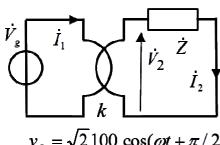

Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 12 Giugno 2013

Parte 1. Teoria

Quesito 1

Indicare quale tra le seguenti affermazioni è vera con riferimento all'impedenza di figura

- 1. L'impedenza assorbe una potenza reattiva di 25 VAr
- 2. Il modulo dell'impedenza 0.5Ω
- 3. L'impedenza è puramente induttiva
- 4. L'impedenza assorbe una potenza attiva di 25 W


Quesito 2

Un sistema trifase alimenta alla tensione V = 380Vrms tre impedenze uguali connesse a triangolo. Le impedenze assorbono complessivamente una potenza attiva P = 50 kW e una potenza reattiva Q=25 kVAr. Quale delle seguenti affermazioni sussiste?

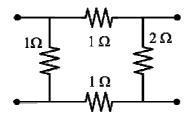
- 1. La tensione ai capi di ciascuna impedenza è 220 Vrms
 - 2. L'argomento delle impedenze è 26.56°
- 3. Nei conduttori di linea circola una corrente di 84.93 Arms
 - 4. Il modulo delle impedenze è Z=8.16 Ω

Quesito 3

Quale delle seguenti affermazioni sussiste con riferimento al circuito di figura?

$$v_g = \sqrt{2} \, 100 \, \cos(\omega t + \pi/2)$$

$$\dot{Z} = 50 e^{j\pi/3} \qquad k = 2$$

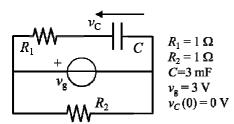

$$i_{\mathbf{1}}(t) = 2\cos\left(\omega t + \frac{\pi}{6}\right)$$

- 2. L'impedenza assorbe una potenza reattiva di 50 VAr
- 3. Il generatore eroga una potenza attiva di 50 W

4.
$$\dot{l}_2 = 0.87 + j \ 0.5$$

Ouesito 4

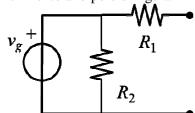
Indicare quale tra le seguenti affermazioni sussiste con riferimento al doppio bipolo di figura



- 1. r_{11} = 0.66 Ω
- 2. $g_{12}=1.5 \text{ S}$
- 3. h_{11} =0.66 Ω
- 4. Il doppio bipolo non è reciproco

Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 12 Giugno 2013

Quesito 5


Si consideri il circuito del primo ordine di figura.

- 1. All'istante iniziale il resistore R₁ dissipa una potenza di 9 W
- 2. All'istante iniziale il resistore R₂ dissipa una potenza di 9 W
- 3. A regime il resistore R₁ dissipa una potenza nulla
- 4. A regime il resistore R₂ dissipa una potenza nulla

Quesito 6

Indicare quale delle seguenti affermazioni sussiste con riferimento al bipolo di figura

$$1 i_{eq} = \frac{v_g}{R_1 R_2 / (R_1 + R_2)}$$

2.
$$g_{eq} = \frac{1}{R_1 + R_2}$$

3.
$$v_{eq} = v_g$$

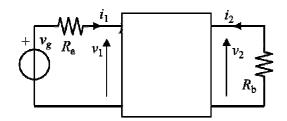
4.
$$r_{eq} = R_1 + R_2$$

Quesito 7

Si consideri un generico grafo con R=7 rami. Sia ${\bf t}$ un vettore topologico di taglio. Quale tra i quattro vettori ${\bf u}$ assegnati può rappresentare un vettore topologico di maglia relativo allo stesso grafo.

$$\mathbf{t} = [0 \ 0 \ 1 \ 1 \ -1 \ -1 \ 0]$$

1.
$$\mathbf{u} = [1 \ 1 \ 1 \ -1 \ 0 \ 0 \ 0]$$


2.
$$\mathbf{u} = [0 \ 0 \ -1 \ 1 \ 0 \ 0 \ 3]$$

3.
$$\mathbf{u} = [0 \ 0 \ 0 \ 0 \ -1 \ -1]$$

4.
$$\mathbf{u} = [1 \ 0 \ 1 \ 0 \ 0 \ +1 \ -1]$$

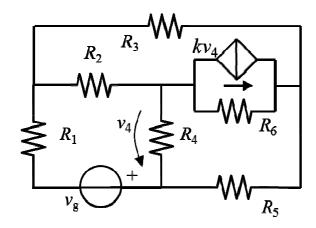
Quesito 8

Il doppio bipolo di figura ammette le rappresentazioni **R**, **G**, **H**, **H**'. Quale tra i seguenti sistemi risolventi è corretto?

1.
$$\begin{cases} g_{11} v_1 + g_{12} v_2 = -G_a v_1 \\ g_{21} v_1 + g_{22} v_2 = -G_b v_2 \end{cases}$$

2.
$$\begin{cases} r_{11}i_1 + r_{12}i_2 = v_g - R_a i_1 \\ r_{21}i_1 + r_{22}i_2 = -R_b i_2 \end{cases}$$

3.
$$\begin{cases} h_{11} i_1 + h_{12} v_2 = v_g \\ h_{21} i_1 + h_{22} v_2 = -G_b v_2 \end{cases}$$

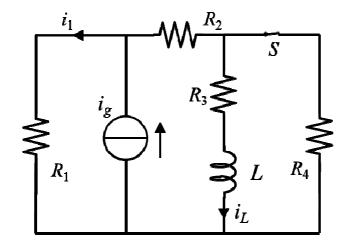

4.
$$\begin{cases} h'_{11} v_1 + h'_{12} i_2 = G_a (v_g - v_1) \\ h'_{21} v_1 + h'_{22} i_2 = -R_b i_2 \end{cases}$$

Parte 2. Esercizi

Problema 1

Con riferimento al circuito di figura determinare

- 1. La corrente in ogni ramo
- 2. La tensione ai capi del generatore di corrente
- 3. Le potenze erogate da entrambi i generatori



$$R_1 = 1 \Omega$$

 $R_2 = 1 \Omega$
 $R_3 = 2 \Omega$
 $R_4 = 2 \Omega$
 $R_5 = 4 \Omega$
 $R_6 = 2 \Omega$
 $k = 2 S$
 $v_g = 12 V$

Problema 2

Il circuito di figura opera in regime di corrente continua. All'istate t=0 l'interruttore ideale S apre. Determinare

- 1. La variazione di energia dell'induttore nell'intervallo [0,+∞[
- 2. L'andamento nel tempo della corrente i₁ per t≥ 0
- 3. La potenza erogata dal generatore all'istante $t=0^+$

$$R_1 = 4 \Omega$$

$$R_2 = 1 \Omega$$

$$R_3 = 2 \Omega$$

$$R_4 = 2 \Omega$$

$$L=3 \text{ mH}$$

$$i_g = 12 \text{ A}$$

Traccia 1, pag. 1 – pag. 3

Parte 1. Teoria

Quesito 1	Quesito 2	Quesito 3	Quesito 4
1V, 2F, 3V, 4F	1F, 2V, 3V, 4F	1F, 2F, 3F, 4V	1F, 2F, 3V, 4F
Quesito 5	Quesito 6	Quesito 7	Quesito 8
1V, 2V, 3V, 4F	1F, 2F, 3V, 4F	1V, 2F, 3F, 4V	1F, 2V, 3F, 4V

Parte 2. Esercizi

Parte 2. Esercizi		
Problema 1	Problema 2	
288 W 12 A 64 W 8 A 16 A 16 W 512 W16 A -48 W 64 W	$\Delta W_{\rm L} = 46.53 \text{ mJ}$ $i_1(t) = 2.86 e^{-t/\tau} + 5.14$ $\tau = 0.43 \text{ ms}$ $P_{\rm g}(0^+) = 384 \text{ W}$	