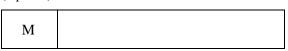
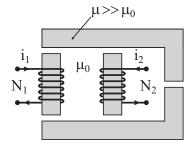

Elettrotecnica - Modulo 2 - Ing. Elettronica per l'Energia e l'Informazione A.A. 2015/16 - Prova n. 4 - 7 giugno 2016

Esercizio

Il carico trifase rappresentato in figura è alimentato mediante tre generatori collegati a stella le cui tensioni costituiscono una terna simmetrica diretta di valore efficace 1000~V. Nota la potenza attiva (P_A) e reattiva (Q_A) assorbita dal carico quando l'interruttore è nella posizione A, determinare

- 1. il valore dell'impedenza **Z**;
- 2. i valori efficaci delle correnti di linea e della corrente I con l'interruttore nella posizione A e nella posizione B;
- 3. la potenza attiva e reattiva assorbita dal carico con l'interruttore nella posizione B;


Elettrotecnica - Modulo 2 - Ing. Elettronica per l'Energia e l'Informazione A.A. 2015/16 - Prova n. 4 - 7 giugno 2016


Domande

Al secondario di un trasformatore monofase avente potenza nominale 25 kVA e tensioni nominali $V_{1n} = 2000V$, $V_{20} = 500V$ viene collegato a un carico ohmico-induttivo che assorbe l'80% della corrente nominale ed ha fattore di potenza 0.8. Noti i valori dei parametri del circuito equivalente di Kapp: $R_{2cc} = 0.125 \Omega$, $X_{2cc} = 0.250 \Omega$ e il valore efficace della tensione sul carico $V_2 = 480 V$, determinare il valore efficace della tensione applicata al primario del trasformatore. (2 punti)

 V_1

Assumendo che tutti i traferri abbiano riluttanza uguale a R e che le riluttanze dei tratti in materiale a elevata permeabilità siano trascurabili, determinare il coefficiente di mutua induzione tra i due avvolgimenti. (2 punti)

- La potenza dissipata a causa delle perdite nel ferro di un trasformatore monofase alimentato con una tensione sinusoidale di ampiezza fissata
 - diminuiscono all'aumentare della frequenza
 - aumentano all'aumentare della frequenza
 - sono indipendenti dalla frequenza
- Nell'espressione della potenza attiva assorbita da un carico trifase equilibrato alimentato da una terna simmetrica di tensioni concatenate, $P = \sqrt{3}VI\cos\varphi$, l'angolo φ
 - è un angolo convenzionale
 - rappresenta lo sfasamento fra le tensioni concatenate e le correnti di linea
 - rappresenta lo sfasamento fra le tensioni principali di fase e le correnti di linea
- Si consideri un trasformatore trifase con primario e secondario a stella senza neutro. Per effetto della non linearità del nucleo a secondario possono risultare distorte
 - le tensioni concatenate
 - le tensioni di fase
 - le correnti di linea
- Si consideri in carico lineare alimentato con una tensione sinusoidale. Se I_{eff} è il valore efficace della corrente e I_{leff} è il valore efficace della sua prima armonica, il fattore di distorsione del carico $\cos\theta$ è definito dalla rela-

 - $\Box \qquad \cos\theta = \frac{I_{1\text{eff}}}{I_{\text{eff}}}$ $\Box \qquad \cos\theta = \frac{I_{1\text{eff}}}{\sqrt{I_{\text{eff}}^2 I_{1\text{eff}}^2}}$ $\Box \qquad \cos\theta = \frac{\sqrt{I_{\text{eff}}^2 I_{1\text{eff}}^2}}{I_{\text{eff}}}$