

Elettronica - A.A. 2011-12 - Prova n. 2 – 12 luglio 2012

Esercizio 1

Assumendo che l'amplificatore operazionale sia ideale, con tensione di saturazione V_{sat} e rappresentando il diodo con il modello a soglia, determinare la caratteristica $v_o(v_i)$.

Esercizio 2

I tripoli T_1 e T_2 sono caratterizzati, rispettivamente, dalle matrici ibride \mathbf{H}_1 e \mathbf{H}_2 . Con riferimento al circuito di fig. 1

- determinare la funzione di trasferimento $A_V(s) = V_L(s)/V_S(s)$;
- calcolare le frequenze corrispondenti ai poli e agli zeri di A_V;
- tracciare i diagrammi di Bode di A_V.

Al circuito di fig 1 viene aggiunto un terzo stadio, come indicato in fig. 2. Assumendo che l'amplificatore operazionale sia ideale, si determinino i valori di R_1 , R_2 e C in modo che siano verificate le seguenti condizioni:

- il comportamento dei primi due stadi non cambi rispetto al circuito di fig. 1;
- il guadagno di tensione a centro banda risulti aumentato di 20 dB;
- la funzione di trasferimento $A_V(s) = V_L(s)/V_S(s)$ abbia due poli coincidenti in corrispondenza della frequenza di taglio superiore.