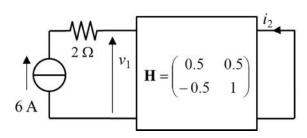
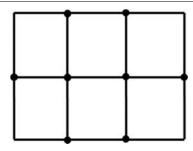

Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 8 Gennaio 2014

Parte 1. Teoria


Quesito 1

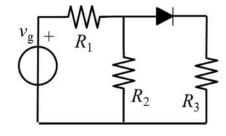
Si consideri il circuito di figura. Utilizzando il principio di sovrapposizione degli effetti è possibile dedurre che

- □ 1. Il generatore di corrente eroga una potenza di 64 W
- □ 2. Il generatore di tensione eroga una potenza di 48 W
- □ 3. Il resistore R₃ assorbe una potenza di 1 W
- ☐ 4. Le reistenze assorbono complessivamente 112 W


Quesito 2

Si consideri il circuito di figura

- \Box 1. $v_1 = 3$ V
- □ 2. $i_2 = 0$ A
- ☐ 3. Il doppio bipolo assorbe 18 W
- ☐ 4. Il generatore eroga 18 W

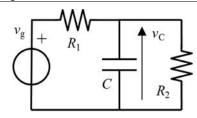

Quesito 3

Con riferimento al grafo di figura

- □ 1. Sono individuabili 7 tagli fondamentali
- □ 2. Qualsiasi albero è costitutio da 7 rami
- □ 3. Sono individuabili 7 maglie fondamentali
- \square 2. La matrice dei tagli fondamentali ha dimensione 7×13

Quesito 4

 $R_1 = 1 \Omega$ $R_2 = 2 \Omega$ $R_3 = 2 \Omega$


 $v_{\rm g} = 8 \text{ V}$

Si consideri il circuito di figura e si assuma per il diodo il modello ideale

- \square 1. Il resistore R_1 assorbe 16 W
- □ 2. Il generatore eroga 32 W
- \square 3. Il resistore R_3 assorbe potenza nulla
- \square 4. Il resistore R_2 assorbe 16 W

Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 8 Gennaio 2014

Quesito 5

$$R_1 = 1 \Omega$$
$$R_2 = 2 \Omega$$

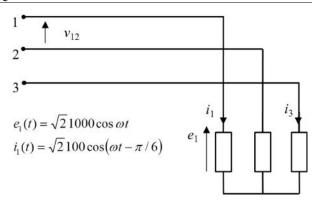
= 12 V

 $v_{\rm C}(0) = 12 \text{ V}$

C = 2 mF

Si consideri il circuito di figura

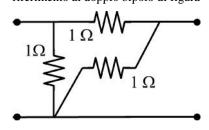
- \Box 1. A t=0 il generatore eroga una potenza nulla
- \square 2. A regime (t= ∞) l'energia del condensatore è nulla
- \Box 3. A t=0 $dv_C/dt = -3000 \text{ V/s}$
- \Box 4. A t=0 il resitore R_2 assorbe potenza nulla


Quesito 6

Si consideri il bipolo di figura

- \square 1. La tensione del generatore equivalente di Thevenin vale 5 V
- □ 2. La corrente del generatore equivalente di Norton vale 2.5 A
- □ 3. La conduttanza equivalente di Norton vale 0.5 S
- \square 4. La resistenza equivalente di Thevenin vale 0.5 Ω

Quesito 7

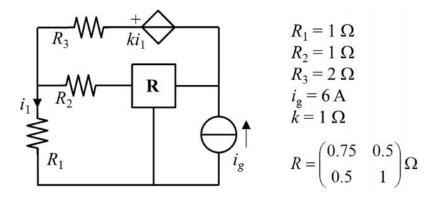

Il sistema trifase di figura alimenta tre impedenze uguali collegate a stella. Quale delle seguenti affermazioni sussiste?

$$\Box 1. \ i_3(t) = \sqrt{2} 100 \cos(\check{S}t + f/2)$$

- \square 2. Il valore efficace dellla tensione v_{12} è 577.3 V
- \square 3. Il modulo delle impedenze è 0.1 Ω
- \square 4. La potenza attiva complessivamente assorbita dalle impedenze è P=259.8~kW

Quesito 8

Indicare quale tra le seguenti affermazioni sussiste con riferimento al doppio bipolo di figura

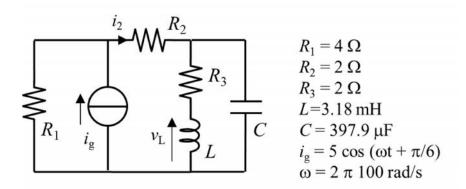

- \Box 1. r_{11} = 2/3 Ω
- \square 2. g_{11} =1 S
- □ 3. g_{21} = -2 S
- \square 4. r_{21} = 1/2 Ω

Parte 2. Esercizi

Problema 1

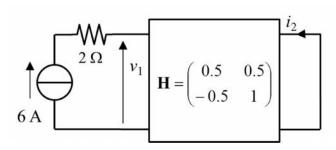
Con riferimento al circuito di figura e determinare

- 1. La corrente in ogni ramo
- 2. La tensione ai capi del generatore di corrente
- 3. La potenza complessivamente assorbita dal tripolo



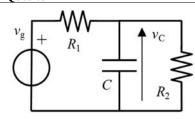
Problema 2

Il circuito di figura opera in regime sinusoidale. Determinare


- 1. L'andamento nel tempo della tensione v_L
- 2. La potenza reattiva erogata dal condensatore
- 3. La potenza attiva e reattiva erogata dal generatore

Tracciare inoltre il diagramma fasoriale delle correnti nei rami del circuito.

Parte 1. Teoria


Quesito 1

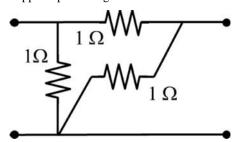
Si consideri il circuito di figura

- ☐ 1. Il doppio bipolo assorbe 18 W
- □ 2. $i_2 = 0$ A
- \square 3. $v_1 = 3$ V
- □ 4. Il generatore eroga 18 W

Quesito 2

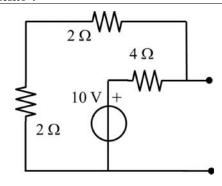
 $R_1 = 1 \Omega$ $R_2 = 2 \Omega$

 $v_{g} = 12 \text{ V}$ C = 2 mF


 $v_{\rm C}(0) = 12 \text{ V}$

Si consideri il circuito di figura

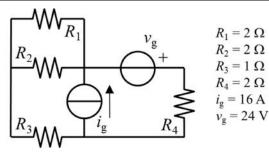
- □ 1. A t=0 il generatore eroga una potenza nulla
- \Box 2. A t=0 $dv_C/dt = -3000 \text{ V/s}$
- □ 3. A regime (t=∞) l'energia del condensatore è nulla
- \Box 4. A t=0 il resitore R_2 assorbe potenza nulla


Quesito 3

Indicare quale tra le seguenti affermazioni sussiste con riferimento al doppio bipolo di figura

- \square 1. r_{11} = 2/3 Ω
- □ 2. g_{11} =1 S
- \square 3. r_{21} = 1/2 Ω
- □ 4. g_{21} = −2 S

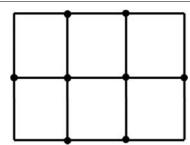
Quesito 4



Si consideri il bipolo di figura

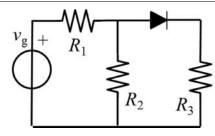
- $\hfill\Box$ 1. La tensione del generatore equivalente di Thevenin vale 5 V
- \square 2. La resistenza equivalente di Thevenin vale 0.5 Ω
- \square 3. La conduttanza equivalente di Norton vale 0.5 S
- □ 4. La corrente del generatore equivalente di Norton vale 2.5 A

Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 8 Gennaio 2014


Quesito 5

Si consideri il circuito di figura. Utilizzando il principio di sovrapposizione degli effetti è possibile dedurre che

- ☐ 1. Le reistenze assorbono complessivamente 112 W
- ☐ 2. Il generatore di tensione eroga una potenza di 48 W
- □ 3. Il resistore R₃ assorbe una potenza di 1 W
- □ 4. Il generatore di corrente eroga una potenza di 64 W

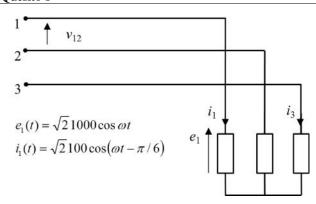

Quesito 6

Con riferimento al grafo di figura

- □ 1. Qualsiasi albero è costitutio da 7 rami
- ☐ 2. Sono individuabili 7 tagli fondamentali
- □ 3. Sono individuabili 7 maglie fondamentali
- \square 2. La matrice dei tagli fondamentali ha dimensione 7×13

Quesito 7

 $R_1 = 1 \Omega$


 $R_2 = 2 \Omega$ $R_3 = 2 \Omega$

 $v_g = 8 \text{ V}$

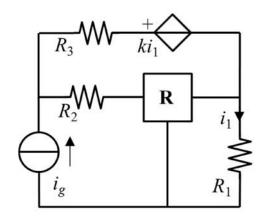
Si consideri il circuito di figura e si assuma per il diodo il modello ideale

- \square 1. Il resistore R_3 assorbe potenza nulla
- \square 2. Il generatore eroga 32 W
- \square 3. Il resistore R_1 assorbe 16 W
- \square 4. Il resistore R_2 assorbe 16 W

Quesito 8

Il sistema trifase di figura alimenta tre impedenze uguali collegate a stella. Quale delle seguenti affermazioni sussiste?

$$\Box 1. \ i_3(t) = \sqrt{2} 100 \cos(\tilde{S}t + f/2)$$


- \square 2. Il valore efficace dellla tensione v_{12} è 577.3 V
- \square 3. La potenza attiva complessivamente assorbita dalle impedenze è P=259.8~kW
- \square 4. Il modulo delle impedenze è 0.1 Ω

Parte 2. Esercizi

Problema 1

Con riferimento al circuito di figura e determinare

- 1. La corrente in ogni ramo
- 2. La tensione ai capi del generatore di corrente
- 3. La potenza complessivamente assorbita dal tripolo

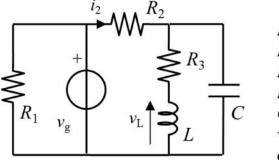
$$R_1 = 2 \Omega$$

$$R_2 = 2 \Omega$$

$$R_3 = 1 \Omega$$

$$i_g = 12 \Lambda$$

$$k = 2 \Omega$$


$$R = \begin{pmatrix} 0.75 & 0.5 \\ 0.5 & 1 \end{pmatrix} \Omega$$

Problema 2

Il circuito di figura opera in regime sinusoidale. Determinare

- 1. L'andamento nel tempo della tensione v_L
- 2. La potenza reattiva erogata dal condensatore
- 3. La potenza attiva e reattiva erogata dal generatore

Tracciare inoltre il diagramma fasoriale delle correnti nei rami del circuito.

$$R_1 = 4 \Omega$$

 $R_2 = 2 \Omega$
 $R_3 = 2 \Omega$
 $L = 3.18 \text{ mH}$
 $C = 1.59 \text{ mF}$
 $v_g = 5 \cos (\omega t + \pi/6)$
 $\omega = 2 \pi 100 \text{ rad/s}$

Traccia 1, pag. 1 – pag. 3

Parte 1. Teoria

Quesito 1	Quesito 2	Quesito 3	Quesito 4
1V 2F 3F 4F	1V 2F 3V 4F	1V 2V 3F 4V	1V 2V 3F 4F
Quesito 5	Quesito 6	Quesito 7	Quesito 8
1V 2F 3V 4F	1V 2V 3V 4F	1V 2F 3F 4V	1V 2F 3F 4F

Problema 2
$v_{L} = 5.65 \cos (\omega t + 1.31)$ $Q_{C} = 8 \text{ VAr}$ $P_{g} = 30 \text{ W}$ $Q_{g} = 0 \text{ VAr}$ I_{g} I_{g} I_{g}
1

Traccia 2, pag. 4 – pag. 6

Parte 1. Teoria

Quesito 1	Quesito 2	Quesito 3	Quesito 4
1V 2F 3V 4F	1V 2V 3F 4F	1V 2F 3F 4F	1V 2F 3V 4V
Quesito 5	Quesito 6	Quesito 7	Quesito 8
1F 2F 3F 4V	1V 2V 3F 4V	1F 2V 3V 4F	1V 2F 3V 4F

Parte 2. Esercizi Problema 1 Problema 2 $v_L = 1.67 \cos (\omega t + 0.52)$ $Q_C = 2.78 \text{ VAr}$ $P_{\rm g} = 7.29 \text{ W}$ $Q_{\rm g} = -2.08 \text{ VAr}$ 72 W 3 A 54 W - 216 W 18 W