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Abstract - This paper deals with the optimized design of sin-
gle-layer solenoid air-core inductors for HF applications. The
presence of shields or other conductive materials in the neigh-
borhood of the inductor is neglected. Optimum design. is ob-
tained with respect to weight, resistance, and losses of inductors.
The highest operating frequency is affected by turn-to-turn
stray capacitances and it is determined by the first self-resonant
frequency. The optimization procedure is formulated as a nen-
linear programming problem. A Sequential Quadratic Pro-
gramming (SQP) algorithm is used for the solution. The influ-
ence of different geometrical parameters on the optimum design
is highlighted and guidelines for the design procedure are given:

I. INTRODUCTION

The increasing interest in HF electrical applications, such
as switching power converters, EMC filters, RF power am-
plifiers, and radio transmitters, poses unusual problems that
are to be solved for the design and effective operation of
electrical devices at high frequencies. An important issue
concerns the reliable prediction of effects related to the be-
havior of inductors at high frequencies, which is very differ-
ent from the low-frequency behavior. Consequently, special
design criteria must be employed when considering inductors
for HF applications. In particular, the stray capacitances be-
tween the turns of the winding significantly affect the induc-
tor HF response and are responsible for resonant frequencies.
Since these inductors must usually operate at frequencies
above several hundred kilohertz, their first (parallel) self-
resonance must be at a reasonably higher frequency.

In this paper, a procedure for the optimum design of sin-
gle-layer solenoid air-core inductors is presented. The aim of
the design procedure is to match the correct value of the coil
inductance in a fixed frequency range and with a rated cur-
rent, which is also fixed. In the next section, it will be shown
that this problem has some degrees of freedom and can be
formulated as an optimization problem choosing a proper
objective function. In Section II, the optimization is formu-
lated as a nonlinear programming problem-in which the: de-
sign electrical parameters of the inductor, expressed in-terms
of its geometry, give the constraints. In Section III, a' Se-
quential Quadratic Programming (SQP) algorithm is intro-
duced to determine the optimal geometric dimensions of the
coil. The results are discussed and guidelines for the design
are given in Section IV.
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II. FORMULATION OF THE PROBLEM

The design of optimized inductors can be formulated as a
general nonlinear programming problem [1-2] as follows:

find x = (x,, x,, eovr, X,,)
such that
F(k,x) is minimum (maximum) ey
subject to:
gl-(k,x)=0, i=1,2,...,r, (2a)
hi(k,x) <0, j=12..s (2b)
x<x<x, (20)

where F(k, x), gk, x), and hfk, x) are real-valued scalar
functions; k is a set of constant parameters; x is a vector of n
variables for which the optimization is to be accomplished.
The distinction between the variables and the constants de-
pends on the design philosophy and the manufacturing con-
straints. x; and x, are vectors whose entries are the lower
bounds, and upper bounds of x variables, respectively. The
function F(k, x) is called the “objective function,” for which
the optimal values of x result in the minimum (maximum) of
F(k, x). Usually, the objective function may be identified
with the cost, weight, losses, quality factor, etc. of the induc-
tor. Additional requirements and/or dimensional limits of the
inductor are referred to as “constraints,” and can be of two
types: equality (2a), and inequality (2b). Any design x that
satisfies. (2a) and (2b) is called a “feasible design,” and the
region generated by these constraints is called a “feasible de-
sign region”. The values of x in this region comply with the
design requirements, and among these points is the optimal
solution, . For the considered problem, both the objective
function and the constraints are nonlinear multivariable func-
tions. The input data for the HF inductor design are:

1. The rated inductance L,,

2. The maximum operating frequency f,,..,
3. The rated current.

The maximum operating frequency can be expressed as a
fraction of the first self-resonant frequency f, of the inductor,
Jnax = Ko, with k< 1. The first self-resonant frequency f, can
be calculated as a function of the overall stray capacitance C,
of the inductor
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This means that the overall stray capacitance C, can be as-

sumed as an input parameter instead of f,,,,. With reference to

Fig. 1, the geometric parameters for which the optimization
must be achieved are
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1. The diameter of the coil D.
2. The number of turns N.

3. The winding pitch p.

4, The wire diameter d.
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Fig. 1. Inductor cross section with its essential dimensions.

A single-layer solenoid air-core inductor having N turns is
assumed. Each turn consists of a single wire with a circular
cross section. The wire diameter d is normally chosen among
the standardized ones on the basis of the rated current of the
inductor. Thus, if we want to optimize the inductor with re-
spect to the weight and cost of the winding, we choose the
wire diameter equal to the smallest possible diameter com-
patible with the expected values of the current density. Obvi-
ously, this condition does not imply minimum coil resistance
and losses. Hence, at the beginning of the optimization pro-
cedure, the wire diameter d can be considered an already
fixed quantity and treated as a constant parameter. Therefore,
we have k =d and x = (D, N, p).

We can adopt as an objective function the total length /, of
the copper wire. Therefore, we have

F(x) =1,(D,N, p) = N+/(nD)> + p* . )

For a fixed wire diameter d, the minimization of the pro-
posed objective function [, reduces the copper weight (cost)
to a minimum value. Neglecting the influence of the design
variables on skin and proximity effects, also the winding re-
sistance and losses are minimized.

In some cases, the design must comply with some other
geometrical constraints. In these cases, an alternative objec-
tive function could be the overall coil volume V,

Flx) = IQ(D,N,p):(N—l)p-%DZ. )

On the basis of previous considerations, the constraints of
the problem under consideration can be written as

g(x) = L(d,D,N,p)- L, =0
h(x) = C(d,D,N,p)-C, <0

(62)
(6b)
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where L and C are the inductance and the overall stray ca-
pacitance of the coil, respectively.

The ranges of variation of variables D, N, and p are nor-
mally limited. In particular, the lower bounds are assigned by
geometrical limits as follows:

D2d,N21withinteger N,p2>d.

The upper bounds could be limited by other technical con-
straints. These could be input data for the design.

A. Inductance and Stray Capacitance

The overall coil inductance can be evaluated as a linear
combination of self- and mutual inductances of the turns

N N
L=Y>M;. ™
i=1 j=1
Exploiting the geometric symmetry and neglecting the in-
fluence of skin and proximity effects [3] yields
N-1
L =NL +2) (N=k)M) 1y,
k=1
where the self-inductance L, of each turn and the N-1 differ-
ent mutual-inductances between turns can be calculated as

(7)

8D 7
L= (ln -——) , and 7b
Ly Gy Rl (7b)
D’cos 9 ds . (7¢)

M1k+l“_ I\/4 kp)

The evaluation of the mutual inductances can be carried
out introducing the elliptic integrals K and E of the first and
second kinds, respectively,

My = % [(‘i‘ - C)K(C) - %E(C):l ,

where ¢ = D? /(D* +(kp)*) .

Simpler formulae, valid in a limited geometric range, can
be found in [4]. More general expressions of the coil induc-
tance are given in [5], but they contain tabulated coefficients.
In [6], surface currents are considered to approximately take
skin and proximity effects into account. In this case, the im-
provement in the final result seems to be not adequate
enough to justify the higher computational effort. A method
for calculating the capacitance between adjacent turns is also
provided in [6]. It is based on an averaging process that in-
volves the capacitance formula between two coaxial circular
filaments. Although the averaging process is approximated,
in this case also elliptical integrals must be solved. In {3],{7],
simpler and reliable formulae for the prediction of parasitic
capacitances of coils are given as a function of the winding
geometry. Following such an approach, the turn-to-turn ca-

+2D2 1-cos9)

(7d)



pacitance between adjacent turns can be calculated as
2
n°Deg
= = 5 . (8)
1n(p/d+ (p/d) ~1)

Neglecting the direct capacitive coupling between non-ad-
jacent turns, the overall stray capacitance at the coil terminals
can be evaluated as the series connection of (N-1) capaci-
tances C,, leading to

G 1 n’De, ©)
N-1 N-1yy (p/d+ (p/d)z—l)

As explained in [7], (9) gives the overall stray capacitance
with a good approximation when the adjacent turns are close
to each other (small values of the ratio p/d) and for a reduced
number of turns (i.e., tens of turns).

Under the above assumptions, we can employ (7a) and (9)
in the constraints (6a) and (6b), respectively. Due to the non-
linearity of (4) or (5), (7a), and (9), a numerical approach is
required to reach the optimal solution.
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I1I. OPTIMIZATION PROGCEDURE

In general, the solution to an optimization problem may be
obtained analytically or numerically. However, due to the
nonlinearity of the problem under study, a numerical tech-
nique was chosen. Many available and reliable numerical al-
gorithms, which are not difficult to implement in the present
case, can perform the task. We used a Successive Quadratic
Programming (SQP) algorithm, which can handle a fairly
wide range of nonlinear programming problems. This algo-
rithm uses iterations that minimize a quadratic approximation
of the Lagrangian function subject to linear approximation
of the constraints [8],[9]. A finite-difference method can be
used to estimate the gradients of both the objective function
and the constraints. In this case, for some single precision
calculations, an inaccurate estimate of the objective function
gradient may cause the algorithm to terminate at a noncritical
point. Therefore, high precision arithmetic is recommended.
Also, if an analytical form is available, the exact gradients
should be used instead.

IV. OPTIMAL DESIGN EXAMPLES

In order to highlight the influence of various geometrical
parameters on the optimum inductor design, some examples
are presented. In all the considered cases, the wire diameter
has been fixed atd = 1 mm.

As a first case, the optimal design of an inductor is ob-
tained without introducing any frequency constraint (i.e., the
constraint (6b) on the overall stray capacitance is not consid-
ered). In this case, assuming the total winding length as an
objective function, the optimization process leads to a mini-
mum at the lower limit for the winding pitch, p=d.

Curves of the winding length as a function of the coil di-
ameter for different values of the coil inductance are shown
in Fig. 2. The straight lines represent the locus of the points
corresponding to a same turn pumber, being in (4) p<<'D.

Winding lenght /. [m]

0 OAICQ 0.104 0.406 0.68 01. 1 0.:12 0.14 ) 0.I16
Coil diameter, D [m]
Fig. 2. Winding length [, vs. coil diameter D for different
values of coil inductance L and p=d=1 mm.

As Fig. 2 clearly shows, a minimum value of the winding
length is obtained in all the considered cases. The corre-
sponding optimal design parameters are given in Tab. L

Table I. Optimal Parameter Values Referred to Fig. 2

Inductance | Winding length | Coil diameter | Turn number
L, [uH] , [m] D [cm] N
10 1.82 3.88 15
20 2.89 4.84 19
40 4.57 6.06 24

In the following examples, the optimal design of an induc-
tor is obtained with a frequency constraint (i.e., the constraint
on the overall stray capacitance is considered). In the dia-
grams represented in Fig. 3, the winding length /, (objective
function) and the coil axial length /, are depicted as functions
of the coil diameter D, for a coil inductance of 20 uH and for
two values of the overall stray capacitance (i.e., of the self-
resonant frequency). Fig. 4 shows the same curves for a coil
inductance of 40 uH. The coil axial length /, is defined as

L(x¥) = (V=D p. (10)
These figures clearly show a minimum for the total wire
length. The corresponding geometrical dimensions are all in
a feasible technical range. It means that an optimum design
of the inductor is possible in the considered cases. The corre-
sponding values of the design parameters are given in Tab. II.
It could be noted that the objective function /, shows a
wide flat region around the point of minimum. This leaves a
further small degree of freedom in the inductor design. For
example, additional requirements for the coil diameter or the
coil axial length could be satisfied as long as the winding
length remains very close to its minimum.
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Fig. 3. Winding length /, (a) and coil axial length /, (b) vs.
coil diameter D for L.= 20 uH and two values of C,.

Table II. Optimal Parameter Values Referred to Figs. 3 and 4

L [uH] | C,[pF] |, [m] | D[em] | N | L [cm]
20 1 291 | 462 | 20 1.94
20 2 289 | 460 | 20 1.91
40 1 460 | 564 | 26 2.55
40 2 458 | 606 | 24 2.32

V. CONCLUSIONS

In this paper, a procedure for the optimum design of sin-
gle-layer solenoid air-core inductors for HF applications has
been presented. The design procedure matches the desired
values of the coil inductance and the first self-resonant fre-
quency expressed in terms of overall stray capacitance. The
remaining degrees of freedom are employed to minimize the
winding length that was chosen as the objective function of
the optimization problem. The optimization is formulated as
a nonlinear programming problem in which the design elec-
trical parameters of the inductor, expressed in terms of its ge-
ometry, give the constraints. A SQP algorithm has been in-
troduced to determine the optimal geometric dimensions of
the coil. Numerical results have been discussed and some
guidelines for the inductor design have been given.
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Fig. 4. Winding length /,, (a) and coil axial length /, (b) vs.
coil diameter D for L.= 40 pH and two values of C,.
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