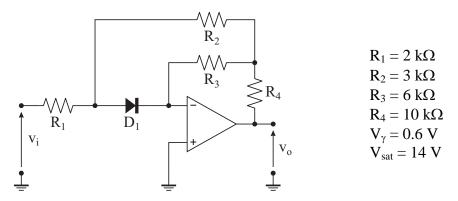
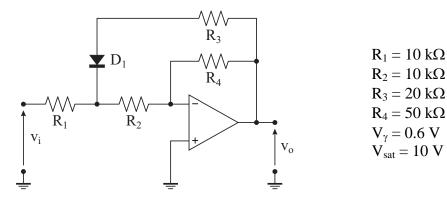

Esercizi di Elettronica

Amplificatori operazionali e diodi



Rappresentando il diodo per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $v_o(v_i)$ con v_i compreso tra -5 V e 5 V.

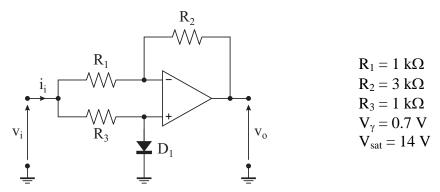
Risultati


$-5 \text{ V} \leq v_i \leq -3 \text{ V}$	$v_o = -15 \text{ V}$	$(D_1 \text{ off - OA sat})$
$-3~V \leq v_i \leq 1.2~V$	$v_o = 5v_i$	(D ₁ off - OA lin.)
$1.2~V \leq v_i \leq 2.2~V$	$v_o = 9v_i - 4.8 \text{ V}$	$(D_1 \text{ on - OA lin.})$
$2.2~V \leq v_i \leq 5~V$	$v_o = 15 \text{ V}$	$(D_1 \text{ on - OA sat. +})$

Esercizio n. 2

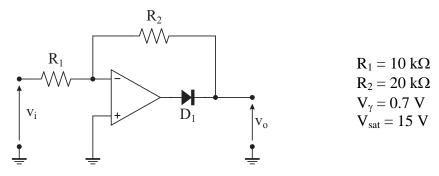
Rappresentando il diodo per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $v_o(v_i)$ con v_i compreso tra -10~V e 10~V.

$-10~V \leq v_i \leq -7~V$	$v_o = 14 \text{ V}$	$(D_1 \text{ off - OA sat. +})$
$-7 \text{ V} \leq v_i \leq 1 \text{ V}$	$v_o = -2v_i$	$(D_1 \text{ off - OA lin.})$
$1\ V \leq v_i \leq 3\ V$	$v_o = -6v_i - 4 V$	$(D_1 \text{ on - OA lin.})$
$3 \text{ V} \leq v_i \leq 10 \text{ V}$	$v_0 = -14 \text{ V}$	$(D_1 \text{ on - OA sat.} -)$



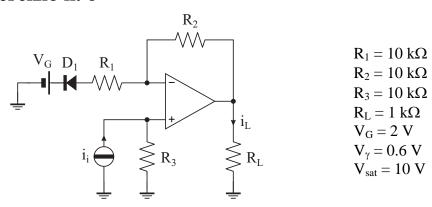
Rappresentando il diodo per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $v_o(v_i)$ con v_i compreso tra -10~V e 10~V.

Risultati

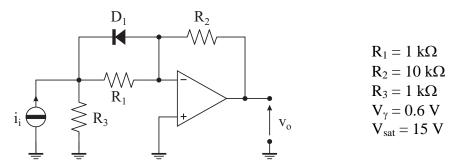

$$\begin{array}{lll} -10 \ V \leq v_i \leq -9.7 \ V & v_o = 10 \ V & (D_1 \ on \ - \ OA \ sat. \ +) \\ -9.7 \ V \leq v_i \leq -0.2 \ V & v_o = -v_i + 0.3 \ V & (D_1 \ on \ - \ OA \ lin.) \\ -0.2 \ V \leq v_i \leq 4 \ V & v_o = -2.5 v_i & (D_1 \ off \ - \ OA \ lin.) \\ 4 \ V \leq v_i \leq 10 \ V & v_o = -10 \ V & (D_1 \ off \ - \ OA \ sat. \ -) \end{array}$$

Esercizio n. 4

Rappresentando il diodo per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare le caratteristiche $v_o(v_i)$ e $i_i(v_i)$ con v_i compreso tra -15 V e 15 V.

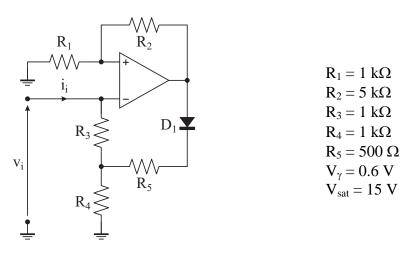

$-15 \text{ V} \le v_i \le -14 \text{ V}$	$v_o = -14 \text{ V}$	$i_{i} = 0.25 \cdot v_i + 3.5 \text{ mA}$	$(D_1 \text{ off - OA sat})$
$-14 \text{ V} \le v_i \le 0.7 \text{ V}$	$v_o = v_i$	$i_i = 0 \text{ mA}$	$(D_1 \text{ off - OA lin.})$
$0.7 \text{ V} \le v_i \le 5.6 \text{ V}$	$v_o = -3v_i + 2.8 \text{ V}$	$i_{.i} = 2 \cdot v_i + 1.4 \text{ mA}$	$(D_1 \text{ on - OA lin.})$
$5.6 \text{ V} \le v_i \le 15 \text{ V} \qquad \text{v}$	$v_o = -14 \text{ V}$	$i_{.i}=1.25{\cdot}v_i+2.8~mA$	$(D_1 \text{ on - OA sat})$

Rappresentando il diodo per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $v_o(v_i)$ con v_i compreso tra -20~V e 20~V.

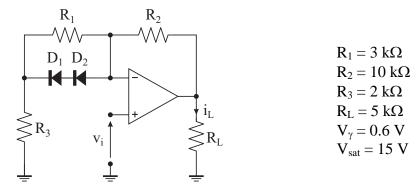

Risultati

Esercizio n. 6

Rappresentando il diodo per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $i_L(i_i)$ con i_i compreso tra -2 mA e 2 mA.


$-2 \text{ mA} \le i_i \le -1 \text{ mA}$	$i_L = -10 \text{ mA}$	$(D_1 \text{ off - OA sat})$
$-1~mA \leq i_i \leq 0.26~mA$	$i_L = 10 \cdot i_i \text{ mA}$	$(D_1 \text{ off - OA lin.})$
$0.26~mA \leq i_i \leq 0.63~mA$	$i_L = 20 \cdot i_i - 2.6 \text{ mA}$	$(D_1 \text{ on - OA lin.})$
$0.63 \leq i_i \leq 2 \ mA$	$i_L = 10 \text{ mA}$	$(D_1 \text{ on - OA sat. +})$

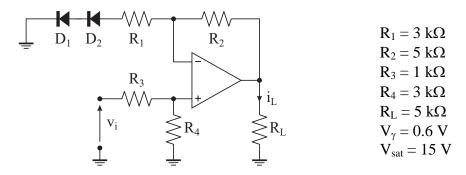
Rappresentando il diodo per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $v_o(i_i)$ con i_i compreso tra -5 mA e 5 mA.


Risultati

Esercizio n. 8

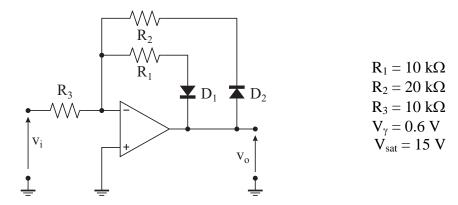
Rappresentando il diodo per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $i_i(v_i)$ con v_i compreso tra -10 V e 10 V.

$$\begin{array}{lll} -10 \; V \leq v_i \leq 0.24 \; V & i_i = 0.5 \cdot v_i \; mA & (D_1 \; off) \\ 0.24 \; V \leq v_i \leq 5 \; V & i_i = -0.75 \cdot v_i - 0.3 \; mA & (D_1 \; on \; - \; OA \; lin.) \\ 5 \; V \leq v_i \leq 10 \; V & i_i = 0.75 \cdot v_i - 7.2 \; mA & (D_1 \; on \; - \; OA \; sat. \; +) \end{array}$$



Rappresentando i diodi per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $i_L(v_i)$ con v_i compreso tra -10~V e 10~V.

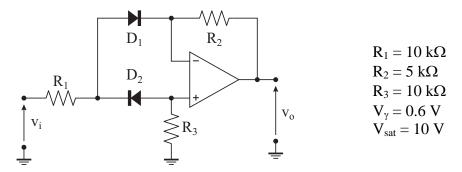
Risultati


$-10 \text{ V} \leq v_i \leq -5 \text{ V}$	$i_L = -3 \text{ mA}$	$(D_1, D_2 \text{ off - OA sat})$
$-5~V \leq v_i \leq 2~V$	$i_L = 0.6 \cdot v_i \text{ mA}$	$(D_1, D_2 \text{ off - OA lin.})$
$2~V \leq v_i \leq 3.5~V$	$i_L = 1.2 \cdot v_i - 1.2 \text{ mA}$	$(D_1, D_2 \text{ on - OA lin.})$
$3.5 \text{ V} \le v_i \le 10 \text{ V}$	$i_L = 3 \text{ mA}$	$(D_1, D_2 \text{ on - OA sat. +})$

Esercizio n. 10

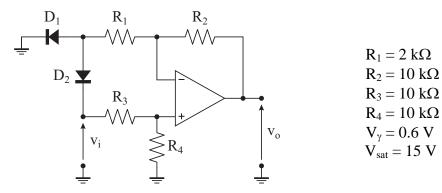
Rappresentando i diodi per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $i_L(v_i)$ con v_i compreso tra -30 V e 30 V.

$-30~V \leq v_i \leq -20~V$	$i_L = -3 \text{ mA}$	$(D_1, D_2 \text{ off - OA sat})$
$-20~V \leq v_i \leq 1.6~V$	$i_L = 0.15 \cdot v_i \text{ mA}$	$(D_1, D_2 \text{ off - OA lin.})$
$1.6~V \leq v_i \leq 8.5~V$	$i_L = 0.4 \cdot v_i - 0.4 \text{ mA}$	$(D_1, D_2 \text{ on - OA lin.})$
$8.5~V \leq v_i \leq 30~V$	$i_L = 3 \text{ mA}$	$(D_1, D_2 \text{ on - OA sat. +})$



Rappresentando i diodi per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $v_o(v_i)$ con v_i compreso tra -15 V e 15 V.

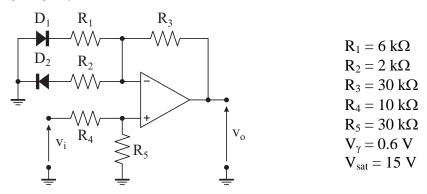
Risultati


$-15~V \leq v_i \leq -7.2~V$	$v_o = 15 \text{ V}$	$(D_1 \text{ off - } D_2 \text{ on - OA sat. +})$
$-7.2~V \leq v_i < 0~V$	$v_o = -2v_i + 0.6 \text{ V}$	$(D_1 \text{ off - } D_2 \text{ on - OA lin.})$
$v_i = 0 V$	$v_o = 0 V$	$(D_1 \text{ off - } D_2 \text{ off - OA lin.})$
$0 \ V < v_i \le 14.4 \ V$	$v_o = -v_i - 0.6 \text{ V}$	$(D_1 \text{ on - } D_2 \text{ off - OA lin.})$
$14.4~V \leq v_i \leq 15~V$	$v_o = -15 \text{ V}$	$(D_1 \text{ on - } D_2 \text{ off - OA sat})$

Esercizio n. 12

Rappresentando i diodi per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $v_o(v_i)$ con v_i compreso tra -25 V e 25 V.

$-25~V \leq v_i \leq -20.6~V$	$v_o = -10 \text{ V}$	$(D_1 \text{ off - } D_2 \text{ on - OA sat. +})$
$-20.6 \text{ V} \le v_i \le -0.6 \text{ V}$	$v_o = 0.5v_i + 0.3 \text{ V}$	$(D_1 \text{ off - } D_2 \text{ on - OA lin.})$
$-0.6~V \le v_i \le 0.6~V$	$v_o = 0 V$	$(D_1 \text{ off - } D_2 \text{ off - OA lin.})$
$0.6~V \leq v_i \leq 20.6~V$	$v_o = -0.5v_i + 0.3 \text{ V}$	$(D_1 \text{ on - } D_2 \text{ off - OA lin.})$
$20.6 \text{ V} \le v_i \le 25 \text{ V}$	$v_0 = -10 \text{ V}$	$(D_1 \text{ on - } D_2 \text{ off - OA sat. +})$



Rappresentando i diodi per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $v_o(v_i)$ con v_i compreso tra -10~V e 10~V.

Risultati

$-10 \text{ V} \leq v_i \leq -9 \text{ V}$	$v_o = 15 \text{ V}$	$(D_1 \text{ off - } D_2 \text{ on - OA sat. +})$
$-9 \text{ V} \leq v_i \leq -1.2 \text{ V}$	$v_o = -2v_i - 3 V$	$(D_1 \text{ off - } D_2 \text{ on - OA lin.})$
$-1.2~V \leq v_i \leq 1.2~V$	$v_o = 0.5v_i V$	$(D_1 \text{ off - } D_2 \text{ off - OA lin.})$
$1.2~V \le v_i \le 6~V$	$v_o = 3v_i - 3V$	$(D_1 \text{ on - } D_2 \text{ off - OA lin.})$
$6~V \le v_i \le 10~V$	$v_o = 15 \text{ V}$	$(D_1 \text{ on - } D_2 \text{ off - OA sat. +})$

Esercizio n. 14

Rappresentando i diodi per mezzo del modello a soglia, con tensione di soglia V_{γ} , e trattando l'amplificatore operazionale come ideale, con tensione di saturazione V_{sat} , determinare la caratteristica $v_o(v_i)$ con v_i compreso tra -5 V e 5 V.

$-5 \text{ V} \leq v_i \leq -4 \text{ V}$	$v_{o} = -15 \text{ V}$	$(D_1 \text{ on - } D_2 \text{ off - OA sat})$
$-4~V \leq v_i \leq -0.8~V$	$v_o = 4.5v_i + 3 \text{ V}$	$(D_1 \text{ on - } D_2 \text{ off - OA lin.})$
$-0.8~V \leq v_i \leq 0.8~V$	$v_o = 0.75v_i V$	$(D_1 \text{ off - } D_2 \text{ off - OA lin.})$
$0.8~V \leq v_i \leq 2~V$	$v_o = 12v_i - 9 V$	$(D_1 \text{ off - } D_2 \text{ on - OA lin.})$
$2~V \leq v_i \leq 5~V$	$v_o = 15 \text{ V}$	$(D_1 \text{ off - } D_2 \text{ on - OA sat. +})$