Tipo 1 Compiti A01 - A07 - A13 - A19 - A22 - A25 - A31 - A37 - A43

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo D le incognite sono le tensioni di nodo V_A, V_C e V_E.

2.
$$(G_3 + G_7 + 1/h_{11}) \cdot V_A - V_C/h_{11} - G_7 \cdot V_E = G_7 \cdot V_{G7}$$

 $-(1 + h_{21}) \cdot V_A / h_{11} + [G_4 + (1 + h_{21})/h_{11} + h_{22}] \cdot V_C = h_{22} \cdot V_{G8}$
 $-G_7 \cdot V_A + (G_5 + G_6 + G_7) \cdot V_E = G_6 \cdot V_{G8} - G_7 \cdot V_{G7}$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_A - V_C)/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = h_{21} \cdot V_A/h_{11} - (h_{21}/h_{11} + h_{22}) \cdot V_C + h_{22} \cdot V_{G8} \\ & \quad I_3 = -G_3 \cdot V_A \\ & \quad I_4 = G_4 \cdot V_C \\ & \quad I_5 = -G_5 \cdot V_E \\ & \quad I_6 = G_6 \cdot (V_{G8} - V_E) \\ & \quad I_7 = G_7 \cdot (V_A - V_E - V_{G7}) \end{split}$$

$$\begin{array}{ll} \textbf{4} & P_{G7} = -V_{G7} \cdot I_7 \\ & P_{G8} = V_{G8} \cdot I_8 = V_{G8} \cdot (I_2 + I_6) = V_{G8} \cdot (I_4 - I_3 - I_5) \\ \end{array}$$

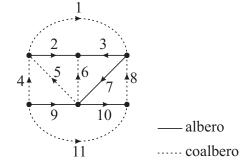
Es. 2:

1.
$$V_0 = 40 - 120j$$
 $Z_{eq} = 8 + 16j$

2.
$$I = -4 - 4j$$
 $i(t) = 5.657cos(1000t - 2.356)$ A

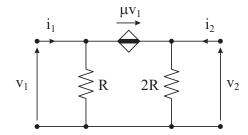
3.
$$P = 32 W$$
 $Q = 64 VAR$

$$\begin{cases} \frac{di_{L}}{dt} = -\frac{1}{5}v_{C} + 3\\ \frac{dv_{C}}{dt} = 5i_{L} - \frac{10}{3}v_{C} - 25\\ i_{L}(0) = 5\\ v_{C}(0) = -15 \end{cases} \begin{cases} 3\frac{d^{2}i_{L}}{dt^{2}} + 10\frac{di_{L}}{dt} + 3i_{L} = 45\\ \frac{di_{L}}{dt} = 6\\ \frac{di_{L}}{dt} \Big|_{0^{+}} = 6 \end{cases}$$


$$i_L(t) = -\exp(-3t) - 9\exp(-t/3) + 15$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 4.

$$v_4 + v_2 - v_3 + v_7 - v_9 = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 2.

$$i_2 + i_1 - i_4 - i_5 = 0$$

3. Determinare l'elemento r₂₁ della matrice di resistenza del doppio bipolo rappresentato nella figura. (2 punti)

r ₂₁	$2R\frac{1+\mu}{3+\mu}$
	$J + \mu$

- **4.** In un circuito con 15 nodi e 30 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di tensione di valore arbitrario?
 - □ 22
 - 14
 - □ 16
- 5. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - dal valore all'istante t delle variabili di stato e degli ingressi
 - ☐ dal valore all'istante iniziale delle variabili di stato e degli ingressi
 - ☐ dal valore all'istante iniziale delle variabili di stato
- 6. Si consideri un bipolo avente impedenza $\mathbf{Z} = R + jX$. Se la corrente è sfasata di $\pi/4$ in anticipo rispetto alla tensione, allora
 - $\mathbf{R} = -\mathbf{X}$
 - \square R = X
 - \square R = 1/X
- 7. Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in serie. Se le potenze attive assorbite dai due bipoli sono uguali
 - è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza minore
 - ☐ le ampiezze delle tensioni dei bipoli sono uguali
 - è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza maggiore

Tipo 2 Compiti A02 - A08 - A14 - A20 - A23 - A26 - A32 - A38 - A44

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo E le incognite sono le tensioni di nodo V_A, V_B e V_C.

2.
$$(G_4 + G_6 + 1/h_{11}) \cdot V_A - V_B/h_{11} - G_4 \cdot V_C = G_6 \cdot V_{G8}$$

 $-(1 + h_{21}) \cdot V_A/h_{11} + [G_3 + (1 + h_{21})/h_{11} + h_{22}] \cdot V_B - G_3 \cdot V_C = 0$
 $-G_4 \cdot V_A - G_3 \cdot V_B + (G_3 + G_4 + G_5 + G_7) \cdot V_C = G_7 \cdot (V_{G8} - V_{G7})$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_A - V_B)/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = h_{21} \cdot V_A/h_{11} - (h_{21}/h_{11} + h_{22}) \cdot V_B \\ & \quad I_3 = G_3 \cdot (V_B - V_C) \\ & \quad I_4 = G_4 \cdot (V_C - V_A) \\ & \quad I_5 = -G_5 \cdot V_C \\ & \quad I_6 = G_6 \cdot (V_A - V_{G8}) \\ & \quad I_7 = G_7 \cdot (V_{G8} - V_C - V_{G7}) \end{split}$$

4
$$P_{G7} = -V_{G7} \cdot I_7$$

 $P_{G8} = V_{G8} \cdot I_8 = V_{G8} \cdot (I_7 - I_6) = -V_{G8} \cdot (I_2 + I_5)$

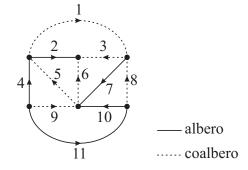
Es. 2:

1.
$$V_0 = 24 + 48j$$
 $Z_{eq} = 4 - 2j$

2.
$$I = -2 + 6j$$
 $i(t) = 6.325cos(1000t + 1.893)$ A

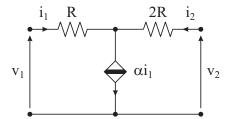
3.
$$P = 40 \text{ W}$$
 $Q = -80 \text{ VAR}$

$$\begin{cases} \frac{dv_{c}}{dt} = 2i_{L} + 4 \\ \frac{di_{L}}{dt} = -\frac{1}{3}v_{c} - \frac{5}{3}i_{L} - \frac{4}{3} \\ v_{c}(0) = 0 \\ i_{L}(0) = -2 \end{cases} \begin{cases} 3\frac{d^{2}v_{c}}{dt^{2}} + 5\frac{dv_{c}}{dt} + 2v_{c} = 12 \\ v_{c}(0) = 0 \\ \frac{dv_{c}}{dt} \Big|_{0^{+}} = 0 \end{cases}$$


$$v_C(t) = 12\exp(-t) - 18\exp(-2t/3) + 6$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 1.

$$v_1 + v_7 - v_{10} - v_{11} + v_4 = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 7.

$$i_7 - i_8 + i_3 - i_1 = 0$$

3. Determinare l'elemento g₂₁ della matrice di conduttanza del doppio bipolo rappresentato nella figura. (2 punti)

	$\alpha-1$
g ₂₁	$\overline{R(3-2\alpha)}$

- 4. Si consideri un bipolo avente impedenza $\mathbf{Z} = \mathbf{R} + \mathbf{j}\mathbf{X}$. Se la corrente è sfasata di $\pi/4$ in ritardo rispetto alla tensione, allora
 - \square R = 1/X
 - R = X
 - \Box R = -X
- 5. In un circuito con 8 nodi e 12 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di corrente di valore arbitrario?
 - \square 7
 - **5**
 - □ 10
 - \square 8
- 6. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - dal valore all'istante iniziale delle variabili di stato
 - dal valore all'istante iniziale delle variabili di stato e dal valore all'istante t degli ingressi
 - dal valore all'istante t delle variabili di stato e degli ingressi
- 7. Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in parallelo. Se le potenze attive assorbite dai due bipoli sono uguali
 - è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza minore
 - è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza maggiore
 - ☐ le ampiezze delle correnti dei bipoli sono uguali

Tipo 3 Compiti A03 - A09 - A15 - A21 - A24 - A27 - A33 - A39 - A45

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo E le incognite sono le tensioni di nodo V_A, V_B e V_C.

2.
$$(G_3 + G_4 + 1/h_{11}) \cdot V_A - V_C/h_{11} = G_4 \cdot V_{G8}$$

 $h_{21} \cdot V_A/h_{11} + (G_6 + G_7 + h_{22}) \cdot V_B - (h_{21}/h_{11} + h_{22}) \cdot V_C = G_6 \cdot V_{G8} - G_7 \cdot V_{G7}$
 $-(1 + h_{21}) \cdot V_A/h_{11} - h_{22} \cdot V_B + [G_5 + (1 + h_{21})/h_{11} + h_{22}] \cdot V_C = G_5 \cdot V_{G8}$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_A - V_C)/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = h_{21} \cdot V_A/h_{11} + h_{22} \cdot V_B - (h_{21}/h_{11} + h_{22}) \cdot V_C \\ & \quad I_3 = G_3 \cdot V_A \\ & \quad I_4 = G_4 \cdot (V_A - V_{G8}) \\ & \quad I_5 = G_5 \cdot (V_C - V_{G8}) \\ & \quad I_6 = G_6 \cdot (V_{G8} - V_B) \\ & \quad I_7 = -G_7 \cdot (V_B + V_{G7}) \end{split}$$

4
$$P_{G7} = -V_{G7} \cdot I_7$$

 $P_{G8} = V_{G8} \cdot I_8 = V_{G8} \cdot (I_6 - I_4 - I_5) = V_{G8} \cdot (I_3 - I_7)$

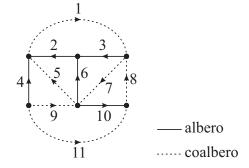
Es. 2:

1.
$$V_0 = 24 - 48j$$
 $Z_{eq} = 8 + 4j$

2.
$$I = 3 - 3j$$
 $i(t) = 4.243\cos(1000t - 0.785)$ A

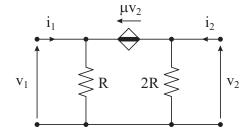
3.
$$P = 36 \text{ W}$$
 $Q = -72 \text{ VAR}$

$$\begin{cases} \frac{di_{L}}{dt} = \frac{1}{5} v_{C} \\ \frac{dv_{C}}{dt} = -5 i_{L} - \frac{5}{2} v_{C} + 25 \\ i_{L}(0) = 10 \\ v_{C}(0) = -20 \end{cases} \begin{cases} 2 \frac{d^{2} i_{L}}{dt^{2}} + 5 \frac{di_{L}}{dt} + 2 i_{L} = 10 \\ \frac{di_{L}}{dt} = 10 \\ \frac{di_{L}}{dt} = -4 \end{cases}$$


$$i_L(t) = \exp(-2t) + 4\exp(-t/2) + 5$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 11.

$$v_{11} - v_{10} + v_6 + v_2 - v_4 = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 3.

$$i_3 + i_7 - i_8 - i_1 = 0$$

3. Determinare l'elemento r_{12} della matrice di resistenza del doppio bipolo rappresentato nella figura. (2 punti)

r ₁₂	$2R\frac{1+\mu}{2+2}$
12	$3+2\mu$

- 4. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - dal valore all'istante iniziale delle variabili di stato e degli ingressi
 - dal valore all'istante t delle variabili di stato e degli ingressi
 - ☐ dal valore all'istante iniziale delle variabili di stato
- **5.** Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in serie. Se le potenze attive assorbite dai due bipoli sono uguali
 - ☐ le ampiezze delle tensioni dei bipoli sono uguali
 - è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza minore
 - è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza maggiore
- 6. Si consideri un bipolo avente impedenza $\mathbf{Z} = \mathbf{R} + \mathbf{j} \mathbf{X}$. Se la tensione è sfasata di $\pi/4$ in ritardo rispetto alla corrente, allora
 - \square R = X
 - R = -X
 - \square R = 1/X
- 7. In un circuito con 10 nodi e 15 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di tensione di valore arbitrario?
 - 9
 - □ 10
 - □ 12
 - □ 16

Tipo 4 Compiti A04 - A10 - A16 - A22 - A25 - A28 - A34 - A40 - A46

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo D le incognite sono le tensioni di nodo V_A, V_C e V_E.

2.
$$(G_3 + G_7 + 1/h_{11}) \cdot V_A - V_C/h_{11} - G_7 \cdot V_E = G_7 \cdot V_{G7}$$

 $-(1 + h_{21}) \cdot V_A / h_{11} + [G_4 + (1 + h_{21})/h_{11} + h_{22}] \cdot V_C = h_{22} \cdot V_{G8}$
 $-G_7 \cdot V_A + (G_5 + G_6 + G_7) \cdot V_E = G_6 \cdot V_{G8} - G_7 \cdot V_{G7}$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_A - V_C)/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = h_{21} \cdot V_A/h_{11} - (h_{21}/h_{11} + h_{22}) \cdot V_C + h_{22} \cdot V_{G8} \\ & \quad I_3 = -G_3 \cdot V_A \\ & \quad I_4 = G_4 \cdot V_C \\ & \quad I_5 = -G_5 \cdot V_E \\ & \quad I_6 = G_6 \cdot (V_{G8} - V_E) \\ & \quad I_7 = G_7 \cdot (V_A - V_E - V_{G7}) \end{split}$$

$$\begin{array}{ll} \textbf{4} & P_{G7} = -V_{G7} \cdot I_7 \\ & P_{G8} = V_{G8} \cdot I_8 = V_{G8} \cdot (I_2 + I_6) = V_{G8} \cdot (I_4 - I_3 - I_5) \\ \end{array}$$

Es. 2:

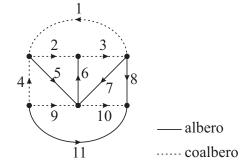
1.
$$V_0 = 40 + 40j$$
 $Z_{eq} = 2 + 6j$

2.
$$I = 6 - 2j$$
 $i(t) = 6.325\cos(1000t - 0.322)$ A

3.
$$P = 40 W$$
 $Q = 40 VAR$

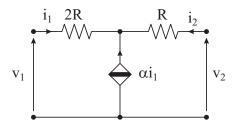
$$\begin{cases} \frac{dv_{c}}{dt} = 2i_{L} \\ \frac{di_{L}}{dt} = -\frac{1}{2}v_{c} - \frac{5}{2}i_{L} + 12 \\ v_{c}(0) = 12 \end{cases}$$

$$\begin{cases} 2\frac{d^{2}v_{c}}{dt^{2}} + 5\frac{dv_{c}}{dt} + 2v_{c} = 48 \\ v_{c}(0) = 12 \\ \frac{dv_{c}}{dt} = 12 \end{cases}$$


$$v_C(t) = -4\exp(-2t) - 8\exp(-t/2) + 24$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 4.

$$v_4 + v_5 - v_7 + v_8 - v_{11} = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 5.

$$i_5 - i_4 + i_2 - i_1 = 0$$

3. Determinare l'elemento g₂₁ della matrice di conduttanza del doppio bipolo rappresentato nella figura. (2 punti)

	$1+\alpha$
g ₂₁	$-\frac{1}{R(3+\alpha)}$

- 4. In un circuito con 6 nodi e 12 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di corrente di valore arbitrario?
 - □ 9
 - 7
 - □ 5
 - \Box 6
- 5. Si consideri un bipolo avente impedenza $\mathbf{Z} = R + jX$. Se la tensione è sfasata di $\pi/4$ in anticipo rispetto alla corrente, allora
 - \square R = -X
 - \blacksquare R = X
 - \square R = 1/X
- **6.** Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in parallelo. Se le potenze attive assorbite dai due bipoli sono uguali
 - ☐ le ampiezze delle correnti dei bipoli sono uguali
 - è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza minore
 - è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza maggiore
- 7 Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - ☐ dal valore all'istante iniziale delle variabili di stato
 - dal valore all'istante t delle variabili di stato e degli ingressi
 - dal valore all'istante iniziale delle variabili di stato e dal valore all'istante t degli ingressi

Tipo 5 Compiti A05 - A11 - A17 - A23 - A26 - A29 - A35 - A41 - A47

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo E le incognite sono le tensioni di nodo V_A, V_B e V_C.

2.
$$(G_4 + G_6 + 1/h_{11}) \cdot V_A - V_B/h_{11} - G_4 \cdot V_C = G_6 \cdot V_{G8}$$

 $-(1 + h_{21}) \cdot V_A/h_{11} + [G_3 + (1 + h_{21})/h_{11} + h_{22}] \cdot V_B - G_3 \cdot V_C = 0$
 $-G_4 \cdot V_A - G_3 \cdot V_B + (G_3 + G_4 + G_5 + G_7) \cdot V_C = G_7 \cdot (V_{G8} - V_{G7})$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_A - V_B)/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = h_{21} \cdot V_A/h_{11} - (h_{21}/h_{11} + h_{22}) \cdot V_B \\ & \quad I_3 = G_3 \cdot (V_B - V_C) \\ & \quad I_4 = G_4 \cdot (V_C - V_A) \\ & \quad I_5 = -G_5 \cdot V_C \\ & \quad I_6 = G_6 \cdot (V_A - V_{G8}) \\ & \quad I_7 = G_7 \cdot (V_{G8} - V_C - V_{G7}) \end{split}$$

4
$$P_{G7} = -V_{G7} \cdot I_7$$

 $P_{G8} = V_{G8} \cdot I_8 = V_{G8} \cdot (I_7 - I_6) = -V_{G8} \cdot (I_2 + I_5)$

Es. 2:

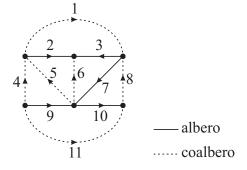
1.
$$V_0 = -160 - 120i$$
 $Z_{eq} = 8 - 4i$

2.
$$I = -15 - 5j$$
 $i(t) = 15.81\cos(1000t - 2.82)$ A

3.
$$P = 500 \text{ W}$$
 $Q = 1000 \text{ VAR}$

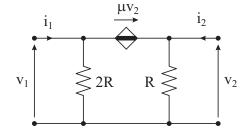
$$\begin{cases} \frac{di_{L}}{dt} = \frac{1}{3}v_{c} + 1\\ \frac{dv_{c}}{dt} = -4i_{L} - \frac{8}{3}v_{c} + 24\\ i_{L}(0) = 4\\ v_{c}(0) = 9 \end{cases}$$

$$\begin{cases} 3\frac{d^{2}i_{L}}{dt^{2}} + 8\frac{di_{L}}{dt} + 4i_{L} = 32\\ \frac{i_{L}(0)}{dt} = 4\\ \frac{di_{L}}{dt}\Big|_{0^{+}} = 4 \end{cases}$$


$$v_C(t) = -\exp(-2t) - 3\exp(-2t/3) + 8$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 4.

$$v_4 + v_2 - v_3 + v_7 - v_9 = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 2.

$$i_2 + i_1 - i_5 - i_4 = 0$$

3. Determinare l'elemento r₁₂ della matrice di resistenza del doppio bipolo rappresentato nella figura. (2 punti)

r ₁₂	$2R\frac{1+\mu}{3+\mu}$
-----------------	-------------------------

- 4. Si consideri un bipolo avente impedenza $\mathbf{Z} = R + jX$. Se la corrente è sfasata di $\pi/4$ in anticipo rispetto alla tensione, allora
 - \square R = X
 - $\mathbf{R} = -\mathbf{X}$
 - \square R = 1/X
- 5. In un circuito con 12 nodi e 20 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di tensione di valore arbitrario?
 - 11
 - □ 16
 - **□** 9
 - \Box 12
- 6. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - dal valore all'istante t delle variabili di stato e degli ingressi
 - ☐ dal valore all'istante iniziale delle variabili di stato
 - ☐ dal valore all'istante iniziale delle variabili di stato e degli ingressi
- 7. Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in serie. Se le potenze attive assorbite dai due bipoli sono uguali
 - ☐ è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza maggiore
 - è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza minore
 - ☐ le ampiezze delle tensioni dei bipoli sono uguali

Tipo 6 Compiti A06 - A12 - A18 - A24 - A27 - A30 - A36 - A42 - A48

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo E le incognite sono le tensioni di nodo V_A, V_B e V_C.

2.
$$(G_3 + G_4 + 1/h_{11}) \cdot V_A - V_C/h_{11} = G_4 \cdot V_{G8}$$

 $h_{21} \cdot V_A/h_{11} + (G_6 + G_7 + h_{22}) \cdot V_B - (h_{21}/h_{11} + h_{22}) \cdot V_C = G_6 \cdot V_{G8} - G_7 \cdot V_{G7}$
 $-(1 + h_{21}) \cdot V_A/h_{11} - h_{22} \cdot V_B + [G_5 + (1 + h_{21})/h_{11} + h_{22}] \cdot V_C = G_5 \cdot V_{G8}$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_A - V_C)/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = h_{21} \cdot V_A/h_{11} + h_{22} \cdot V_B - (h_{21}/h_{11} + h_{22}) \cdot V_C \\ & \quad I_3 = G_3 \cdot V_A \\ & \quad I_4 = G_4 \cdot (V_A - V_{G8}) \\ & \quad I_5 = G_5 \cdot (V_C - V_{G8}) \\ & \quad I_6 = G_6 \cdot (V_{G8} - V_B) \\ & \quad I_7 = -G_7 \cdot (V_B + V_{G7}) \end{split}$$

$$\begin{array}{ll} \textbf{4} & P_{G7} = -V_{G7} \cdot I_7 \\ & P_{G8} = V_{G8} \cdot I_8 = V_{G8} \cdot (I_6 - I_4 - I_5) = V_{G8} \cdot (I_3 - I_7) \\ \end{array}$$

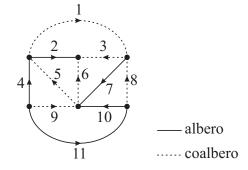
Es. 2:

1.
$$V_0 = -30 + 90j$$
 $Z_{eq} = 5 - 5j$

2.
$$I = -4 + 2j$$
 $i(t) = 4.472\cos(1000t + 2.678)$ A

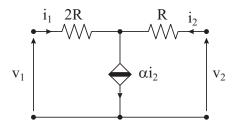
3.
$$P = 100 \text{ W}$$
 $Q = -100 \text{ VAR}$

$$\begin{cases} \frac{dv_{c}}{dt} = i_{L} - 5 \\ \frac{di_{L}}{dt} = -\frac{1}{3}v_{c} - \frac{4}{3}i_{L} + 4 \\ v_{c}(0) = -4 \\ i_{L}(0) = 3 \end{cases} \begin{cases} 3\frac{d^{2}v_{c}}{dt^{2}} + 4\frac{dv_{c}}{dt} + v_{c} = -8 \\ \frac{dv_{c}}{dt} = -2 \end{cases}$$


$$v_C(t) = \exp(-t) + 3\exp(-t/3) - 8$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 1.

$$v_1 + v_7 - v_{10} - v_{11} + v_4 = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 7.

$$i_7 - i_8 + i_3 - i_1 = 0$$

3. Determinare l'elemento g₁₂ della matrice di conduttanza del doppio bipolo rappresentato nella figura. (2 punti)

	$\alpha - 1$
g ₁₂	$\overline{R(3-2\alpha)}$

- 4. In un circuito con 9 nodi e 18 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di corrente di valore arbitrario?
 - 10
 - □ 13
 - □ 8
 - □ 9
- 5. Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in parallelo. Se le potenze attive assorbite dai due bipoli sono uguali
 - è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza minore
 - à maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza maggiore
 - le ampiezze delle correnti dei bipoli sono uguali
- 6. Si consideri un bipolo avente impedenza $\mathbf{Z} = \mathbf{R} + \mathbf{j} \mathbf{X}$. Se la corrente è sfasata di $\pi/4$ in ritardo rispetto alla tensione, allora
 - \square R = 1/X
 - $\mathbf{R} = \mathbf{X}$
 - \square R = -X
- 7. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - ☐ dal valore all'istante iniziale delle variabili di stato
 - dal valore all'istante iniziale delle variabili di stato e dal valore all'istante t degli ingressi
 - dal valore all'istante t delle variabili di stato e degli ingressi

Tipo 7 Compiti B01 - B07 - B13 - B19 - B22 - B25 - B31 - B37 - B43

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo C le incognite sono le tensioni di nodo V_B, V_D e V_E.

2.
$$[G_3 + (1 + h_{21})/h_{11} + h_{22}] \cdot V_B - h_{22} \cdot V_E = (1 + h_{21}) \cdot V_{G8}/h_{11}$$

$$(G_5 + G_6 + G_7) \cdot V_D - G_6 \cdot V_E = G_5 \cdot V_{G8} - G_7 \cdot V_{G7}$$

$$- (h_{21}/h_{11} + h_{22}) \cdot V_B - G_6 \cdot V_D + (G_4 + G_6 + h_{22}) \cdot V_E = -h_{21} \cdot V_{G8}/h_{11}$$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_{G8} - V_B)/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = -(h_{21}/h_{11} + h_{22}) \cdot V_B) + h_{22} \cdot V_E + h_{21} \cdot V_{G8}/h_{11} \\ & \quad I_3 = G_3 \cdot V_B \\ & \quad I_4 = -G_4 \cdot V_E \\ & \quad I_5 = G_5 \cdot (V_D - V_{G8}) \\ & \quad I_6 = G_6 \cdot (V_E - V_D) \\ & \quad I_7 = -G_7 \cdot (V_D + V_{G7}) \end{split}$$

4
$$P_{G7} = -V_{G7} \cdot I_7$$

 $P_{G8} = V_{G8} \cdot I_8 = V_{G8} \cdot (I_1 - I_5) = V_{G8} \cdot (I_3 - I_4 - I_7)$

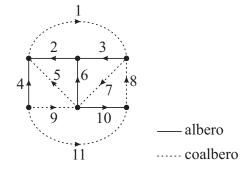
Es. 2:

1.
$$V_0 = 40 + 120j$$
 $Z_{eq} = 4 - 2j$

2.
$$I = -4 + 12j$$
 $i(t) = 12.65cos(1000t + 1.893)$ A

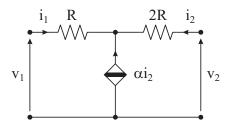
3.
$$P = 320 \text{ W}$$
 $Q = -320 \text{ VAR}$

$$\begin{cases} \frac{di_{L}}{dt} = -\frac{7}{3}i_{L} - \frac{1}{3}v_{C} + 3 \\ \frac{dv_{C}}{dt} = 2i_{L} + 4 \\ i_{L}(0) = 3 \\ v_{C}(0) = 8 \end{cases} \begin{cases} 3\frac{d^{2}i_{L}}{dt^{2}} + 7\frac{di_{L}}{dt} + 2i_{L} = -4 \\ i_{L}(0) = 3 \\ \frac{di_{L}}{dt}\Big|_{0^{+}} = -\frac{20}{3} \end{cases}$$


$$i_L(t) = 3\exp(-2t) + 3\exp(-t/3) - 2$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 11.

$$v_{11} - v_{10} + v_6 + v_2 - v_4 = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 3.

$$i_3 - i_1 + i_7 - i_8 = 0$$

3. Determinare l'elemento g₁₂ della matrice di conduttanza del doppio bipolo rappresentato nella figura. (2 punti)

	$1+\alpha$
g ₁₂	$-\frac{R(3+\alpha)}{R(3+\alpha)}$

- **4.** Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in serie. Se le potenze attive assorbite dai due bipoli sono uguali
 - è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza minore
 - è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza maggiore
 - ☐ le ampiezze delle tensioni dei bipoli sono uguali
- 5. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - dal valore all'istante iniziale delle variabili di stato e degli ingressi
 - dal valore all'istante t delle variabili di stato e degli ingressi
 - □ dal valore all'istante iniziale delle variabili di stato
- **6.** In un circuito con 6 nodi e 12 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di tensione di valore arbitrario?
 - 5
 - \Box 6
 - \square 7
 - □ 9
- 7. Si consideri un bipolo avente impedenza $\mathbf{Z} = \mathbf{R} + \mathbf{j}\mathbf{X}$. Se la tensione è sfasata di $\pi/4$ in anticipo rispetto alla corrente, allora
 - $\mathbf{R} = \mathbf{X}$
 - \square R = -X
 - \square R = 1/X

Tipo 8 Compiti B02 - B08 - B14 - B20 - B23 - B26 - B32 - B38 - B44

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo D le incognite sono le tensioni di nodo V_A , V_B e V_E .

2.
$$(G_3 + G_4 + 1/h_{11}) \cdot V_A - G_3 \cdot V_E = V_{G8}/h_{11}$$

 $h_{21} \cdot V_A/h_{11} + (G_5 + G_7 + h_{22}) \cdot V_B - G_7 \cdot V_E = (h_{21}/h_{11} + h_{22}) \cdot V_{G8} + G_7 \cdot V_{G7}$
 $-G_3 \cdot V_A - G_7 \cdot V_B + (G_3 + G_6 + G_7) \cdot V_E = -G_7 \cdot V_{G7}$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_A - V_{G8})/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = h_{21} \cdot V_A/h_{11} + h_{22} \cdot V_B - \left(h_{21}/h_{11} + h_{22}\right) \cdot V_{G8} \\ & \quad I_3 = G_3 \cdot (V_A - V_E) \\ & \quad I_4 = -G_4 \cdot V_A \\ & \quad I_5 = G_5 \cdot V_B \\ & \quad I_6 = -G_6 \cdot V_E \\ & \quad I_7 = G_7 \cdot (V_B - V_E - V_{G7}) \end{split}$$

4
$$P_{G7} = -V_{G7} \cdot I_7$$

 $P_{G8} = V_{G8} \cdot I_8 = -V_{G8} \cdot (I_1 + I_2) = V_{G8} \cdot (I_5 - I_4 - I_6)$

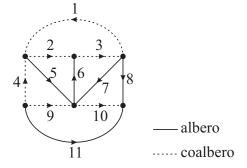
Es. 2:

1.
$$V_0 = -32 - 12j$$
 $Z_{eq} = 6 - 3j$

2.
$$I = -3 - 3j$$
 $i(t) = 4.243\cos(1000t - 2.356)$ A

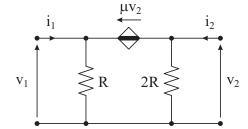
3.
$$P = 18 W$$
 $Q = -9 VAR$

$$\begin{cases} \frac{dv_{C}}{dt} = -\frac{5}{2}v_{C} + 5i_{L} + 15 \\ \frac{di_{L}}{dt} = -\frac{1}{5}v_{C} + \frac{12}{5} \\ v_{C}(0) = 12 \\ i_{L}(0) = 0 \end{cases} \begin{cases} 2\frac{d^{2}v_{C}}{dt^{2}} + 5\frac{dv_{C}}{dt} + 2v_{C} = 24 \\ v_{C}(0) = 12 \\ \frac{dv_{C}}{dt} \Big|_{0^{+}} = -15 \end{cases}$$


$$v_C(t) = 10\exp(-2t) - 10\exp(-t/2) + 12$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 4.

$$v_4 + v_5 - v_7 + v_8 - v_{11} = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 5.

$$i_5 - i_4 + i_2 - i_1 = 0$$

3. Determinare l'elemento r₁₂ della matrice di resistenza del doppio bipolo rappresentato nella figura. (2 punti)

$2R\frac{1+\mu}{3+2\mu}$

- 4. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - dal valore all'istante iniziale delle variabili di stato
 - dal valore all'istante t delle variabili di stato e degli ingressi
 - dal valore all'istante iniziale delle variabili di stato e dal valore all'istante t degli ingressi
- 5. Si consideri un bipolo avente impedenza $\mathbf{Z} = R + jX$. Se la corrente è sfasata di $\pi/4$ in anticipo rispetto alla tensione, allora
 - \square R = X
 - \square R = 1/X
 - R = -X
- **6.** Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in parallelo. Se le potenze attive assorbite dai due bipoli sono uguali
 - è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza minore
 - ☐ è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza maggiore
 - ☐ le ampiezze delle correnti dei bipoli sono uguali
- 7. In un circuito con 12 nodi e 20 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di corrente di valore arbitrario?
 - □ 16
 - □ 12
 - □ 11
 - **9**

Tipo 9 Compiti B03 - B09 - B15 - B21 - B24 - B27 - B33 - B39 - B45

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo E le incognite sono le tensioni di nodo V_A, V_B e V_D.

2.
$$(G_3 + G_6 + 1/h_{11}) \cdot V_A - V_B / h_{11} - G_3 \cdot V_D = G_6 \cdot V_{G8}$$

 $-(1 + h_{21}) \cdot V_A / h_{11} + [G_7 + (1 + h_{21}) / h_{11} + h_{22}] \cdot V_B = G_7 \cdot (V_{G7} + V_{G8})$
 $-G_3 \cdot V_A + (G_3 + G_4 + G_5) \cdot V_D = G_5 \cdot V_{G8}$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_A - V_B)/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = h_{21} \cdot V_A/h_{11} - (h_{21}/h_{11} + h_{22}) \cdot V_B \\ & \quad I_3 = G_3 \cdot (V_A - V_D) \\ & \quad I_4 = G_4 \cdot V_D \\ & \quad I_5 = G_5 \cdot (V_{G8} - V_D) \\ & \quad I_6 = G_6 \cdot (V_{G8} - V_A) \\ & \quad I_7 = G_7 \cdot (V_B - V_{G8} - V_{G7}) \end{split}$$

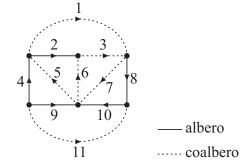
$$\begin{array}{ll} \textbf{4} & P_{G7} = -V_{G7} \cdot I_7 \\ & P_{G8} = V_{G8} \cdot I_8 = V_{G8} \cdot (I_4 - I_2) = V_{G8} \cdot (I_5 + I_6 - I_7) \\ \end{array}$$

Es. 2:

1.
$$V_0 = 120 - 120j$$
 $Z_{eq} = 6 + 6j$
2. $I = 6 - 18j$ $i(t) = 18.97\cos(1000t - 1.249)$ A

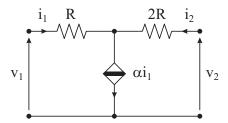
3.
$$P = 360 \text{ W}$$
 $Q = -360 \text{ VAR}$

$$\begin{cases} \frac{di_{L}}{dt} = -\frac{3}{2}i_{L} + \frac{1}{4}v_{C} + \frac{3}{2} \\ \frac{dv_{C}}{dt} = -2i_{L} \\ i_{L}(0) = 4 \\ v_{C}(0) = 6 \end{cases} \begin{cases} 2\frac{d^{2}i_{L}}{dt^{2}} + 3\frac{di_{L}}{dt} + i_{L} = 0 \\ \frac{i_{L}(0)}{dt} = -3 \\ \frac{di_{L}}{dt} \Big|_{0^{+}} = -3 \end{cases}$$


$$i_L(t) = 2\exp(-t) + 2\exp(-t/2)$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 1.

$$v_1 + v_8 + v_{10} - v_9 + v_4 = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 8.

$$i_8 + i_7 - i_3 - i_1 = 0$$

3. Determinare l'elemento g₂₁ della matrice di conduttanza del doppio bipolo rappresentato nella figura. (2 punti)

	$\alpha-1$
g ₂₁	$\overline{R(3-2\alpha)}$

- 4. Si consideri un bipolo avente impedenza $\mathbf{Z} = \mathbf{R} + \mathbf{j} \mathbf{X}$. Se la corrente è sfasata di $\pi/4$ in ritardo rispetto alla tensione, allora
 - $\mathbf{R} = \mathbf{X}$
 - \square R = -X
 - R = 1/X
- 5. In un circuito con 9 nodi e 18 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di tensione di valore arbitrario?
 - 8
 - □ 10
 - □ 13
- 6. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - dal valore all'istante t delle variabili di stato e degli ingressi
 - ☐ dal valore all'istante iniziale delle variabili di stato
 - ☐ dal valore all'istante iniziale delle variabili di stato e degli ingressi
- 7. Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in serie. Se le potenze attive assorbite dai due bipoli sono uguali
 - ☐ le ampiezze delle tensioni dei bipoli sono uguali
 - è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza minore
 - à maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza maggiore

Tipo 10 Compiti B04 - B10 - B16 - B22 - B25 - B28 - B34 - B40 - B46

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo C le incognite sono le tensioni di nodo V_B, V_D e V_E.

2.
$$[G_3 + (1 + h_{21})/h_{11} + h_{22}] \cdot V_B - h_{22} \cdot V_E = (1 + h_{21}) \cdot V_{G8}/h_{11}$$

$$(G_5 + G_6 + G_7) \cdot V_D - G_6 \cdot V_E = G_5 \cdot V_{G8} - G_7 \cdot V_{G7}$$

$$- (h_{21}/h_{11} + h_{22}) \cdot V_B - G_6 \cdot V_D + (G_4 + G_6 + h_{22}) \cdot V_E = -h_{21} \cdot V_{G8}/h_{11}$$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_{G8} - V_B)/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = -(h_{21}/h_{11} + h_{22}) \cdot V_B) + h_{22} \cdot V_E + h_{21} \cdot V_{G8}/h_{11} \\ & \quad I_3 = G_3 \cdot V_B \\ & \quad I_4 = -G_4 \cdot V_E \\ & \quad I_5 = G_5 \cdot (V_D - V_{G8}) \\ & \quad I_6 = G_6 \cdot (V_E - V_D) \\ & \quad I_7 = -G_7 \cdot (V_D + V_{G7}) \end{split}$$

4
$$P_{G7} = -V_{G7} \cdot I_7$$

 $P_{G8} = V_{G8} \cdot I_8 = V_{G8} \cdot (I_1 - I_5) = V_{G8} \cdot (I_3 - I_4 - I_7)$

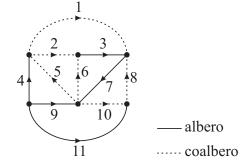
Es. 2:

1.
$$V_0 = -40 - 80j$$
 $Z_{eq} = 4 + 2j$

2.
$$I = -8 - 4j$$
 $i(t) = 8.944cos(1000t - 2.678)$ A

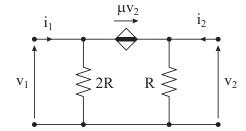
3.
$$P = 160 \text{ W}$$
 $Q = 160 \text{ VAR}$

$$\begin{cases} \frac{dv_{c}}{dt} = -\frac{5}{2}v_{c} - 5i_{L} - 5 \\ \frac{di_{L}}{dt} = \frac{1}{5}v_{c} \\ v_{c}(0) = -18 \\ i_{L}(0) = 2 \end{cases} \begin{cases} 2\frac{d^{2}v_{c}}{dt^{2}} + 5\frac{dv_{c}}{dt} + 2v_{c} = 0 \\ v_{c}(0) = -18 \\ \frac{dv_{c}}{dt} \Big|_{0^{+}} = 30 \end{cases}$$


$$v_C(t) = -14\exp(-2t) - 4\exp(-t/2)$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 2.

$$v_2 + v_3 + v_7 - v_9 + v_4 = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 4.

$$i_4 + i_5 - i_2 - i_1 = 0$$

3. Determinare l'elemento r_{12} della matrice di resistenza del doppio bipolo rappresentato nella figura. (2 punti)

r ₁₂	$2R\frac{1-\mu}{3-\mu}$

- **4.** Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in parallelo. Se le potenze attive assorbite dai due bipoli sono uguali
 - è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza minore
 - ☐ le ampiezze delle correnti dei bipoli sono uguali
 - è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza maggiore
- 5. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - dal valore all'istante iniziale delle variabili di stato
 - dal valore all'istante iniziale delle variabili di stato e dal valore all'istante t degli ingressi
 - dal valore all'istante t delle variabili di stato e degli ingressi
- **6.** In un circuito con 15 nodi e 30 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di corrente di valore arbitrario?
 - □ 14
 - **1**6
 - □ 22
 - □ 15
- 7. Si consideri un bipolo avente impedenza $\mathbf{Z} = R + jX$. Se la corrente è sfasata di $\pi/4$ in anticipo rispetto alla tensione, allora
 - \square R = 1/X
 - \square R = X
 - R = -X

Tipo 11 Compiti B05 - B11 - B17 - B23 - B26 - B29 - B35 - B41 - B47

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo D le incognite sono le tensioni di nodo V_A, V_B e V_E.

$$\begin{aligned} \textbf{2.} \quad & (G_3 + G_4 + 1/h_{11}) \cdot V_A - G_3 \cdot V_E = V_{G8}/h_{11} \\ & h_{21} \cdot V_A/h_{11} + (G_5 + G_7 + h_{22}) \cdot V_B - G_7 \cdot V_E = (h_{21}/h_{11} + h_{22}) \cdot V_{G8} + G_7 \cdot V_{G7} \\ & -G_3 \cdot V_A - G_7 \cdot V_B + (G_3 + G_6 + G_7) \cdot V_E = -G_7 \cdot V_{G7} \end{aligned}$$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_A - V_{G8})/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = h_{21} \cdot V_A/h_{11} + h_{22} \cdot V_B - (h_{21}/h_{11} + h_{22}) \cdot V_{G8} \\ & \quad I_3 = G_3 \cdot (V_A - V_E) \\ & \quad I_4 = -G_4 \cdot V_A \\ & \quad I_5 = G_5 \cdot V_B \\ & \quad I_6 = -G_6 \cdot V_E \\ & \quad I_7 = G_7 \cdot (V_B - V_E - V_{G7}) \end{split}$$

4
$$P_{G7} = -V_{G7} \cdot I_7$$

 $P_{G8} = V_{G8} \cdot I_8 = -V_{G8} \cdot (I_1 + I_2) = V_{G8} \cdot (I_5 - I_4 - I_6)$

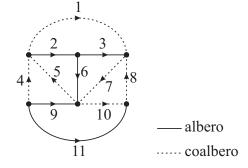
Es. 2:

1.
$$V_0 = 30 + 90j$$
 $Z_{eq} = 3 - 6j$

2.
$$I = -2 + 14j$$
 $i(t) = 14.14\cos(1000t + 1.713)$ A

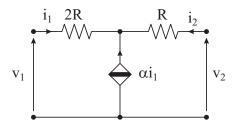
3.
$$P = 300 \text{ W}$$
 $Q = 300 \text{ VAR}$

$$\begin{cases} \frac{di_{L}}{dt} = -\frac{7}{3}i_{L} + \frac{1}{3}v_{C} - 7 \\ \frac{dv_{C}}{dt} = -4i_{L} + 8 \\ i_{L}(0) = -3 \\ v_{C}(0) = 25 \end{cases} \begin{cases} 3\frac{d^{2}i_{L}}{dt^{2}} + 7\frac{di_{L}}{dt} + 4i_{L} = 8 \\ i_{L}(0) = -3 \\ \frac{di_{L}}{dt} \Big|_{0^{+}} = \frac{25}{3} \end{cases}$$


$$i_L(t) = -10\exp(-4t/3) + 5\exp(-t) + 2$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 8.

$$v_8 - v_3 + v_6 - v_9 + v_{11} = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 3.

$$i_3 + i_1 - i_7 + i_8 = 0$$

3. Determinare l'elemento g₂₁ della matrice di conduttanza del doppio bipolo rappresentato nella figura. (2 punti)

	$1+\alpha$
g ₂₁	$-\frac{R(3+\alpha)}{R(3+\alpha)}$

- 4. In un circuito con 8 nodi e 12 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di tensione di valore arbitrario?
 - □ 5
 - □ 10
 - 7
 - □ 8
- 5. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - dal valore all'istante iniziale delle variabili di stato e degli ingressi
 - dal valore all'istante t delle variabili di stato e degli ingressi
 - ☐ dal valore all'istante iniziale delle variabili di stato
- 6. Si consideri un bipolo avente impedenza $\mathbf{Z} = \mathbf{R} + \mathbf{j} \mathbf{X}$. Se la corrente è sfasata di $\pi/4$ in ritardo rispetto alla tensione, allora
 - R = X
 - \square R = 1/X
 - \square R = -X
- 7. Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in serie. Se le potenze attive assorbite dai due bipoli sono uguali
 - è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza minore
 - è maggiore l'ampiezza della tensione del bipolo avente il fattore di potenza maggiore
 - ☐ le ampiezze delle tensioni dei bipoli sono uguali

Tipo 12 Compiti B06 - B12 - B18 - B24 - B27 - B30 - B36 - B42 - B48

Es. 1:

(Esempio di risoluzione)

1. Scelto come riferimento il nodo E le incognite sono le tensioni di nodo V_A, V_B e V_D.

$$\begin{aligned} \textbf{2.} \quad & (G_3 + G_6 + 1/h_{11}) \cdot V_A - V_B / \ h_{11} - G_3 \cdot V_D = G_6 \cdot V_{G8} \\ & - (1 + h_{21}) \cdot V_A / h_{11} + \left[G_7 + (1 + h_{21}) / h_{11} + h_{22} \right] \cdot V_B = G_7 \cdot \left(V_{G7} + V_{G8} \right) \\ & - G_3 \cdot V_A + \left(G_3 + G_4 + G_5 \right) \cdot V_D = G_5 \cdot V_{G8} \end{aligned}$$

$$\begin{split} \textbf{3} & \quad I_1 = V_1/h_{11} = (V_A - V_B)/h_{11} \\ & \quad I_2 = h_{21} \cdot I_1 + h_{22} \cdot V_2 = h_{21} \cdot V_A/h_{11} - (h_{21}/h_{11} + h_{22}) \cdot V_B \\ & \quad I_3 = G_3 \cdot (V_A - V_D) \\ & \quad I_4 = G_4 \cdot V_D \\ & \quad I_5 = G_5 \cdot (V_{G8} - V_D) \\ & \quad I_6 = G_6 \cdot (V_{G8} - V_A) \\ & \quad I_7 = G_7 \cdot (V_B - V_{G8} - V_{G7}) \end{split}$$

$$\begin{array}{ll} \textbf{4} & P_{G7} = -V_{G7} \cdot I_7 \\ & P_{G8} = V_{G8} \cdot I_8 = V_{G8} \cdot (I_4 - I_2) = V_{G8} \cdot (I_5 + I_6 - I_7) \\ \end{array}$$

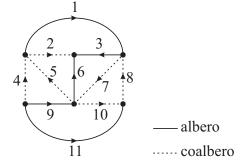
Es. 2:

1.
$$V_0 = -100 - 100j$$
 $Z_{eq} = 10 + 5j$

2.
$$I = -4 - 8j$$
 $i(t) = 8.944cos(1000t - 2.034)$ A

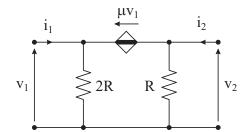
3.
$$P = 400 \text{ W}$$
 $Q = -400 \text{ VAR}$

$$\begin{cases} \frac{dv_{c}}{dt} = -\frac{10}{3}v_{c} + 5i_{L} - 30 \\ \frac{di_{L}}{dt} = -\frac{1}{5}v_{c} + \frac{9}{5} \\ v_{c}(0) = -9 \\ i_{L}(0) = 6 \end{cases} \begin{cases} 3\frac{d^{2}v_{c}}{dt^{2}} + 10\frac{dv_{c}}{dt} + 3v_{c} = 27 \\ v_{c}(0) = -9 \\ \frac{dv_{c}}{dt} \Big|_{0^{+}} = 30 \end{cases}$$


$$v_C(t) = -9\exp(-3t) - 9\exp(-t/3) + 9$$

1. Scrivere l'equazione della maglia fondamentale associata al lato 4.

$$v_4 + v_1 + v_3 - v_6 - v_9 = 0$$


2. Scrivere l'equazione del taglio fondamentale associato al lato 1.

$$i_1 + i_2 - i_5 - i_4 = 0$$

3. Determinare l'elemento r₂₁ della matrice di resistenza del doppio bipolo rappresentato nella figura. (2 punti)

$2R\frac{1-\mu}{3-2\mu}$

- **4.** In un circuito con 8 nodi e 12 lati qual è il numero massimo di lati che possono essere costituiti da generatori ideali di tensione di valore arbitrario?
 - □ 5
 - 7
 - □ 8
 - \Box 10
- 5. Si considerino due bipoli passivi in condizione di regime sinusoidale collegati in parallelo. Se le potenze attive assorbite dai due bipoli sono uguali
 - è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza maggiore
 - è maggiore l'ampiezza della corrente del bipolo avente il fattore di potenza minore
 - ☐ le ampiezze delle correnti dei bipoli sono uguali
- 6. Si consideri un bipolo avente impedenza $\mathbf{Z} = \mathbf{R} + \mathbf{j}\mathbf{X}$. Se la tensione è sfasata di $\pi/4$ in ritardo rispetto alla corrente, allora
 - \square R = 1/X
 - \square R = X
 - $\mathbf{R} = -\mathbf{X}$
- 7. Il valore ad un istante t della risposta di un circuito dinamico non degenere è completamente determinato
 - ☐ dal valore all'istante iniziale delle variabili di stato
 - dal valore all'istante t delle variabili di stato e degli ingressi
 - dal valore all'istante iniziale delle variabili di stato e dal valore all'istante t degli ingressi