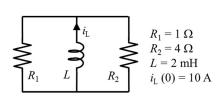
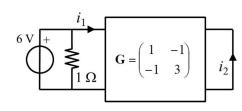

Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 14 Giugno 2017

Parte 1. Teoria


Quesito 1

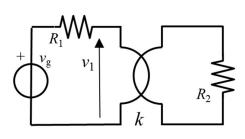
Indicare quale tra le seguenti affermazioni sussiste con riferimento al doppio bipolo di figura

- \Box 1. r_{21} = 0.5 Ω
- \Box 2. g_{11} = 0.33 S
- \square 3. $r_{12} = 0.25~\Omega$
- \Box 4. r_{11} = 0.5 Ω


Quesito 2

Si consideri il circuito del primo ordine di figura.

- \Box 1. La costante di tempo è τ = 0.4 ms
- □ 2. Nell'intervallo [0 +∞[l'induttore cede ai resistori 100 mJ
- □ 3. Nell'intervallo $[0 + \infty]$ il reisistore R_1 dissipa complessivamente 80 mJ
- \Box 4. A $t = 0 di_L / dt = -4000 A / s$


Quesito 3

Indicare quale tra le seguenti affermazioni sussiste con riferimento al circuito di figura

- □ 1. $i_2 = 0$ A
- ☐ 2. Il generatore eroga 36 W
- □ 3. i_1 = 6 A
- ☐ 4. Il doppio bipolo assorbe complessivamente 36 W

Quesito 4

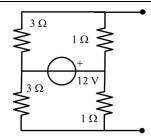
$$R_1 = 1 \Omega$$
 $R_2 = 2 \Omega$
 $k = 2$ $v_g = 6 V$

Indicare quale tra le seguenti affermazioni sussiste con riferimento al circuito di figura

- \Box 1. Il resistore R_1 assorbe 0.44 W
- □ 2. v_1 = 4.8 V
- \square 3. Il resistore R_2 assorve 2.88 W
- \square 4. Il generatore eroga 4.32 W

Elettrotecnica T-A, Ingegneria Elettronica e delle Telecomunicazioni Prova scritta di Mercoledì 14 Giugno 2017

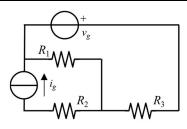
Quesito 5


v(t)

$$Z=1+j2$$
$$i(t)=10\cos \omega t$$

Si consideri il bipolo di figura, operante in regime di corrente alternata. Quale delle segunti affremazioni sussiste?

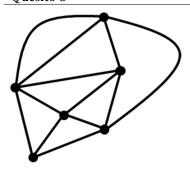
- \Box 1. $v(t) = \sqrt{5} \ 10 \cos (\omega t + 1.107)$
- \Box 2. Il bipolo assorbe una potenza attiva P = 100 W
- \square 3. L'argomento dell'impedenza è $\pi/3$
- ☐ 4. Il bipolo assorbe una potenza reattiva nulla


Quesito 6

Si consideri il bipolo di figura.

- □ 1. La rappresentazione di Norton non esiste
- \square 2. $r_{eq} = 2 \Omega$
- \square 3. $v_{eq} = 0$ V
- ☐ 4. Quando il bipolo opera a vuoto il generatore non eroga potenza

Quesito 7



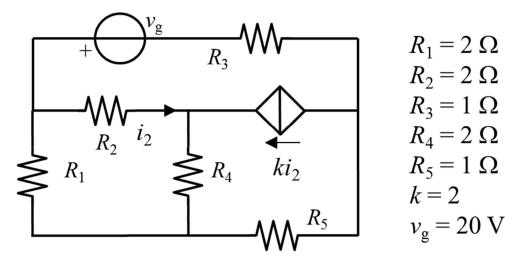
 $R_1 = 1 \Omega$ $R_2 = 1 \Omega$ $R_3 = 1 \Omega$ $i_g = 20 \text{ A}$ $v_g = 20 \text{ V}$

Si consideri il circuito di figura.

- \square 1. Il resistore R_1 dissipa potenza nulla
- □ 2. Il resistore R₃ dissipa 400 W
- □ 3. Il generatore di corrente eroga 400 W
- ☐ 4. Il generatore di tensione eroga potenza nulla

Quesito 8

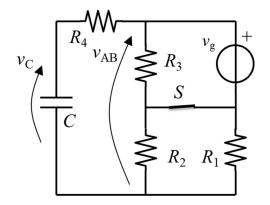
Con riferimento al grafo di figura


- □ 1. È possibile individuare al massimo 5 LKT indipendenti
- ☐ 2. Ciascun coalbero possiede 7 rami
- □ 3. Ciascun albero possiede 5 rami
- \square 4. La matrice di incidenza ridotta ha dimensione 5×12

Parte 2. Esercizi

Problema 1

Con riferimento al circuito di figura e determinare


- 1. La corrente in ogni ramo
- 2. La tensione ai capi del generatore di corrente
- 3. La potenza erogata dal generatore di tensione

Problema 2

Il circuito di figura opera in regime di correte continua. All'istante t = 0 l'interruttore S apre. Determinare

- 1. L'andamento nel tempo della tensione v_C del condensatore per $t \ge 0$
- 2. L'energia complessivamente ceduta dal condensatore al circuito nell'intervallo [0,+∞[
- 3. L'andamento nel tempo della tensione v_{AB} per $t \ge 0$

$$R_1 = 2 \Omega$$

 $R_2 = 1 \Omega$
 $R_3 = 1 \Omega$
 $R_4 = 2 \Omega$
 $C = 1 \text{ mF}$
 $v_g = 12 \text{ V}$

Soluzione

Parte 1. Teoria

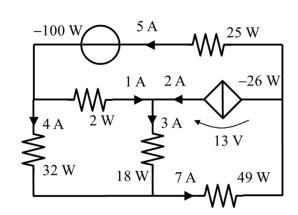
Quesito 1 VFFV

Quesito 2 FVVV

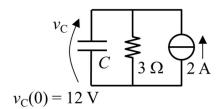
Quesito 3 FFVV

Quesito 4 VFFF

Quesito 5 VFFF


Quesito 6 FFVF

Quesito 7 VVVF


Quesito 8 FVVV

Parte 2. Esercizi

Problema 1

Problema 2

Circuito equivalente per $t \ge 0$

$$v_{\rm L}(t) = 6 e^{-t/\tau} + 6$$

 $\tau = 3 \text{ ms}$

$$\Delta W = 54 \text{ mJ}$$

$$v_{AB}(t) = 2 e^{-t/\tau} + 6$$