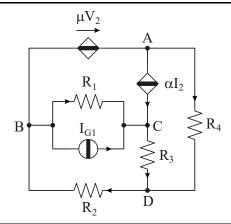
Elettrotecnica ed Elettronica - Ing. Aerospaziale V.O. A.A. 2016/17 - Prova n. 3 - 21 luglio 2017

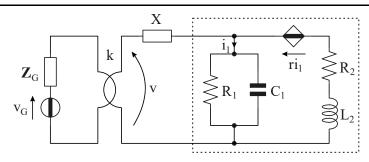
Cognome	Nome	Matricola	Firma


Parti svolte: E1

E2

E3

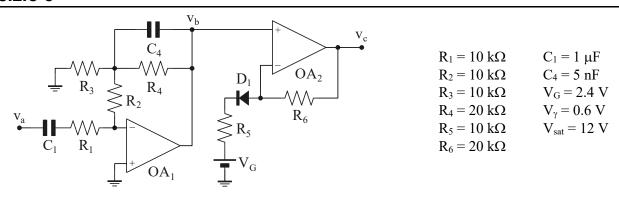
D


Esercizio 1

Supponendo noti i parametri dei componenti, illustrare il procedimento di risoluzione del circuito rappresentato in figura con il **metodo delle tensioni di nodo**:

- 1. indicare quali grandezze vengono scelte come incognite del sistema risolvente;
- 2. scrivere le espressioni della matrice dei coefficienti e del vettore dei termini noti del sistema risolvente;
- **3.** scrivere le espressioni in funzione delle incognite indicate al punto 1 delle correnti dei resistori;
- **4.** scrivere le espressioni in funzione delle incognite e delle correnti determinate al punto 3 delle potenze erogate dai generatori.

Esercizio 2



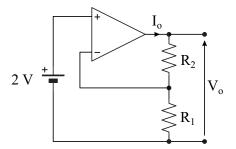
$$\begin{split} R_1 &= 25 \; \Omega & C_1 = 80 \; \mu F \\ R_2 &= 5 \; \Omega & L_2 = 5 \; mH \\ r &= 5 \; \Omega \\ v_G(t) &= 120 \sqrt{5} \; cos(\omega t + \phi) \; V \\ cos \phi &= \sqrt{5} \, / 5 & sen \phi = 2 \sqrt{5} \, / 5 \\ \omega &= 1000 \; rad/s \\ \mathbf{Z}_G &= 250 - 250 j \; \Omega \end{split}$$

Il circuito rappresentato in figura è in condizioni di regime sinusoidale. Determinare:

- 1. l'impedenza equivalente, Z_{eq}, del bipolo racchiuso dalla linea tratteggiata;
- 2. la potenza disponibile, P_d, del bipolo formato dal generatore v_G e dall'impedenza Z_G;
- 3. i valori da attribuire al rapporto di trasformazione k e alla reattanza X affinché la potenza attiva assorbita da \mathbf{Z}_{eq} sia uguale a P_d ;
- **4.** l'espressione della tensione v(t) (con i valori di k e X determinati al punto precedente).

Esercizio 3

Assumendo che gli amplificatori operazionali siano ideali, con tensione di saturazione V_{sat} , e rappresentando il diodo con il modello a soglia, con tensione di soglia V_{γ} ,


- 1. determinare la funzione di trasferimento $A_v = V_b / V_a$ e tracciare il diagramma di Bode del modulo;
- 2. determinare la caratteristica $v_c(v_b)$.
- 3. assumendo che la tensione di ingresso sia $v_a(t) = V_M \cos(2\pi \cdot f \cdot t) V$, con f = 200 Hz, determinare qual è il valore massimo di V_M per cui l'amplificatore operazionale OA_2 non entra in saturazione.

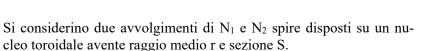
Elettrotecnica ed Elettronica - Ing. Aerospaziale V.O. A.A. 2016/17 - Prova n. 3 - 21 luglio 2017

Domande

1. Determinare i valori di R₁ e R₂ in modo che la tensione Vo sia 6 V e la corrente I_o erogata dall'amplificatore operazionale sia 2 mA. (6 punti)

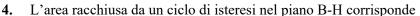
R ₁	R_2	
----------------	-------	--

R


R

R

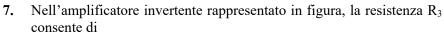
2. Per t < 0 il circuito è in condizioni di regime stazionario e l'interruttore è aperto. All'istante t = 0 si chiude l'interruttore.


Determinare l'espressione di $v_c(t)$ per t > 0. (6 punti)

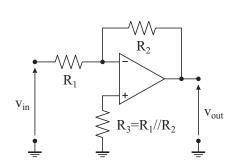
v _C (t)		

Se il numero di spire di entrambi gli avvolgimenti viene raddoppiato, è possibile mantenere invariato il coefficiente di mutua induzione dei due avvolgimenti


- ☐ dimezzando la sezione S
- ☐ dividendo per 4 la sezione S
- □ raddoppiando il raggio r
- ☐ dimezzando il valore delle correnti nei due avvolgimenti


- all'energia accumulata nel campo magnetico in un ciclo di isteresi
- alla densità volumetrica di energia dissipata in un ciclo di isteresi
- alla potenza dissipata in un ciclo di isteresi

5. In condizioni di risonanza il fattore di potenza di un bipolo RLC serie è


- □ minimo
- □ nullo
- □ massimo

- \Box è sempre ≥ 0
- \square è sempre ≤ 0
- ☐ è sempre nullo
- \square è ≥ 0 per i bipoli RL e ≤ 0 per i bipoli RC

- ☐ ridurre gli effetti delle correnti di polarizzazione di ingresso
- □ compensare la tensione di offset
- ☐ aumentare il rapporto di reiezione di modo comune

Ω	т	1.0	• 1				1
8.	In un	amplificatore	operazional	le ideal	le si	assume	che

- ☐ le resistenze di ingresso e di uscita siano nulle
- □ la resistenza di ingresso sia nulla e la resistenza di uscita infinita
- ☐ la resistenza di ingresso sia infinita e la resistenza di uscita nulla
- ☐ le resistenze di ingresso e di uscita siano infinite