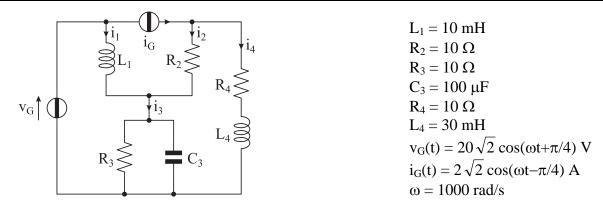

Parti svolte: E1 🗆 E2 🗆 D 🗆

Esercizio 1

$$R_1 = 5 \Omega$$

$$R_2 = 15 \Omega$$


$$R_3 = 30 \Omega$$

$$\mu = 5$$

$$I_G = 6 A$$

Determinare i parametri dei circuiti equivalenti di Thévenin e Norton del bipolo AB.

Esercizio 2

Determinare le espressioni delle correnti $i_1(t)$, $i_2(t)$, $i_3(t)$, $i_4(t)$ e le potenze attive e reattive erogate dai generatori.

Domande

1. Le tensioni concatenate formano una terna diretta simmetrica avente valore efficace $V_e = 100 \sqrt{3} \text{ V}.$

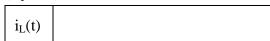
Determinare il valore efficace delle correnti di linea e la potenza complessa assorbita dal carico.

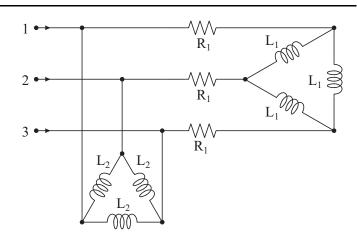
$$R_1 = 5 \Omega$$

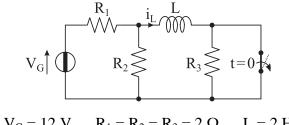
$$\omega L_1 = 15 \Omega$$
 $\omega L_2 = 30 \Omega$

$$\omega L_2 = 30 \Omega$$

(2 punti)


	` *	<u>* </u>		
I	I _e		N	


2. Per t < 0 il circuito è in condizioni di regime stazionario e l'interruttore è chiuso.


All'istante t = 0 si apre l'interruttore

Determinare l'espressione di $i_L(t)$ per t > 0.

(2 punti)

$$V_G = 12 \text{ V}$$
 $R_1 = R_2 = R_3 = 2 \Omega$ $L = 2 \text{ H}$

- 3. In condizioni di risonanza l'ampiezza della corrente che attraversa un bipolo RLC serie è
 - □ minima
 - □ nulla
 - □ massima
- L'impedenza equivalente di un bipolo costituito da un trasformatore ideale con rapporto spire $k = N_1 / N_2$ con il secondario collegato ad un impedenza **Z** vale
 - \Box k² Z
 - \square **Z**/k
 - $\Box \sqrt{\mathbf{k}} \mathbf{Z}$
- 5. In condizioni quasi stazionarie, nella regione interna alle superfici limite dei componenti di un circuito elettrico, la derivata rispetto al tempo del vettore B
 - □ è sempre trascurabile
 - può avere valori apprezzabilmente diversi da zero se è trascurabile la derivata rispetto al tempo del vettore **D**
 - può avere valori apprezzabilmente diversi da zero è diversa da zero anche la derivata rispetto al tempo del vettore **D**
- Se la potenza disponibile di un bipolo formato da un generatore di tensione sinusoidale in serie con un resistore da 3 Ω è 150 W, l'ampiezza della tensione del generatore è
 - □ 30 V
 - \square 30 $\sqrt{2}$ V
 - □ 60 V
- Il rifasamento di un carico monofase è realizzato mediante un condensatore
 - ☐ se il fattore di potenza del carico è minore di zero
 - □ se la corrente assorbita dal carico è in ritardo rispetto alla tensione
 - ☐ in ogni caso
- Se P indica la potenza attiva assorbita da un bipolo e $\cos \phi$ è il suo fattore di potenza, la potenza reattiva Q assorbita dal bipolo è
 - \Box $O = P \cos \varphi$
 - \square Q = P sin φ
 - \square $Q = P tg \varphi$