y| P F (R,y +R5y)
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Before going on with the back-transformation of the solution found, let us study the equation
cos|\L4/syA

sA(L,s) = w = L+/syA =W
sin|L+/syA
The change of variable x = L,/syA leads to the equation
w
cotx = —
X

2
. .\ . 1 (x
where x can be considered as a real positive unknown, since s = W T
Y

As it’s shown in the figure (where it’s assumed that w < 0), the solutions of this equation, denoted by
&(w) fork=0,1, 2, ..., are bounded as

(k +%jn< & (@) < (k +1)m, for w<0andk=0,1,2, ...

If wis positive a similar situation occurs; the main difference is the disappearance of the root () if w>
1. The other solutions, denoted as before by & (w) fork=1, 2, ..., are bounded as

kmt< Ek((,o)<(k +%j1‘[,for w>0andk=1,2, ...

— 00

In any way, it results that: lim {Ek (w) - (k + %)n} =0.

Note that the special case w = 0, that leads to an explicit solution for the &,(w), is meaningless, since a
null eigenvalue of the matrix D implies its singularity and thus that the problem is ill-posed.

50

-50 -
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$ 3.3 —Solution in time domain

i DZ(sA(L

Defining kaZ (s) —_p (S:( ,s))
D Sé(L’ S)

the solution in the Laplace domain is written as:

,withZ=A,Bandp==1

fiy (5) =%@pz(s), with Z=A, B and p = %1

and formally inverted in the time domain as follows

¢
ng(t):JdTMWPZ(T),Wich=A,Bandp=il
A3

To perform the inversion of the functions quZ (s) note that they satisfy the Jordan Lemma [5]. Thus, with

the assumptions made, this leads to:

4 V4
wz(t):ZDPj(wh) ; © ,with Z=A, B and p = £1
h=1 D (wh) k=u Q)h) i SA(LaS)]Szl(Ek(wh)jz

ds AL L
where the (infinite) residues have been directly evaluated with the aid of the De L’Hopital rule, since the
eingenvalues was assumed to be distinct. The function u(w) is defined as 0, if W< 1 and 1 otherwise. The
involved differential is simply evaluated as:

bl = L oo} ool

L
L
2SS_L

E{cot X - x(l + cot? x) =

2 o= (o)
_Av(@J
_ WL’ A CY 1 :lz
2| &l )sen &y (@) sen? €, (w,)
_ Y\ cos & (o )sen & (wy) - Ek(wh):l
2 L &l )sen® & (wy)
(taking into account that s Ek(wh) = 2 Ek(("Oh)) and finally

HACY) W,

L(Ek(wh)jz

© L

e 2 DH) & gl o)c
0= G Z D0, 2, conk, (o )sen, (o) 65 @)

,withZ=A,Bandp==1

Note that, since its poles characterize an analytical function, of the functions quz (s) admits also the fol-
lowing representation:

- 2 & D (w,)
PZ(s) = P
y ) vAng D'(wy)

[ee)

£, (0,)sen £ ) 1
=§wh)c°sak(wh)sen5k(wh)_ k(‘*’h)s_1(§k(wh)j2’

withZ=A,Band p =*1
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To complete the treatment, let us represent the currents in the inlet and outlet cables (through their n-
components). Consider first the inlet cable. It was shown before that

t
bylt) = \/LLJ.dT ny* (- 1)ak. 1) = y_lL [%A ([)]Dé(xa[)i(t) witht>0,0<x <Land p =1
0

X
np(x,t)Idex¢p(x,t) witht>0,0<x<Land p==1
where the star denotes the convolution operation. Furthermore, differentiation of a previous result leads to

[6]:

- Jar —I'(tf; D (r) = {%ﬁ A ([)]}(t) with p = £1

and substituting:

q.Jp(X, t) = VL|:L([)] DWA(D]DA(X,[)J}(O with t > 0’ 0<x<Land p= +1

Li3 P

Substituting again:
Ny (X, t) = [L(D] D{%J.dx LIJ? ([)JDé(x,[)JH(t) witht>0,0<x<Landp =%l
0

Therefore, we begin evaluating the convolution of Wﬁ( ) with A(x t) :(©)

WA @ Dé(x,[)j(t) -
sen’ - (o) 7?2 )
y)\LZZ Z & (w, )sen” &, (w,) Z COS[TJ Cos(nn)exy( g () _

falon) t(ﬂﬂ)z
00 Ek(%)seHZ Ek(('oh) + 00 [_j e?\v[ L _e}\y L _
y)\L2 Z Z(:ooh) cos E,k (OJh)SGn E-k (wh) - E.k (wh )n_z_:oo o COS(nT[) I(Ek(mh)Jz _1 (ﬂ'[)2
AY L Ay \L
( ) ( )t(ﬁk(wh)jz
- & sen” & e b © ; 1
WZ .%)coszk(wh>senzk(wh>—zk(wh)f-m [r)en )l(ak@h))al(m)z ’
AY L Ay \L
L 2 0p(wn) 2 gy )sen () ! Atv(TJz
Bl 989 8,
Ay \L AY L

Note that the series in the brackets was previously developed as representations of qJﬁ (s) and é(x, s).

Therefore

t
© Note that [eO(t DeBt] = .[dT e‘“eﬁ(t‘T) =°
0

, provided O # 3
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£ & (wn))?
\ o g o)’ o)en 1 (g ))),
2 oatedl- L22 Z (%)—Ek(wh)é[)(’_( ”

(%)Coszk(ﬁ)h)senik Ay L
+ i cos(ﬂj cos(nn) @A(i (ET} eM/[nL]
e L PlAaylL

2 2
Now taking into account that Al x, 1 [Ek (e, )j - WAL cosfE (o) B /L] and
AY Eelon)  sen& (o)

2
for gz L nt) 0, fors=)\i(%j ,n#z0
sA(L,s) = % ors—)\—y(—j n#E0 PA(s) = ¥

I, fors=0 u
D

gives

A ab ) = 5 Do () & sen, (@, )eosle, (@,)5/L] s DY)
[ Omsb =220y 20 0 e hent, () -5, () o)

Spatial integration now gives

senEk(och) [
A T (L) E- ((x) )D‘/L] 2 A
1 I A _ - Dp (wh) - E'k((*‘)h) e ¢ " )\Ly[Zk(If»h)] X DP (l) —_
el Onee =22 350 X e ) ) Lol
N Dg(wh) & CcosE, (wh)sen[zk (wh)&/L] T[V(Ek(tmh)jz X DpA(l)
‘ZE—whD'(wh)k:%icoszk(wh)senzk(wh)—zk(wh)e L of)
Finally, defining
4 t Zk(o\’h)2
A )= cosEk sen[E B{/L] Ty[ 0 ]
= 2% Z(wh cosk, (o Jsen s o] £ ()"
leads to
n, (x.t)= \S_ j t; x,1)  witht>0,0<x<Landp=2l

For what concerns the outlet cable, since it’s formally symmetric to the inlet one, the solution for N, can
be obtained changing A With B and considering 2L - x instead of x, as follows

2L - D
r]p(x,t) X .[d

- B(QL-x,T) witht>0,L<x<2Landp==zI
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