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In some applications, such as for instance in the design 
of a toroidal device for experiments on controlled 
thermonuclear fusion with magnetic confinement (tokamak), 
the problem of obtaining an X-point in lines of a magnetic 
induction field % can be encountered. In particular, in the 
divertor of a tokamak such an X-point should be obtained 
[1]. We can assume that field variables may satisfy some 
conditions at the X-point, the fulfilment of which assures the 
existence of an X-point in the field % of the device under 
consideration. The knowledge of such conditions and the 
possibility to verify their satisfaction could be very useful 
when attempting either to ascertain or maintain the presence 
of an X-point. This holds true both for design and operation.  
 In this paper, an analytical approach to the problem is 
provided. The proposed theoretical analysis affords 
sufficient conditions relating field variables at points which 
are X-point locations. Therefore, the provided conditions 
allows one to identify and maintain possible X-point 
locations. The analysis is carried out with reference to 
toroidal devices. These devices are axisymmetric systems. 
As a consequence, we can deal with two-dimensional 
magnetic induction fields (e.g., systems with a translational 
symmetry and axisymmetric systems). 
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In two-dimensional problems involving a translational 

symmetry of the magnetic field, the magnetic vector 
potential $ has a component along the translational axis 
only. Assuming a cartesian orthogonal coordinate system 
with the z-axis coinciding with the translational axis, we can 
write the vector potential component $]  Ψ, which is a 
function of [ and \ alone. The scalar function Ψ is related to 
the magnetic induction field % by the following equation 
 

( ) ( )[ ] ( )% N N[ \ [ \ [ \, , ,= ∇ × = ∇Ψ ×Ψ , (1) 

where N is the unit vector in the positive z-direction. From 
(1), it follows that the equation of the magnetic induction 
lines (flux lines) in the [\-plane is given by Ψ([, \) = const. 
The curl of the magnetic induction field is then given by 
 

( )∇ × = −∇% N2 Ψ [ \, . (2)�
For steady-state magnetic fields, we can also write the 

Ampère’s law in the form 
 

∇ × =% Nµ 0 - [ \( , ) , (3)�
where - is the z-directed component of the current density 
vector, and µ0 is the permittivity of vacuum. 
 In the final paper, we will prove the following theorem.  
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For a point ( )[ \0 0, of a flux line ( )Ψ [ \, = const.  to 

be a node (i.e., an X-point), it is sufficient that the following 
conditions are satisfied in ( )[ \0 0, :

L) ( )% [ \0 0, = 0  [or % [ \2
0 0 0( , ) = ] . 

LL) % [ \2 ( , )  has a local minimum at the point ([0, \0). 

�
LLL) -([0� \0) = 0. 
 

We can consider also axisymmetric magnetic fields. We 
can assume a cylindrical coordinate system U, φ, ], with the 
]-axis coincident with the axis of symmetry. The magnetic 
vector potential $ has only a φ-directed component $φ (U, ]). 
In this case, the scalar function Ψ(U, ]) is defined as [1] 
 

( )Ψ U ] U$ U ], ( , ).= 2π φ (4) 

Equations. (1) and (2)-(3) become 
 

% X
= ∇Ψ × φ

π2 U . (5) 

and 
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where Xφ is the unit vector in the direction of increasing 
values of φ, and - is the φ-directed component of the current 
density vector. The proof of the theorem introduced holds 
true also in this case. In fact, the equations obtained in the 
proof of the theorem are still valid, when variables [ and \
are replaced by the variables U and ], respectively. 
 Furthermore, in the final paper we will show that at an 
X-point the two branches of the flux line intersect each other 
at a right angle. 
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We firstly consider a simple example to illustrate the 
validity of the proposed sufficient condition. This example 
has an analytical solution. We consider the magnetic 
induction field % produced by two infinitely long parallel 
wires carrying steady-state currents of the same magnitude 
and direction, ,. A cross section of the system, which has a 
translational symmetry, is shown in Fig. 1. The cross-
sectional plane is the [\-plane of the chosen orthogonal 
cartesian system shown in the figure. 
 

Fig. 1. Cross-sectional view of two infinitely long parallel wires. 

 
From (1) the corresponding function %2 can be written as 
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where the flux function Ψ([��\) is given by [2]  
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In (8) G is half the distance between wires, and 
N ,= −µ π0 2/ . The first-order derivatives of (8) at the point 

(0, 0) are equal to zero  
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From (7) and (9), it follows that condition L) is satisfied at 
the point (0, 0). 

Calculating the second-order derivatives of (8) at the point 

(0, 0) yields 
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From (9)-(12), it can be easily verified that at the point 
(0, 0) the first-order derivatives of the function %2 , given by 
(7), are null and that its Hessian is positive definite. This is a 
sufficient condition so that the function %2 has a local 
minimum at the point (0, 0) [3], i.e., condition LL) is satisfied 
at this point. Furthermore, it is -(0, 0) = 0. 
 As a consequence, conditions of the theorem are 
simultaneously satisfied at the point (0, 0) which, therefore, 
is an X-point. The resulting flux plot is depicted in Fig. 2. 
 

Fig. 2. Flux plot for configuration shown in Fig. 1. 

 
In the final paper the proposed theorem will be applied 

to identify X-points in magnetic fields calculated through 
numerical methods. 
�
�
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A theorem which gives sufficient conditions for deter-

mining X-points in two-dimensional magnetic induction 
fields has been proved. The validity of the theorem has been 
demonstrated on a simple example. The theorem provides 
easy determination of X-points from the knowledge of the 
values of field variables in the neighbourhood of the isolate 
null points of the field. 
�
�
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