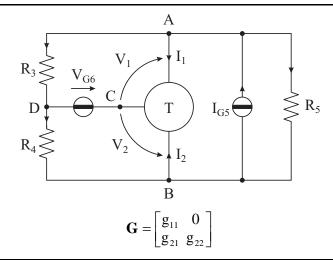
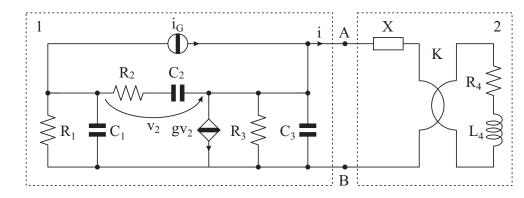
Cognome	Nome	Matricola	Firma	_
				1
				•


Parti svolte: E1

E2

E3

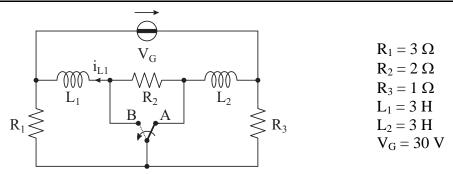
D


Esercizio 1

Supponendo noti i parametri dei componenti, e la matrice di conduttanza **G** del tripolo T, illustrare il procedimento di risoluzione del circuito rappresentato in figura con il **metodo delle tensioni di nodo**:

- **1.** indicare quali grandezze vengono scelte come incognite del sistema risolvente;
- 2. scrivere il sistema risolvente;
- **3.** scrivere le espressioni delle correnti I₁ e I₂ e delle correnti dei resistori in funzione delle incognite indicate al punto 1;
- **4.** scrivere le espressioni delle potenze erogate dai due generatori in funzione delle incognite e delle correnti determinate al punto 3.

Esercizio 2



$$\begin{array}{ll} R_1 = 25 \; \Omega & C_1 = 80 \; \mu F \\ R_2 = 5 \; \Omega & C_2 = 100 \; \mu F \\ R_3 = 25 \; \Omega & C_3 = 80 \; \mu F \\ R_4 = 150 \; \Omega & L_4 = 100 \; mH \\ g = 0.2 \; S \\ \omega = 1000 \; rad/s \\ i_G(t) = 2 \sqrt{5} \; cos(\omega t + \phi) \; A \\ cos\phi = \sqrt{5} \, / 5 \\ sen\phi = 2 \sqrt{5} \, / 5 \\ i(t) = 2 cos(\omega t + \pi/2) \; A \end{array}$$

Il circuito rappresentato in figura è in condizioni di regime sinusoidale. Determinare:

- 1. i parametri del circuito equivalente di Thévenin del bipolo 1 racchiuso dalla linea tratteggiata;
- 2. il valore che deve avere l'impedenza equivalente del bipolo 2 per ottenere la corrente i(t) indicata;
- 3. i valori di del rapporto di trasformazione K e della reattanza X con cui si ottiene tale impedenza.

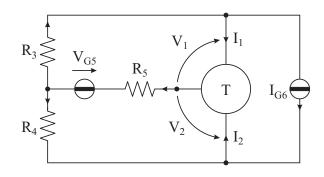
Esercizio 3

Per t < 0 il circuito è in condizioni di regime stazionario e l'interruttore è nella posizione A. All'istante t = 0 l'interruttore si porta nella posizione B. Determinare l'espressione di $i_{L1}(t)$ per t > 0.

Do	<u>ma</u>	inde 1			
1.	del	perminare l'elemento r_{21} della matrice di resistenza doppio bipolo rappresentato nella figura. (2 punti) $v_1 = v_2 + v_3$			
2.		bipolo RC assorbe una potenza attiva di 150 W. Se il fattore di potenza è 0.6, qual è il valore della poteneattiva assorbita dal bipolo? (1 punto)			
		Q			
3.		Se l'ampiezza della corrente assorbita dal bipolo considerato nella domanda precedente è 5 A, qual è l'ampiezza della sua tensione? (<i>1 punto</i>)			
	,	V_{M}			
4.	Ogr	ni maglia contiene necessariamente			
		almeno un lato dell'albero			
		almeno un lato del coalbero			
		almeno un lato dell'albero e un lato del coalbero			
5.		consideri un bipolo RLC parallelo in condizioni di regime sinusoidale. Se la corrente del bipolo è sfasata in icipo rispetto alla tensione la frequenza			
		è minore della frequenza di risonanza			
		coincide con la frequenza di risonanza			
		è maggiore della frequenza di risonanza			
6.	Indi	icare quale delle seguenti affermazioni è vera:			
		Un due porte reciproco non è necessariamente simmetrico e un due porte simmetrico non è necessariamente reciproco			
		Un due porte simmetrico è anche reciproco			
		Un due porte reciproco è anche simmetrico			
7.		la tensione e la corrente sono orientate secondo la convenzione dell'utilizzatore, la curva caratteristica di un olo resistivo attivo			
		è interamente contenuta nel primo e nel terzo quadrante			
		deve contenere punti appartenenti al secondo o al quarto quadrante			
		è interamente contenuta nel secondo e nel quarto quadrante			

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l'Energia e l'Informazione A.A. 2015/16 - Prova n. 5 – 28 giugno 2016

Cognome	Nome	Matricola	Firma	
				2
				_

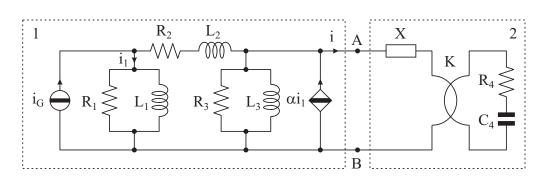

Parti svolte: E1

E2

E3

D

Esercizio 1

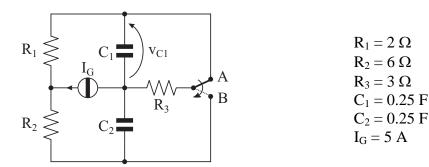


$$\mathbf{R} = \begin{bmatrix} r_{11} & 0 \\ r_{21} & r_{22} \end{bmatrix}$$

Supponendo noti i parametri dei componenti, e la matrice di resistenza del tripolo T, illustrare il procedimento di risoluzione del circuito rappresentato in figura con il **metodo delle correnti di maglia**:

- **1.** indicare quali grandezze vengono scelte come incognite del sistema risolvente;
- 2. scrivere il sistema risolvente;
- **3.** scrivere le espressioni delle tensioni V₁ e V₂ e delle tensioni dei resistori in funzione delle incognite indicate al punto 1;
- **4.** scrivere le espressioni delle potenze erogate dai due generatori in funzione delle incognite e delle tensioni determinate al punto 3.

Esercizio 2



$$\begin{split} R_1 &= 50 \ \Omega \qquad L_1 = 25 \ mH \\ R_2 &= 10 \ \Omega \qquad L_2 = 20 \ mH \\ R_3 &= 50 \ \Omega \qquad L_3 = 25 \ mH \\ R_4 &= 2 \ \Omega \qquad C_4 = 250 \ \mu F \\ \alpha &= 2 \\ \omega &= 1000 \ rad/s \\ i_G(t) &= 2\sqrt{5} \cos(\omega t + \phi) \ A \\ \cos\phi &= 2\sqrt{5} \ / 5 \\ sen\phi &= -\sqrt{5} \ / 5 \\ i(t) &= 3\sqrt{2} \cos(\omega t + \pi/4) \ A \end{split}$$

Il circuito rappresentato in figura è in condizioni di regime sinusoidale. Determinare:

- 1. i parametri del circuito equivalente di Thévenin del bipolo 1 racchiuso dalla linea tratteggiata;
- 2. il valore che deve avere l'impedenza equivalente del bipolo 2 per ottenere la corrente i(t) indicata;
- 3. i valori di del rapporto di trasformazione K e della reattanza X con cui si ottiene tale impedenza.

Esercizio 3

Per t < 0 il circuito è in condizioni di regime stazionario e l'interruttore è nella posizione A. All'istante t = 0 l'interruttore si porta nella posizione B. Determinare l'espressione di $v_{Cl}(t)$ per t > 0.

Do	ma	ınde	e	2
1.		Determinare l'elemento g_{21} della matrice di conduttanza del doppio bipolo rappresentato nella figura. (2 punti)		
		g ₂₁	V_1 $\uparrow ri_1$	V_2
2.			lo RC assorbe una potenza attiva di 400 W. Se il fattore di potenza è 0.8, qual è il valore del va assorbita dal bipolo? (1 punto)	lla poten-
		Q		
3.			piezza della tensione del bipolo considerato nella domanda precedente è 250 V, qual è l'arrente assorbita? (1 punto)	ampiezza
		I_{M}		
4.	Ogr	ni tagl	glio contiene necessariamente	
		_	neno un lato dell'albero	
		alme	neno un lato del coalbero	
		alme	neno un lato dell'albero e un lato del coalbero	
5.			deri un bipolo RLC serie in condizioni di regime sinusoidale. Se la corrente del bipolo è sfa spetto alla tensione la frequenza	asata in an-
		-	ninore della frequenza di risonanza	
		coin	ncide con la frequenza di risonanza	
		è ma	naggiore della frequenza di risonanza	
6.	Indi	icare o	quale delle seguenti affermazioni è vera:	
		Un c	due porte reciproco è anche simmetrico	
			due porte simmetrico è anche reciproco	
			due porte reciproco non è necessariamente simmetrico e un due porte simmetrico non è nete reciproco	necessaria-
7.	La j	potenz	nza istantanea assorbita da un bipolo passivo	
			n può assumere valori negativi	
		può	assumere valori negativi se il bipolo è dinamico	

può assumere valori negativi se la tensione e la corrente del bipolo sono orientate secondo la convenzione

dell'utilizzatore