Circuiti dinamici

Equazioni di stato

www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 9-11-2013)

Relazioni tra stato ingressi e risposte

- Ipotesi: circuito dinamico lineare non degenere
- Lo stato può essere rappresentato mediante le tensioni di tutti i condensatori e le correnti di tutti gli induttori
- ▶ Lo stato all'istante t_0 assieme all'andamento degli ingressi per $t \ge t_0$ determina l'evoluzione dello stato per $t \ge t_0$
- → Ad ogni istante t le risposte sono determinate dai valori all'istante t stesso delle variabili di stato e degli ingressi

Definizioni

- **Vettore di stato:** vettore $\mathbf{x}(t)$ contenente le variabili di stato indipendenti (dimensione N)
- **Vettore degli ingressi:** vettore $\mathbf{u}(t)$ contenente le tensioni e le correnti impresse dai generatori indipendenti (dimensione N_I)
- **Vettore delle risposte:** vettore $\mathbf{y}(t)$ contenente le tensioni e le correnti di cui si vuole determinare l'andamento (dimensione N_R)

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_N(t) \end{bmatrix} \qquad \mathbf{u}(t) = \begin{bmatrix} u_1(t) \\ \vdots \\ u_{N_I}(t) \end{bmatrix} \qquad \mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ \vdots \\ y_{N_R}(t) \end{bmatrix}$$

3

Equazioni di un circuito dinamico non degenere

 Le proprietà precedentemente enunciate corrispondono alla possibilità di esprimere le equazioni di un circuito dinamico lineare non degenere nella forma canonica

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
 Equazioni di stato
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$
 Equazioni di uscita

 $\mathbf{A} = \text{matrice } N \times N$

 $\mathbf{B} = \text{matrice } N \times N_I$

 $\mathbf{C} = \text{matrice } N_{R} \times N$

 $\mathbf{D} = \mathsf{matrice}\ N_{\scriptscriptstyle R} \times N_{\scriptscriptstyle I}$

N = numero delle variabili di stato indipendenti (ordine del circuito)

 N_I = numero degli ingressi

 N_R = numero delle risposte

Equazioni di uscita (1)

 Ad ogni istante t la risposta è determinata dai valori all'istante t stesso delle variabili di stato e degli ingressi

Dimostrazione:

- Se è noto l'andamento delle variabili di stato si può sostituire
 - ogni condensatore con un generatore di tensione
 - ogni induttore con un generatore di corrente
- Il circuito così ottenuto è detto circuito resistivo associato
- Il circuito è non degenere → il circuito resistivo associato ammette una e una sola soluzione
- Teorema di sostituzione
 la soluzione del circuito dinamico coincide con quella del circuito resistivo associato
- → Le risposte all'istante t dipendono dai valori all'istante t stesso delle grandezze impresse dei generatori indipendenti del circuito resistivo associato (variabili di stato e ingressi)

5

Equazioni di uscita (2)

 Il circuito resistivo associato è lineare > le risposte sono combinazioni lineari delle variabili di stato e degli ingressi

$$y_i(t) = \sum_{j=1}^{N} c_{ij} x_j(t) + \sum_{j=1}^{N_i} d_{ij} u_j(t)$$
 $i = 1, ..., N_R$

 Queste equazioni possono essere scritte sinteticamente nella forma

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

$$\mathbf{C} = \begin{bmatrix} c_{11} & \cdots & c_{1N} \\ \vdots & \ddots & \vdots \\ c_{N_R 1} & \cdots & c_{N_R N} \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} d_{11} & \cdots & d_{1N_I} \\ \vdots & \ddots & \vdots \\ d_{N_R 1} & \cdots & d_{N_R N_I} \end{bmatrix}$$

6

Equazioni di stato (1)

• Lo stato all'istante t_0 assieme all'andamento degli ingressi per $t \ge t_0$ determina l'evoluzione dello stato per $t \ge t_0$

Dimostrazione

 Come casi particolari di risposte, si possono esprimere in funzione delle variabili di stato e degli ingressi le variabili coniugate

Componente	Variabile di stato <i>x</i>	Variabile coniugata \hat{x}
Condensatore	Tensione	Corrente
Induttore	Corrente	Tensione

Combinando queste espressioni con le equazioni dei componenti dinamici si ottiene un sistema di N equazioni differenziali nelle N incognite $x_k(t)$ (equazioni di stato) da cui si possono ricavare gli andamenti per $t \geq t_0$ delle variabili di stato, noti i loro valori all'istante $t = t_0$ e l'andamento degli ingressi per $t \geq t_0$

7

Equazioni di stato (2)

 Le variabili coniugate (essendo un caso particolare di risposte del circuito) possono essere espresse come combinazioni lineari delle variabili di stato e degli ingressi

$$\hat{x}_{i}(t) = \sum_{j=1}^{N} \hat{c}_{ij} x_{j}(t) + \sum_{j=1}^{N_{i}} \hat{d}_{ij} u_{j}(t) \qquad i = 1, ..., N$$

 Le variabili coniugate sono legate alle variabili di stato anche dalle relazioni costitutive dei componenti dinamici, cioè da equazioni del tipo

$$\hat{x}_{i}(t) = K_{i} \frac{dx_{i}}{dt}$$

$$\begin{cases} i_{Ci}(t) = C_{i} \frac{dv_{Ci}}{dt} \\ v_{Li}(t) = L_{i} \frac{di_{i}}{dt} \end{cases}$$

8

Equazioni di stato (3)

Combinando le due espressioni delle variabili coniugate si ottengono le equazioni differenziali (equazioni di stato)

$$\frac{dx_{i}}{dt} = \sum_{j=1}^{N} a_{ij} x_{j}(t) + \sum_{j=1}^{N_{I}} b_{ij} u_{j}(t) \qquad i = 1, ..., N$$

$$\left(a_{ij} = \frac{\hat{c}_{ij}}{K_{i}} b_{ij} = \frac{\hat{d}_{ij}}{K_{i}}\right)$$

Le equazioni di stato possono essere poste nella forma

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & \cdots & a_{1N} \\ \vdots & \ddots & \vdots \\ a_{N1} & \cdots & a_{NN} \end{bmatrix}$$

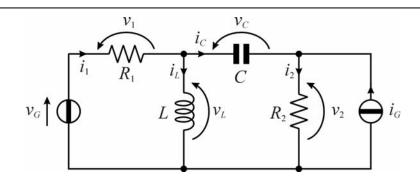
$$\mathbf{B} = \begin{bmatrix} b_{11} & \cdots & b_{1NI} \\ \vdots & \ddots & \vdots \\ b_{N1} & \cdots & b_{NN_I} \end{bmatrix}$$

,

Scrittura delle equazioni di stato e di uscita

- Si costruisce il circuito resistivo associato sostituendo
 - i condensatori con generatori di tensione
 - gli induttori con generatori di corrente
- Trattando le tensioni dei condensatori e le correnti degli induttori come quantità note, si determinano le espressioni delle variabili coniugate
 - correnti dei condensatori
 - tensioni degli induttori
- Allo stesso modo si determinano le espressioni delle altre eventuali risposte richieste
 - → Le espressioni delle risposte costituiscono le equazioni di uscita
- Si inseriscono le espressioni delle variabili coniugate nelle equazioni caratteristiche dei componenti dinamici
 - ightharpoonup In questo modo si ottiene un sistema di N equazioni differenziali del primo ordine che costituiscono le equazioni di stato

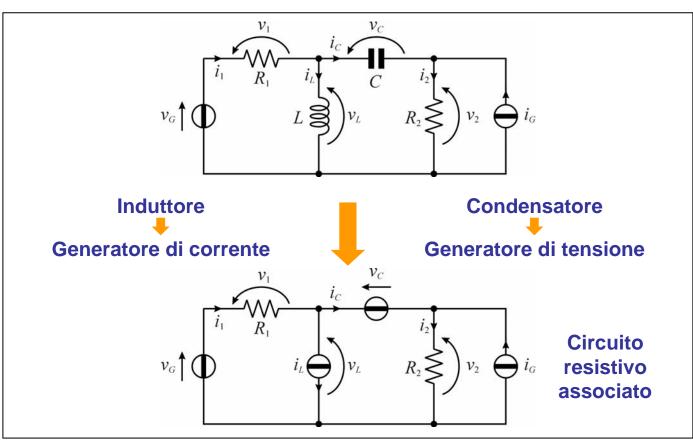
Esempio (1)



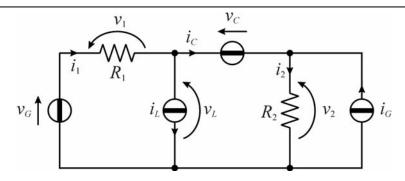
Si vogliono scrivere le equazioni di stato del circuito e le equazioni di uscita relative alle risposte $v_1(t)$ e $i_2(t)$

11

Esempio (2)



Esempio (3)



Analisi del circuito resistivo associato

Variabili coniugate

$$\begin{cases} v_L = -\frac{R_1 R_2}{R_1 + R_2} i_L + \frac{R_1}{R_1 + R_2} v_C + \frac{R_2}{R_1 + R_2} v_G + \frac{R_1 R_2}{R_1 + R_2} i_G \\ i_C = -\frac{R_1}{R_1 + R_2} i_L - \frac{1}{R_1 + R_2} v_C + \frac{1}{R_1 + R_2} v_G - \frac{R_2}{R_1 + R_2} i_G \\ \begin{cases} v_1 = \frac{R_1 R_2}{R_1 + R_2} i_L - \frac{R_1}{R_1 + R_2} v_C + \frac{R_1}{R_1 + R_2} v_G - \frac{R_1 R_2}{R_1 + R_2} i_G \\ i_2 = -\frac{R_1}{R_1 + R_2} i_L - \frac{1}{R_1 + R_2} v_C + \frac{1}{R_1 + R_2} v_G + \frac{R_1}{R_1 + R_2} i_G \end{cases}$$

Risposte

Esempio (4)

Equazioni di stato

$$\begin{cases} \frac{di_L}{dt} = \frac{1}{L} \left(-\frac{R_1 R_2}{R_1 + R_2} i_L + \frac{R_1}{R_1 + R_2} v_C + \frac{R_2}{R_1 + R_2} v_G + \frac{R_1 R_2}{R_1 + R_2} i_G \right) \\ \frac{dv_C}{dt} = \frac{1}{C} \left(-\frac{R_1}{R_1 + R_2} i_L - \frac{1}{R_1 + R_2} v_C + \frac{1}{R_1 + R_2} v_G - \frac{R_2}{R_1 + R_2} i_G \right) \end{cases}$$

Equazioni di uscita

$$\begin{cases} v_1 = \frac{R_1 R_2}{R_1 + R_2} i_L - \frac{R_1}{R_1 + R_2} v_C + \frac{R_1}{R_1 + R_2} v_G - \frac{R_1 R_2}{R_1 + R_2} i_G \\ i_2 = -\frac{R_1}{R_1 + R_2} i_L - \frac{1}{R_1 + R_2} v_C + \frac{1}{R_1 + R_2} v_G + \frac{R_1}{R_1 + R_2} i_G \end{cases}$$

Esempio (5)

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

$$\mathbf{x}(t) = \begin{bmatrix} i_L(t) \\ v_C(t) \end{bmatrix} \qquad \mathbf{y}(t) = \begin{bmatrix} v_1(t) \\ i_2(t) \end{bmatrix} \qquad \mathbf{u}(t) = \begin{bmatrix} v_G(t) \\ i_G(t) \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} -\frac{R_1 R_2}{L(R_1 + R_2)} & \frac{R_1}{L(R_1 + R_2)} \\ -\frac{R_1}{C(R_1 + R_2)} & -\frac{1}{C(R_1 + R_2)} \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} \frac{R_2}{L(R_1 + R_2)} & \frac{R_1 R_2}{L(R_1 + R_2)} \\ \frac{1}{C(R_1 + R_2)} & -\frac{R_1}{C(R_1 + R_2)} \end{bmatrix}$$

$$\mathbf{B} = \begin{vmatrix} \frac{R_2}{L(R_1 + R_2)} & \frac{R_1 R_2}{L(R_1 + R_2)} \\ \frac{1}{C(R_1 + R_2)} & -\frac{R_1}{C(R_1 + R_2)} \end{vmatrix}$$

$$\mathbf{C} = \begin{bmatrix} \frac{R_1 R_2}{R_1 + R_2} & -\frac{R_1}{R_1 + R_2} \\ -\frac{R_1}{R_1 + R_2} & -\frac{1}{R_1 + R_2} \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} \frac{R_1}{R_1 + R_2} & -\frac{R_1 R_2}{R_1 + R_2} \\ \frac{1}{R_1 + R_2} & \frac{R_1}{R_1 + R_2} \end{bmatrix}$$

$$\mathbf{D} = \begin{bmatrix} \frac{R_1}{R_1 + R_2} & -\frac{R_1 R_2}{R_1 + R_2} \\ \frac{1}{R_1 + R_2} & \frac{R_1}{R_1 + R_2} \end{bmatrix}$$

15

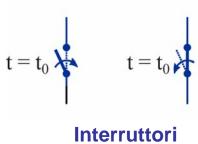
Nota

- La tensioni e le correnti dei generatori che sostituiscono i condensatori e gli induttori devono essere sempre orientate secondo la convenzione dell'utilizzatore
- Solo in questo modo il legame tra variabili di stato e variabili coniugate può essere scritto nella forma

$$i_{Ci}(t) = C_i \frac{dv_{Ci}}{dt}$$
$$v_{Li}(t) = L_i \frac{di_i}{dt}$$

Condizioni iniziali

- Per determinare la risposta di un circuito dinamico, si devono associare alle sue equazioni delle opportune condizioni iniziali
- In genere le condizioni iniziali non sono direttamente disponibili, ma devono essere determinate a partire da informazioni di tipo diverso
- Spesso è noto il comportamento del circuito prima di un istante iniziale t_0 in corrispondenza del quale si ha una perturbazione dovuta alla commutazione di uno o più interruttori o a discontinuità delle grandezze impresse dei generatori
- Per determinare le condizioni iniziali si devono studiare gli effetti prodotti da queste perturbazioni

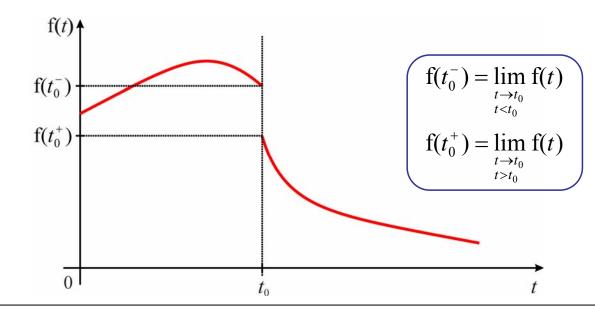


 $t = t_0$ $t = t_0$ Deviatore

17

Discontinuità

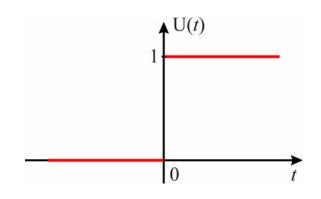
- All'istante t₀ alcune tensioni o correnti nel circuito possono presentare una discontinuità di prima specie (cioè un "salto")
 - \rightarrow il loro valore per $t = t_0$ non è definito
- In questo caso si definiscono i valori relativi agli istanti t_0^- e t_0^+

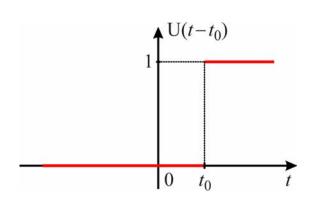


Gradino unitario

 Per esprimere in forma analitica funzioni con discontinuità di prima specie si può utilizzare la funzione gradino unitario

$$U(t) = \begin{cases} 0 & \text{per } t < 0 \\ 1 & \text{per } t > 0 \end{cases}$$

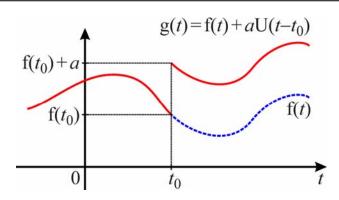




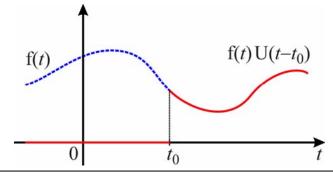
19

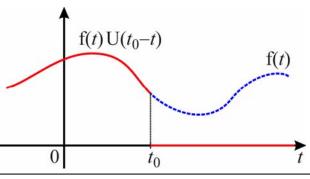
Gradino unitario - Esempi

• Una funzione g(t) discontinua per $t=t_0$ può essere espressa come somma di una funzione continua f(t) e di un termine proporzionale a un gradino unitario $U(t-t_0)$

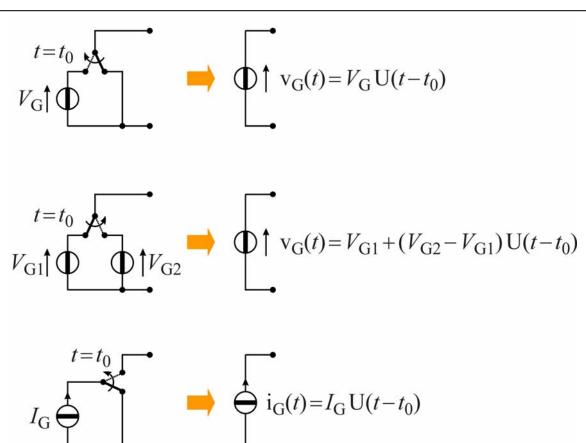


• Con $f(t)U(t-t_0)$ o $f(t)U(t_0-t)$ si possono rappresentare funzioni uguali a f(t) per $t > t_0$ o per $t < t_0$ e nulle per i rimanenti valori di t





Gradino unitario - Esempi



Funzioni impulsive

- Nei punti di discontinuità la derivata non è definita
- Si possono presentare situazioni in cui non è possibile rappresentare mediante funzioni "ordinarie" gli andamenti di alcune tensioni o correnti
- Per superare questo inconveniente si introducono le "funzioni impulsive"
- Le funzioni impulsive non sono funzioni in senso ordinario, ma enti che sono definiti in termini rigorosi nell'ambito della teoria delle distribuzioni
- Di seguito, rinunciando al rigore matematico, le funzioni impulsive saranno introdotte mediante semplici considerazioni di tipo intuitivo

21

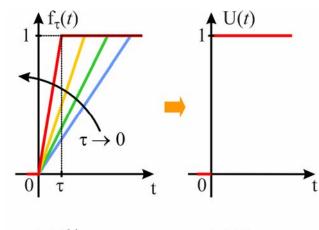
Impulso di Dirac

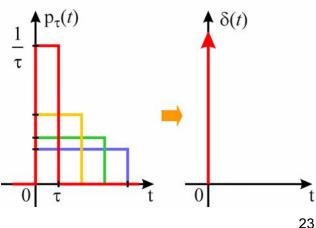
Si considera la funzione $f_{\tau}(t)$

$$\mathbf{f}_{\tau}(t) = \begin{cases} 0 & \text{per } t < 0 \\ \frac{t}{\tau} & \text{per } 0 < t < \tau \\ 1 & \text{per } t > \tau \end{cases}$$

- Per $\tau \to 0$, $f_{\tau}(t)$ tende a U(t)
- La derivata di $f_{\tau}(t)$ è un impulso rettangolare $p_{\tau}(t)$ avente durata τ e ampiezza $1/\tau$ (e quindi area unitaria)

$$p_{\tau}(t) = \begin{cases} 0 & \text{per } t < 0 \\ \frac{1}{\tau} & \text{per } 0 < t < \tau \\ 0 & \text{per } t > \tau \end{cases}$$





Impulso di Dirac (1)

- Intuitivamente, il limite per $\tau \to 0$ di $p_{\tau}(t)$ è un impulso di area unitaria avente durata nulla e ampiezza infinita
- Il limite è rappresentato dall'**impulso di Dirac**, $\delta(t)$, caratterizzato dalle seguenti proprietà

$$\delta(t) = \begin{cases} 0 & \text{per } t \neq 0 \\ \text{singolare} & \text{per } t = 0 \end{cases}$$
$$\int_{-\varepsilon}^{\varepsilon} \delta(t) dt = 1 \quad \forall \varepsilon > 0$$

$$\int_{-\varepsilon}^{\varepsilon} \delta(t) dt = 1 \quad \forall \varepsilon > 0$$

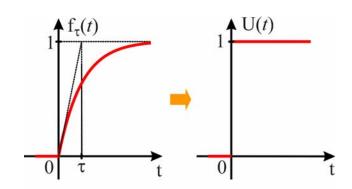
- Queste proprietà non possono essere soddisfatte da una funzione ordinaria (per una funzione ordinaria la prima proprietà implica che l'integrale su un qualunque intervallo sia nullo)
- $\delta(t)$ non è una funzione ordinaria ma è una distribuzione (o funzione generalizzata)

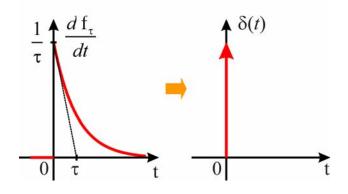
Impulso di Dirac (2)

- E' possibile introdurre l'impulso di Dirac anche mediante una diversa successione di funzioni $f_{\tau}(t)$ tendente a U(t) per τ tendente a zero
- Ad esempio si può considerare la funzione

$$\mathbf{f}_{\tau}(t) = \begin{cases} 0 & \text{per } t < 0 \\ 1 - e^{-t/\tau} & \text{per } t > 0 \end{cases}$$

$$\frac{d \mathbf{f}_{\tau}}{dt} = \begin{cases} 0 & \text{per } t < 0 \\ \frac{1}{\tau} e^{-t/\tau} & \text{per } t > 0 \end{cases}$$





25

Impulso di Dirac (3)

L'integrale dell'impulso di Dirac è il gradino unitario

$$\int_{-\infty}^{t} \delta(\xi) d\xi = \begin{cases} 0 & \text{per } t < 0 \\ 1 & \text{per } t > 0 \end{cases} \qquad \longrightarrow \qquad \int_{-\infty}^{t} \delta(\xi) d\xi = U(t)$$

$$\int_{-\infty}^{t} \delta(\xi) d\xi = \mathrm{U}(t)$$

Quindi, formalmente, si può porre

$$\frac{d\mathbf{U}}{dt} = \delta(t)$$

→ L'impulso di Dirac è la derivata generalizzata del gradino unitario

Impulsi di ordine superiore (1)

- Considerando funzioni $f_{\tau}(t)$ dotate di derivate di ordine superiore, con un procedimento analogo a quello utilizzato per introdurre l'impulso di Dirac è possibile introdurre delle funzioni impulsive che rappresentano le derivate generalizzate dell'impulso di Dirac
- Per esempio, si può definire $f_{\tau}(t)$ raccordando i valori 0 e 1 mediante due archi di parabola disposti nell'intervallo tra 0 e τ
- \rightarrow La funzione $f_{\tau}(t)$ è derivabile due volte (in senso ordinario)
 - la derivata prima di $f_{\tau}(t)$ è un impulso triangolare di area unitaria
 - la derivata seconda è costituita da una coppia di impulsi rettangolari di segno opposto

27

Impulsi di ordine superiore (2)

- Passando al limite per τ → 0
 - $f_{\tau}(t)$ tende ad un gradino unitario
 - la derivata prima di f_τ(t) tende ad un impulso di Dirac
 - il limite della derivata seconda di $f_{\tau}(t)$ è rappresentato da una distribuzione $\delta^{(1)}(t)$ tale che

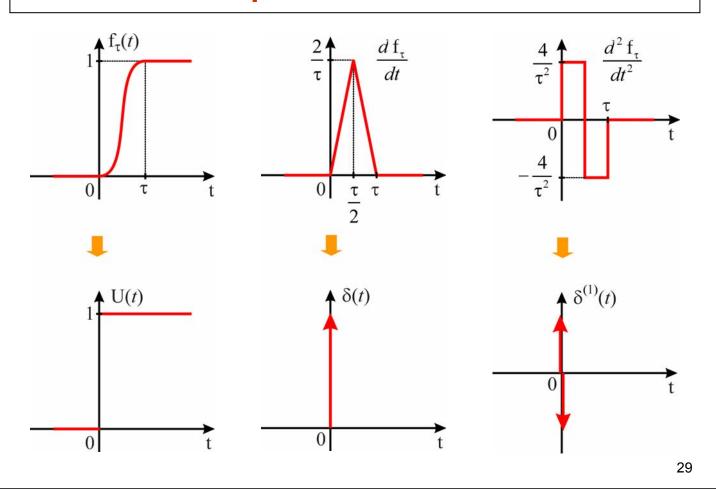
$$\int_{0}^{t} \delta^{(1)}(t) = \delta(t) \qquad \Longrightarrow \qquad \delta^{(1)}(t) = \frac{d \, \delta(t)}{dt} \qquad \qquad \text{Impulso di ordine 1}$$

- In modo analogo si possono introdurre gli impulsi di ordine superiore, $\delta^{(n)}(t) \ (\forall n)$
- L'impulso di Dirac e il gradino unitario vengono indicati anche con i simboli

$$\delta^{(0)}(t) = \delta(t) \qquad \delta^{(-1)}(t) = \mathrm{U}(t)$$

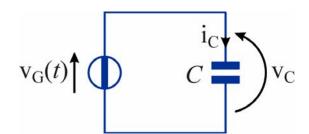
28

Impulso di ordine 1



Impulsi di corrente e di tensione

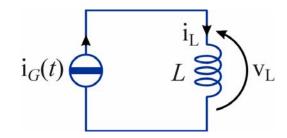
- In un condensatore a una discontinuità della tensione corrisponde un impulso di corrente (>> corrente non limitata)
- In un induttore a una discontinuità della corrente corrisponde un impulso di tensione (>> tensione non limitata)



$$\mathbf{v}_{G}(t) = V_{0} U(t - t_{0})$$

$$\mathbf{v}_{C}(t) = \mathbf{v}_{G}(t)$$

$$\mathbf{i}_{C}(t) = C \frac{d \mathbf{v}_{C}}{dt} = CV_{0} \delta(t - t_{0})$$



$$i_{G}(t) = I_{0} U(t - t_{0})$$

$$i_{L}(t) = i_{G}(t)$$

$$v_{L}(t) = L \frac{d i_{L}}{dt} = L I_{0} \delta(t - t_{0})$$

Dati iniziali e condizioni iniziali

- Se è noto il comportamento di un circuito per t < t₀, passando al limite per t → t₀ si possono determinare i valori delle tensione e correnti e delle loro derivate per t = t₀⁻ (dati iniziali)
- Per determinare le risposte per t > t₀ occorrono i valori delle funzioni incognite e delle loro derivate all'istante t₀⁺
 (condizioni iniziali)
- All'istante t_0 le tensioni, le correnti e le loro derivate possono essere discontinue
 - \Rightarrow i valori a t_0^+ in genere non coincidono con quelli a t_0^-
- Occorre determinare la relazione tra i dati iniziali e le condizioni iniziali
- Se il circuito non è degenere si può fare riferimento alla proprietà di continuità dello stato

31

Continuità dello stato nei circuiti non degeneri

 In un circuito dinamico non degenere, se gli ingressi non contengono impulsi le variabili di stato sono funzioni continue di t (anche in presenza di discontinuità degli ingressi)

Dimostrazione

- La proprietà si può dimostrare per assurdo
- Lo stato e gli ingressi sono legati dall'equazione

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

- Se lo stato fosse discontinuo
 - ◆ x(t) dovrebbe contenere dei gradini unitari
 - *d*x/*dt* dovrebbe contenere degli impulsi di Dirac
- ightharpoonup Per bilanciare gli impulsi, a primo membro anche $\mathbf{u}(t)$ dovrebbe contenere degli impulsi di Dirac

Note

- Nella dimostrazione si esclude la possibilità che, per bilanciare gli impulsi a primo membro, sia $\mathbf{x}(t)$ a contenere impulsi di Dirac
 - in questo caso dx/dt conterrebbe impulsi di ordine 1
 - quindi anche x(t) dovrebbe contenere impulsi di ordine 1
 - di conseguenza dx/dt conterrebbe anche impulsi di ordine 2
 - e così via ...
- Se $\mathbf{u}(t)$ contiene impulsi le variabili di stato non sono necessariamente discontinue (è possibile che nel calcolo di $\mathbf{B} \cdot \mathbf{u}(t)$ i termini impulsivi si annullino)
- Se è $\mathbf{u}(t)$ discontinuo le derivate delle variabili di stato (e quindi le variabili coniugate) possono essere discontinue

33

Risposte di circuiti non degeneri

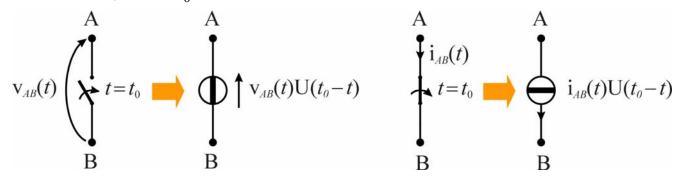
La relazione tra risposte, stato e ingressi è

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t)$$

- Se $\mathbf{u}(t)$ contiene al più gradini (ma non impulsi) $\mathbf{x}(t)$ è continuo
- \rightarrow Le risposte $\mathbf{y}(t)$ non possono contenere impulsi, ma possono essere discontinue in presenza di discontinuità degli ingressi

Circuiti con interruttori (1)

- Un interruttore che si chiude all'istante $t=t_0$ può essere rappresentato mediante in generatore di tensione
 - uguale alla tensione ai terminali dell'interruttore aperto per $t < t_0$
 - nulla per $t > t_0$
- Un interruttore che si apre all'istante $t=t_0$ può essere rappresentato mediante in generatore di corrente
 - ◆ uguale alla corrente attraverso l'interruttore chiuso per t < t₀
 - nulla per $t > t_0$



35

Circuiti con interruttori (2)

• Se si rappresentano gli interruttori che commutano come ingressi fittizi (discontinui) e si indica $\mathbf{u}_{\mathrm{F}}(t)$ il vettore che contiene le loro tensioni o correnti, si possono scrivere le equazioni di stato e di uscita nella forma

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{B}_F\mathbf{u}_F(t)$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) + \mathbf{D}_F\mathbf{u}_F(t)$$

- Si possono estendere ai circuiti con interruttori i risultati relativi ai circuiti con ingressi discontinui
- In un circuito non degenere, in presenza di interruttori che commutano
 - le variabili di stato sono continue
 - le risposte possono essere discontinue

Determinazione delle condizioni iniziali (1)

- Calcolo dei valori per $t = t_0$ delle variabili di stato
 - Si studia il circuito nella configurazione per $t < t_0$ e si determinano le espressioni delle variabili di stato
 - Si valuta il limite per $t \to t_0$
 - Per un circuito non degenere i valori ottenuti coincidono con i valori per $t = t_0^+$ (quindi si può parlare semplicemente di valori per $t = t_0$)
- Calcolo dei valori per $t = t_0^+$ delle altre tensioni e correnti
 - Si costruisce il circuito resistivo associato per t > t₀
 - Si scrivono le equazioni di stato e le equazioni di uscita
 - Queste equazioni valgono per ogni $t > t_0$ e quindi, passando al limite per $t \to t_0$, all'istante $t = t_0^+$
 - → Inserendo i valori per $t = t_0$ delle variabili di stato nelle equazioni si ottengono i valori per $t = t_0^+$ delle variabili coniugate e delle risposte

37

Determinazione delle condizioni iniziali (2)

- Calcolo dei valori per $t=t_0^+$ delle derivate delle variabili di stato
 - Queste derivate si ottengono direttamente inserendo i valori per $t=t_0$ delle variabili di stato nelle equazioni di stato (sono proporzionali ai valori per $t=t_0^+$ delle variabili coniugate)
- Calcolo dei valori per $t = t_0^+$ delle altre derivate
 - Si derivano rispetto a t le equazioni di stato e le equazioni uscita
 - Si inseriscono nelle equazioni così ottenute i valori per $t = t_0^+$ delle derivate delle variabili di stato
- Calcolo dei valori all'istante t_0^+ delle derivate di ordine superiore
 - Le derivate delle equazioni di stato forniscono le derivate seconde delle variabili di stato in funzione delle loro derivate prime
 - Derivando due volte le equazioni di stato si possono ottenere le derivate terze, e così via
 - Le altre derivate si ottengono mediante successive derivazioni delle equazioni di uscita

Riepilogo (1)

Analisi per $t < t_0$

$$\frac{d\mathbf{x}}{dt}\Big|_{t=t_0^+} = \mathbf{A}\mathbf{x}(t_0) + \mathbf{B}\mathbf{u}(t_0^+)$$

$$\mathbf{y}(t_0^+) = \mathbf{C}\mathbf{x}(t_0) + \mathbf{D}\mathbf{u}(t_0^+)$$

$$\hat{x}_i(t_0^+) = K_i \frac{dx_i}{dt}\Big|_{t=t_0^+}$$

$$i = 1, \dots, N$$

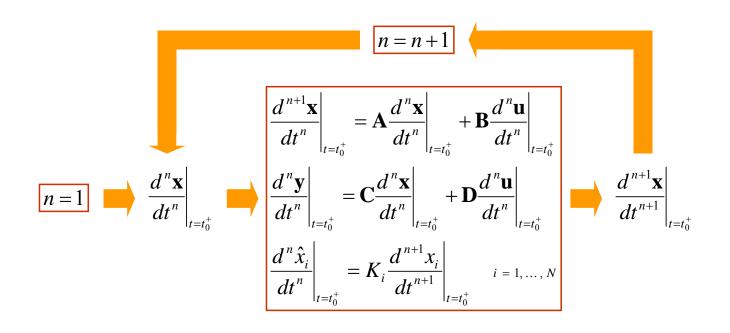
$$\frac{d\mathbf{x}}{dt}\Big|_{t=t_0^+} = \mathbf{A}\mathbf{x}(t_0) + \mathbf{B}\mathbf{u}(t_0^+)
\mathbf{y}(t_0^+) = \mathbf{C}\mathbf{x}(t_0) + \mathbf{D}\mathbf{u}(t_0^+)
\hat{x}_i(t_0^+) = K_i \frac{dx_i}{dt}\Big|_{t=t_0^+} = \mathbf{A}\frac{d\mathbf{x}}{dt}\Big|_{t=t_0^+} + \mathbf{B}\frac{d\mathbf{u}}{dt}\Big|_{t=t_0^+}
\frac{d\mathbf{y}}{dt}\Big|_{t=t_0^+} = \mathbf{C}\frac{d\mathbf{x}}{dt}\Big|_{t=t_0^+} + \mathbf{D}\frac{d\mathbf{u}}{dt}\Big|_{t=t_0^+}
\frac{d\hat{x}_i}{dt}\Big|_{t=t_0^+} = K_i \frac{d^2x_i}{dt^2}\Big|_{t=t_0^+} = K_i \frac{d^2x_i}{dt^2}\Big|_{t=t_0^+} = 1, \dots, N$$

Derivate delle equazioni di stato e di uscita

39

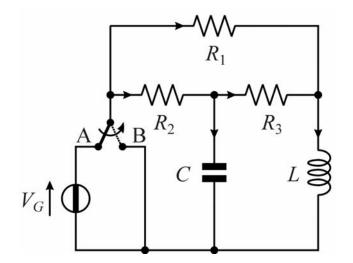
Riepilogo (2)

Calcolo dei valori a t_0^+ delle derivate di ordine superiore



Esempio 1 (1)

- Per t < 0 il circuito rappresentato in figura è in condizioni di regime stazionario
- All'istante t = 0 l'interruttore passa dalla posizione A alla posizione B
- Determinare i valori agli istanti 0^- e 0^+ di $v_{\rm C}$, $i_{\rm C}$, $v_{\rm L}$, $i_{\rm L}$, $i_{\rm R1}$, $i_{\rm R2}$, $i_{\rm R3}$ e i valori all'istante 0^+ delle loro derivate



$$R_1 = 4 \Omega$$

$$R_2 = 2 \Omega$$

$$R_3 = 2 \Omega$$

$$C = 0.5 F$$

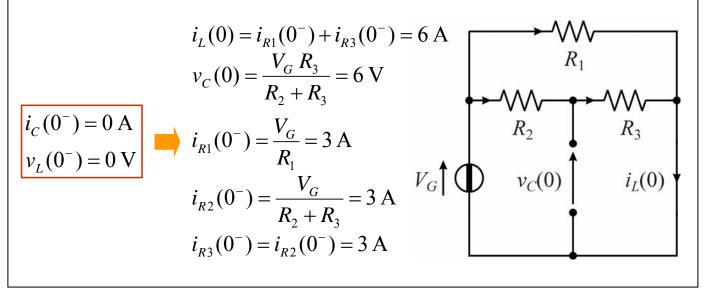
$$L = 0.5 H$$

$$V_G = 12 V$$

41

Esempio 1 (2)

- Determinazione dei valori all'istante $t = 0^-$
 - Per t < 0 II circuito è in condizioni di regime stazionario
 - Si esegue un'analisi in continua
 - Dato che il circuito non è degenere, v_C e i_L sono continue per t=0



Esempio 1 (3)

 Facendo riferimento al circuito resistivo associato, si scrivono le equazioni di stato e di uscita per t > 0 (interruttore nella posizione B)

$$i_{C}(t) = C \frac{dv_{C}}{dt} = -\frac{(R_{1} + R_{2} + R_{3})}{R_{2}(R_{1} + R_{3})} v_{C}(t) - \frac{R_{1}}{R_{1} + R_{3}} i_{L}(t)$$

$$v_{L}(t) = L \frac{di_{L}}{dt} = \frac{R_{1}}{R_{1} + R_{3}} v_{C}(t) - \frac{R_{1}R_{3}}{R_{1} + R_{3}} i_{L}(t)$$

$$i_{R1}(t) = -\frac{v_{C}(t)}{R_{1} + R_{3}} + \frac{R_{3}}{R_{1} + R_{3}} i_{L}(t)$$

$$i_{R2}(t) = -\frac{v_{C}(t)}{R_{2}}$$

$$i_{R3}(t) = \frac{v_{C}(t)}{R_{1} + R_{3}} + \frac{R_{1}}{R_{1} + R_{3}} i_{L}(t)$$

43

Esempio 1 (4)

- Determinazione dei valori all'istante $t = 0^+$
- Si sostituiscono nelle equazioni di stato e nelle equazioni di uscita i valori delle variabili di stato per t=0

$$i_{C}(0^{+}) = -\frac{(R_{1} + R_{2} + R_{3})}{R_{2}(R_{1} + R_{3})} v_{C}(0) - \frac{R_{1}}{R_{1} + R_{3}} i_{L}(0) = -8 A$$

$$v_{L}(0^{+}) = \frac{R_{1}}{R_{1} + R_{3}} v_{C}(0) - \frac{R_{1}R_{3}}{R_{1} + R_{3}} i_{L}(0) = -4 V$$

$$\downarrow v_{C}(0) = 6 V$$

$$\downarrow i_{L}(0) = 6 A$$

$$\downarrow i_{R1}(0^{+}) = -\frac{v_{C}(0)}{R_{1} + R_{3}} + \frac{R_{3}}{R_{1} + R_{3}} i_{L}(0) = 1 A$$

$$i_{R2}(0^{+}) = -\frac{v_{C}(0)}{R_{2}} = -3 A$$

$$i_{R3}(0^{+}) = \frac{v_{C}(0)}{R_{1} + R_{3}} + \frac{R_{1}}{R_{1} + R_{3}} i_{L}(0) = 5 A$$

Esempio 1 (5)

• I valori per $t=0^+$ delle derivate delle variabili di stato si ottengono direttamente sostituendo $v_{\rm C}(0)$ e $i_{\rm L}(0)$ nelle equazioni di stato

$$\frac{dv_C}{dt}\bigg|_{t=0^+} = \frac{i_C(0^+)}{C} = -\frac{(R_1 + R_2 + R_3)}{CR_2(R_1 + R_3)}v_C(0) - \frac{R_1}{C(R_1 + R_3)}i_L(0) = -16 \text{ V/s}$$

$$\frac{di_L}{dt}\bigg|_{t=0^+} = \frac{v_L(0^+)}{L} = \frac{R_1}{L(R_1 + R_3)}v_C(0) - \frac{R_1R_3}{L(R_1 + R_3)}i_L(0) = -8 \text{ A/s}$$

• Le derivate di i_C e v_L si ottengono derivando le loro espressioni fornite dalle equazioni di stato e sostituendo i valori delle derivate delle variabili di stato

$$\frac{di_C}{dt}\bigg|_{t=0^+} = -\frac{(R_1 + R_2 + R_3)}{R_2(R_1 + R_3)} \cdot \frac{dv_C}{dt}\bigg|_{t=0^+} - \frac{R_1}{R_1 + R_3} \cdot \frac{di_L}{dt}\bigg|_{t=0^+} = 16 \text{ A/s}$$

$$\frac{dv_L}{dt}\bigg|_{t=0^+} = \frac{R_1}{R_1 + R_3} \cdot \frac{dv_C}{dt}\bigg|_{t=0^+} - \frac{R_1R_3}{R_1 + R_3} \cdot \frac{di_L}{dt}\bigg|_{t=0^+} = 0 \text{ V/s}$$

45

Esempio 1 (6)

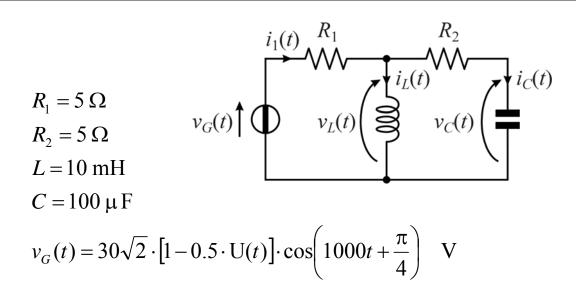
 Per calcolare derivate delle correnti dei resistori, si derivano rispetto al tempo le loro espressioni fornite dalle equazioni di equazioni di uscita e si inseriscono i valori delle derivate delle variabili di stato

$$\frac{di_{R1}}{dt}\Big|_{t=0^{+}} = -\frac{1}{R_{1} + R_{3}} \frac{dv_{C}}{dt}\Big|_{t=0^{+}} + \frac{R_{3}}{R_{1} + R_{3}} \frac{di_{L}}{dt}\Big|_{t=0^{+}} = 0\text{A/s}$$

$$\frac{di_{R2}}{dt}\Big|_{t=0^{+}} = -\frac{1}{R_{2}} \frac{dv_{C}}{dt}\Big|_{t=0^{+}} = 8\text{ A/s}$$

$$\frac{di_{R3}}{dt}\Big|_{t=0^{+}} = \frac{1}{R_{1} + R_{3}} \frac{dv_{C}}{dt}\Big|_{t=0^{+}} + \frac{R_{1}}{R_{1} + R_{3}} \frac{di_{L}}{dt}\Big|_{t=0^{+}} = -8\text{ A/s}$$

Esempio 2 (1)



Per t<0 il circuito è in condizioni di regime sinusoidale Determinare i valori per $t=0^+$ di i_L , v_C , i_1 e delle loro derivate

47

Esempio 2 (2)

• Per t < 0 la tensione del generatore vale

$$v_G(t) = 30\sqrt{2}\cos\left(1000t + \frac{\pi}{4}\right) \quad V$$

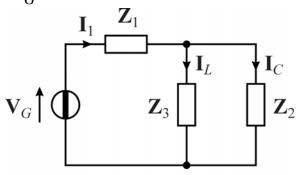
- Si analizza il circuito in regime sinusoidale con il metodo simbolico
- Si calcolano le impedenze e il fasore di v_G

$$\mathbf{Z}_{1} = R_{1} = 5$$

$$\mathbf{Z}_{2} = R_{2} - j \frac{1}{\omega C} = 5 - 5j$$

$$\mathbf{Z}_{3} = j\omega L = 10j$$

$$\mathbf{V}_{G} = 30\sqrt{2} \exp\left(j\frac{\pi}{4}\right) = 30 + 30j$$



Esempio 2 (3)

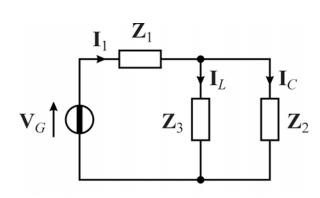
Si determinano le correnti dei rami e la tensione del condensatore

$$\mathbf{I}_{1} = \frac{\mathbf{V}_{G}}{\mathbf{Z}_{1} + \frac{\mathbf{Z}_{2}\mathbf{Z}_{3}}{\mathbf{Z}_{2} + \mathbf{Z}_{3}}} = 2 + 2j$$

$$\mathbf{I}_{L} = \mathbf{I}_{1} \frac{\mathbf{Z}_{2}}{\mathbf{Z}_{2} + \mathbf{Z}_{3}} = 2 - 2j$$

$$\mathbf{I}_{C} = \mathbf{I}_{1} - \mathbf{I}_{L} = 4j$$

$$\mathbf{V}_{C} = -j\frac{1}{\omega C} \cdot \mathbf{I}_{C} = 20$$



• Si calcolano i valori per t = 0 delle variabili di stato

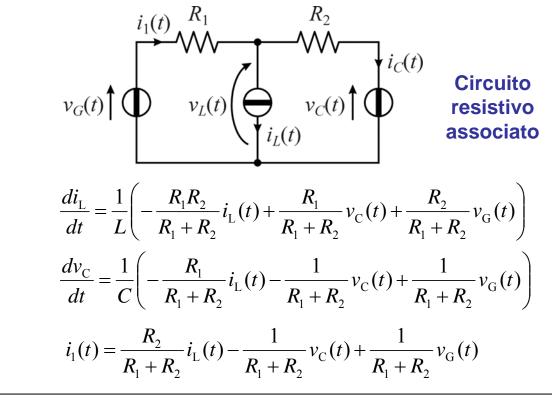
$$i_{L}(t) = |\mathbf{I}_{L}| \cos[1000t + \arg(\mathbf{I}_{L})] \implies i_{L}(0) = |\mathbf{I}_{L}| \cos[\arg(\mathbf{I}_{L})] = 2 \text{ A}$$

$$v_{C}(t) = |\mathbf{V}_{C}| \cos[1000t + \arg(\mathbf{V}_{C})] \implies v_{C}(0) = |\mathbf{V}_{C}| \cos[\arg(\mathbf{V}_{C})] = 20 \text{ V}$$

49

Esempio 2 (4)

Per t > 0 si scrivono le equazioni di stato e di uscita



Esempio 2 (5)

• Per t > 0 la tensione del generatore vale

$$v_{\rm G}(t) = 15\sqrt{2}\cos\left(1000t + \frac{\pi}{4}\right)$$

• Quindi, passando al limite per $t \to 0$ si ottiene

$$v_{G}(0^{+}) = 15\sqrt{2}\cos\left(\frac{\pi}{4}\right) = 15 \text{ V}$$

$$\frac{dv_{G}}{dt}\Big|_{t=0^{+}} = \left[-15\sqrt{2}\cdot1000\cdot\sin\left(1000t + \frac{\pi}{4}\right)\right]_{t=0^{+}} = -15000 \text{ V/s}$$

51

Esempio 2 (6)

• Per calcolare le derivate delle variabili di stato e la corrente i_1 all'istante $t=0^+$ si inseriscono i valori per t=0 delle variabili di stato nelle equazioni di stato e di uscita

$$\begin{aligned} \frac{di_{\rm L}}{dt}\bigg|_{t=0^{+}} &= \frac{1}{L} \left(-\frac{R_1 R_2}{R_1 + R_2} i_{\rm L}(0) + \frac{R_1}{R_1 + R_2} v_{\rm C}(0) + \frac{R_2}{R_1 + R_2} v_{\rm G}(0^{+}) \right) = 1250 \,\text{A/s} \\ \frac{dv_{\rm C}}{dt}\bigg|_{t=0^{+}} &= \frac{1}{C} \left(-\frac{R_1}{R_1 + R_2} i_{\rm L}(0) - \frac{1}{R_1 + R_2} v_{\rm C}(0) + \frac{1}{R_1 + R_2} v_{\rm G}(0^{+}) \right) = -7500 \,\text{V/s} \\ i_1(0^{+}) &= \frac{R_2}{R_1 + R_2} i_{\rm L}(0) - \frac{1}{R_1 + R_2} v_{\rm C}(0) + \frac{1}{R_1 + R_2} v_{\rm G}(0^{+}) = 0.5 \,\text{A} \end{aligned}$$

• Per calcolare la derivata del corrente i_1 all'istante $t=0^+$ si deriva l'equazione di uscita e si inseriscono i valori per $t=0^+$ delle derivate variabili di stato

$$\left. \frac{di_1}{dt} \right|_{t=0^+} = \frac{R_2}{R_1 + R_2} \left. \frac{di_L}{dt} \right|_{t=0^+} - \frac{1}{R_1 + R_2} \left. \frac{dv_C}{dt} \right|_{t=0^+} + \frac{1}{R_1 + R_2} \left. \frac{dv_G}{dt} \right|_{t=0^+} = -125 \,\text{A/s}$$

Discontinuità dello stato nei circuiti degeneri

 Per un circuito degenere, si può dimostrare che le equazioni di stato e di uscita assumono la forma

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) + \mathbf{B}^{(1)}\frac{d\mathbf{u}}{dt}$$

$$\mathbf{B}^{(1)} = \text{matrice } N \times N_I$$

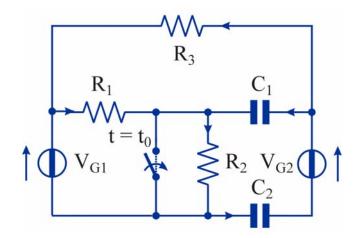
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) + \mathbf{D}^{(1)}\frac{d\mathbf{u}}{dt}$$

$$\mathbf{D}^{(1)} = \text{matrice } N_R \times N_I$$

- Se $\mathbf{u}(t)$ è discontinua, $d\mathbf{u}/dt$ contiene degli impulsi di Dirac
- Per bilanciare gli impulsi a secondo membro delle due equazioni anche i termini a primo membro devono contenere impulsi
- Le risposte e le derivate delle variabili di stato possono contenere degli impulsi di Dirac
- → Le variabili di stato possono contenere dei gradini (cioè possono essere discontinue)

53

Esempio



- La chiusura dell'interruttore dà origine ad una maglia di condensatori
- Se $v_{R2}(0^-) \neq 0$ V, le tensioni $v_{C1}(0^-)$ e $v_{C2}(0^-)$ non possono soddisfare la LKV per $t=0^+$
- → Le tensioni dei condensatori devono essere discontinue
- ightharpoonup Si ha un impulso di corrente nella maglia formata da C_1 C_2 e V_{G2}