

- Transformer History
- o Basic Transformer Design
- o Motivation of Superconducting Transformers
- o Basics of Superconducting Transformers
 - o Types
 - o Electrical Circuit
 - Losses and Loss Evaluation
- o State-of-the-Art

2 10.06.2016

ESAS Summer School, Superconducting Transformers

Transformer History

- 1831 Michael Faraday Ellectromagnetic Induction
- 1884 Károly Zipernowsky, Miksa Dén, Ottó Titusz Bláthy Einankerumformer

Source: Die ersten Transformatoren (Déri-Bláthy-Zipernowsky, Budapest, 1885.) Schloss Széchenyi in Nagycenk

4 10.06.2016

ESAS Summer School, Superconducting Transformers

Mathias Noe, Institute of Technical Physics

Transformer History

• 1885 William Stanley

Stanley designed and produced transformers with iron plate and iron tape cores.

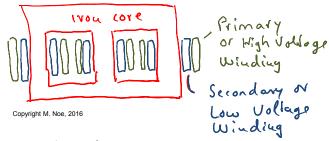
Primary Voltage 500 V

Power 150 "sixteen candle-power lamps"

The "Stanley Transformer" was produced for several years by Westinghouse

Copyright: Edison Tech Center

5 10.06.2016


ESAS Summer School, Superconducting Transformers

Transformer History

- 1831 Michael Faraday Electromagnetic Induction
- 1884 Károly Zipernowsky, Miksa Dén, Ottó Titusz Bláthy Einankerumformer
- 1885 William Stanley Further development
- 1888 Gisbert Kapp Major work on theory of transformers
- 1891 Michael von Dolivo-Dobrowolski three leg design

• since 1965 epoxy resin transformers

6 10.06.2016

ESAS Summer School, Superconducting Transformers

Mathias Noe, Institute of Technical Physics

Outline Superconducting Transformer

- Transformer History
- o Basic Transformer Design
- Motivation of Superconducting Transformers
- o Basics of Superconducting Transformers
 - o Types
 - o Electrical Circuit
 - Losses and Loss Evaluation
- o State-of-the-Art

7 10.06.2016

ESAS Summer School, Superconducting Transformers

Maxwell's Equation

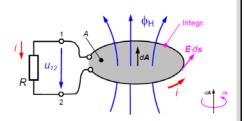
SALT Karkruhe Institute of Technology

3rd Maxwell Equation – Faraday's Law

$$\oint_C \mathbf{E} \cdot d\mathbf{s} = -\frac{d}{dt} \int_{\mathbf{A}} \mathbf{B} \cdot d\mathbf{A}$$

E: Electric Field

B: Magnetic Induction


A: Surface (constant with time)

ds: Length element

dA: Surface element

$$u_{12}(t) = \oint_C \mathbf{E}(t) \cdot d\mathbf{s} = \int_A \mathrm{rot} \big[\mathbf{E}(t) \big] \cdot d\mathbf{A} = \int_A -\frac{\partial \mathbf{B}(t)}{\partial t} \cdot d\mathbf{A} = -\frac{d}{dt} \int_A \mathbf{B}(t) \cdot d\mathbf{A} = -\frac{d}{dt} \phi_H(t)$$

$$u_{12}(t) = -w \cdot \frac{d\phi_H(t)}{dt} = i(t) \cdot R$$

8 10.06.2016

ESAS Summer School, Superconducting Transformers

Mathias Noe, Institute of Technical Physics

Maxwell's Equation

4th Maxwell Equation - Ampere's Law

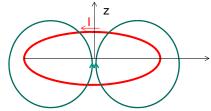
$$\oint_C H(t) \cdot ds = \int_{A_{W}} (J(t) + \frac{dD(t)}{dt}) \cdot dA$$

Very often J⊥dA and H∥ds and D/dt=0

Currents generate magnetic field

$$B \cdot 2 \cdot \pi \cdot r = \mu_0 \cdot I$$

Vacuum permeability

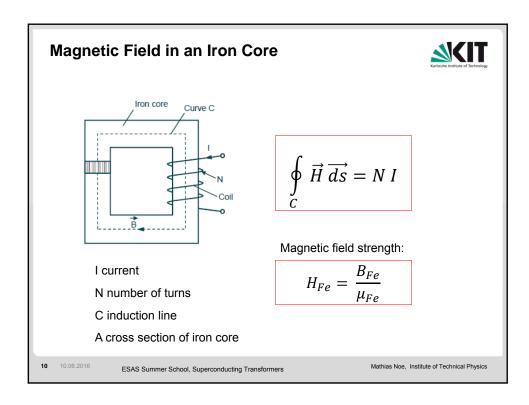

H: Magnetic Field

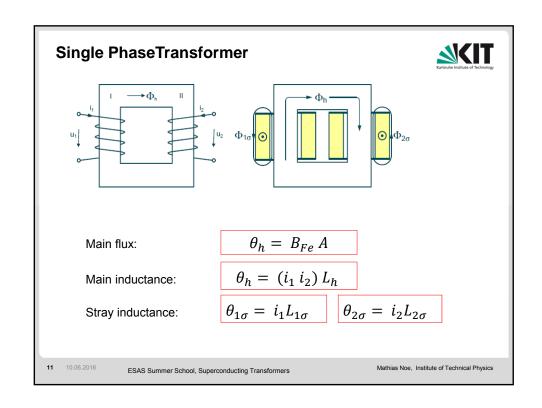
J : Current Density

D : Dielectric Displacement

ds : Length element

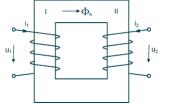
dA: Surface element




$$B_{z,0} = \frac{\mu_0 \cdot I}{2 \cdot R}$$

9 10.06.2016

ESAS Summer School, Superconducting Transformers



Transmission ratio:

$$\ddot{\mathbf{u}} = \frac{N_1}{N_2}$$

Voltage equations:

$$u_1 = R_1 i_1 + L_1 \frac{di_1}{dt} + M_{12} \ddot{\mathbf{u}} \frac{d(\frac{i_2}{\ddot{\mathbf{u}}})}{dt}$$

$$L_1 = L_{\sigma} + L_h$$

$$u_2 = R_2 i_2 + L_2 \frac{di_2}{dt} + M_{21} \frac{d(i_1)}{dt}$$

$$L_1 = L_{\sigma} + L_h$$

12 10.06.2016

ESAS Summer School, Superconducting Transformers

Mathias Noe, Institute of Technical Physics

Single PhaseTransformer

Transmission ratio:

$$\ddot{\mathbf{u}} = \frac{N_1}{N_2}$$

Voltage equations:

$$u_1 = R_1 i_1 + L_1 \frac{di_1}{dt} + M_{12} \ddot{u} \frac{d(\frac{\dot{i}_2}{\ddot{u}})}{dt}$$

$$L_1 = L_{\sigma} + L_h$$

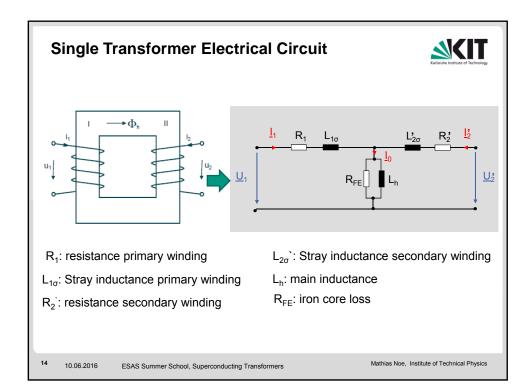
$$u_2 = R_2 i_2 + L_2 \frac{di_2}{dt} + M_{21} \frac{d(i_1)}{dt}$$

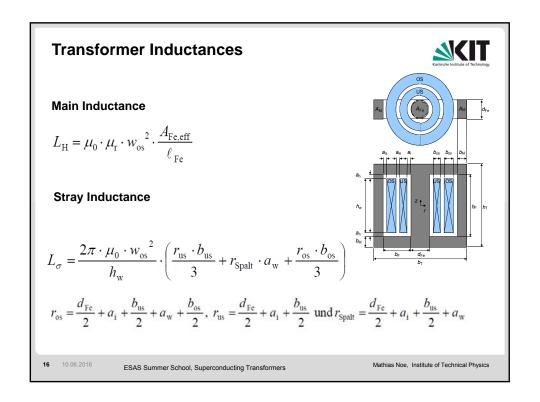
$$L_1 = L_{\sigma} + L_h$$

$$\begin{split} u_i &= R_i \cdot i_i + L_i \cdot \frac{di_i}{dt} + M' \cdot \frac{di'_2}{dt} = R_i \cdot i_i + L_i \cdot \frac{di_i}{dt} + L_m \cdot \frac{di'_2}{dt} \\ u'_2 &= R'_2 \cdot i'_2 + L'_2 \cdot \frac{di'_2}{dt} + M \cdot \frac{di_i}{dt} = R'_2 \cdot i'_2 + L'_2 \cdot \frac{di'_2}{dt} + L_m \cdot \frac{di}{dt} \end{split}$$

$$u'_2 = R'_2 \cdot i'_2 + L'_2 \cdot \frac{di'_2}{dt} + M \cdot \frac{di}{dt} = R'_2 \cdot i'_2 + L'_2 \cdot \frac{di'_2}{dt} + L_h \cdot \frac{di}{dt}$$

Because of $L_{1/2} = L_{1\sigma/2\sigma} + L_h$ and $L'_{2h} = M = L_h$ follows:


$$u_1 = R_1 \cdot i_1 + L_{10} \cdot \frac{di_1}{dt} + L_{11} \cdot \frac{d(i_1 + i_2')}{dt}$$


$$u'_{2} = R'_{2} \cdot i'_{2} + L'_{2\alpha} \cdot \frac{di'_{2}}{dt} + L_{h} \cdot \frac{d(i_{1} + i'_{2})}{dt}$$

10.06.2016

ESAS Summer School, Superconducting Transformers

- o Transformer History
- o Basic Transformer Design
- Motivation of Superconducting Transformers
- o Basics of Superconducting Transformers
 - o Types
 - o Electrical Circuit
 - Losses and Loss Evaluation
- o State-of-the-Art

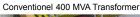
17 10.06.2016

ESAS Summer School, Superconducting Transformers

Mathias Noe, Institute of Technical Physics

Motivation of Superconducting Transformers Manufacturing and transport • Compact and lightweight (~50 % Reduction) 30 MVA Transformers superconducting weight (~50 % Reduction) Mathias Noe, Institute of Technical Physics

Motivation of Superconducting Transformers



Manufacturing and transport

■ Compact and lightweight (~50 % Reduction)

Environment and Marketing

- Energy savings (~50 % Reduction)
- Ressource savings

©ABB

19 10.06.2016

ESAS Summer School, Superconducting Transformers

Mathias Noe, Institute of Technical Physics

Motivation of Superconducting Transformers

Manufacturing and transport

■ Compact and lightweight (~50 % Reduction)

Environment and Marketing

- Energy savings (~50 % Reduction)
- Ressource savings
- Inflammable (no oil)

20 10.06.2016

ESAS Summer School, Superconducting Transformers

Motivation of Superconducting Transformers

Manufacturing and transport

■ Compact and lightweight (~50 % Reduction)

Environment and Marketing

- Energy savings (~50 % Reduction)
- Ressource savings
- Inflammable (no oil)

Operation

- Low short-circuit impedance
 - Higher stability
 - Less voltage drops
 - Less reactive power

21 10.06.2016

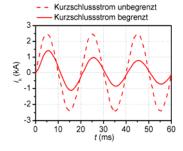
ESAS Summer School, Superconducting Transformers

Mathias Noe, Institute of Technical Physics

Motivation of Superconducting Transformers

Manufacturing and transport

■ Compact and lightweight (~50 % Reduction)


Environment and Marketing

- Energy savings (~50 % Reduction)
- Ressource savings
- Inflammable (no oil)

Operation

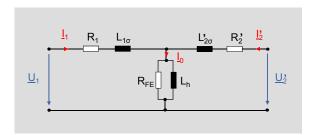
- Low short-circuit impedance
 - Higher stability
 - Less voltage drops
 - Less reactive power
- Active current limitation
 - Protection of devices

- Reduction of investment

10.06.2016

ESAS Summer School, Superconducting Transformers

- o Transformer History
- o Basic Transformer Design
- o Motivation of Superconducting Transformers
- o Basics of Superconducting Transformers
 - o Types
 - o Electrical Circuit
 - o Losses and loss evaluation
- o State-of-the-Art

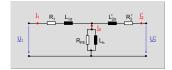

23 10.06.2016

ESAS Summer School, Superconducting Transformers

Mathias Noe, Institute of Technical Physics

Electrical Circuit

What is different between normal and superconducting transformers?


24 10.06.2016

ESAS Summer School, Superconducting Transformers

Some basic equations

$$S = \frac{U_1 I_1 + U_2 I_2}{2}$$

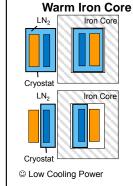
$$U_1 = \frac{n_1 \, \omega}{\sqrt{2}} B_{Fe} \, A_{Fe}$$

$$S = \frac{\omega B_{Fe} A_{Fe}}{\sqrt{2}} \left(\frac{n_1 I_1 + n_2 I_2}{2} \right)$$

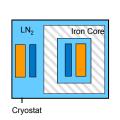
$$n_1 I_1 = n_1 j_1 A_1$$

$$n_2 I_2 = n_2 j_2 A_2$$

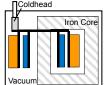
$$j_1 = j_2 = j$$


25 10.06.2016

ESAS Summer School, Superconducting Transformers

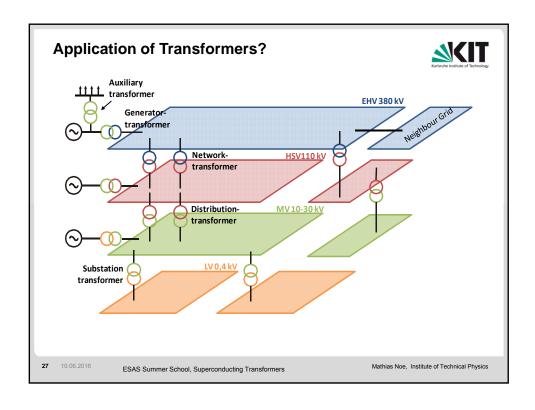

Mathias Noe, Institute of Technical Physics

Different Types of Superconducting Transformers



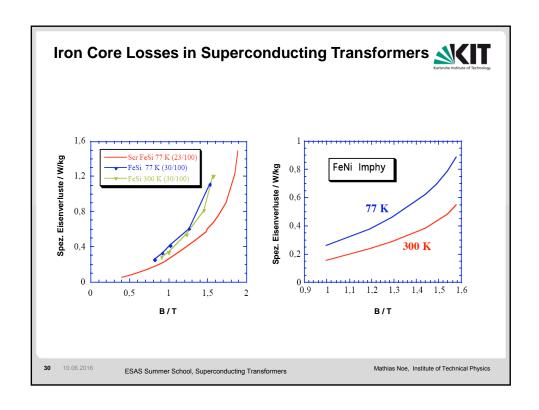
Cold Iron Core

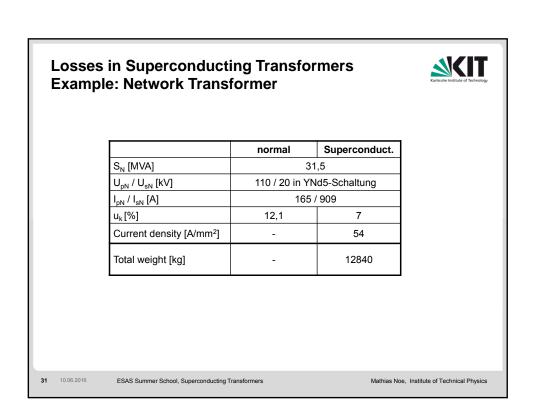
Conduction Cooled

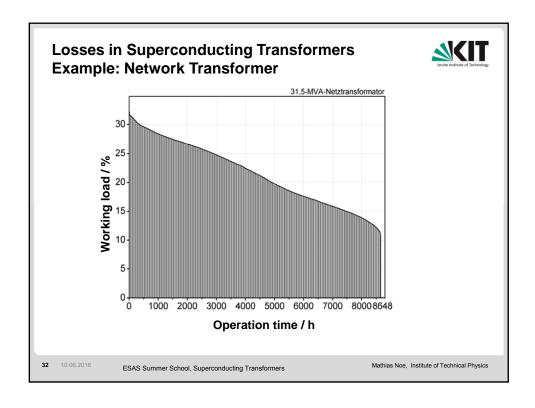


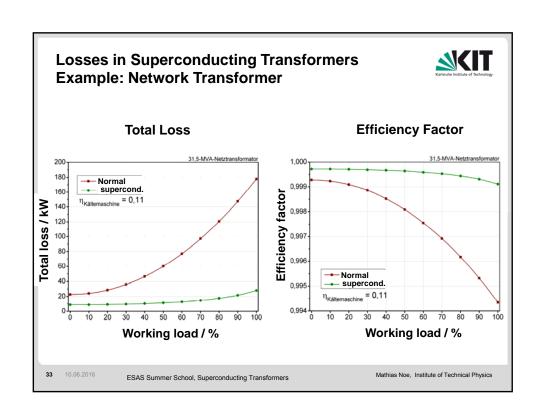
- © Iron at Room Temperature
- ⊗ Expensive Cryostat
- 3 Cryostats needed
- © Simple Cryostat
- © Simple Cooling inerface
- ⊗ High Cooling Power (Iron core loss at low temp.)
- © Simple Cryostat
- ☺ Iron at Room Temperature
- 8 Long recooling after quench
- ⊗ Temperature difference
- ⊗ Not suitable for high voltage

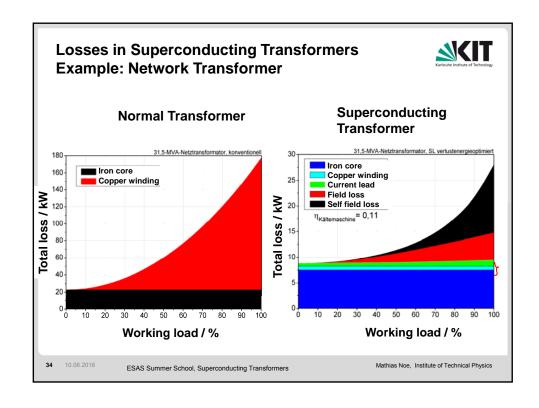
10.06.2016


ESAS Summer School, Superconducting Transformers



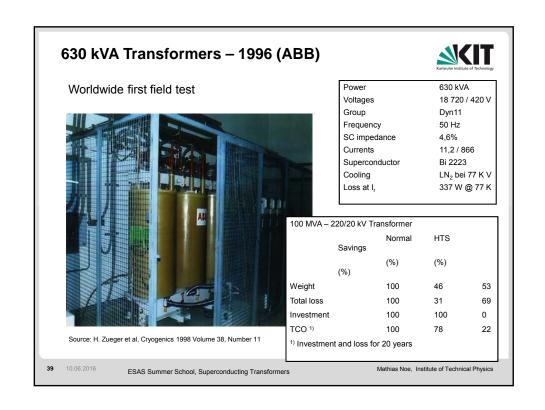

Losses in Superconducting Transformers Short-circuit losses • P_{AC} AC Loss of Superconductor (current dependant) • P_{CL} Current lead loss (partly current dependant) $\bullet \, P_{add}$ Additional loss (current dependant) No-load operation Iron core loss (eddy currents) (voltage dependant) Iron core loss (Hysteresis loss) (voltage dependant) • P_{Di} Dielectric loss (voltage dependant) • P_{Th} Thermal loss (not voltage dependant) 10.06.2016 Mathias Noe, Institute of Technical Physics ESAS Summer School, Superconducting Transformers







- o Transformer History
- o Basic Transformer Design
- o Motivation of Superconducting Transformers
- o Basics of Superconducting Transformers
 - o Types
 - o Electrical Circuit
 - o Losses and loss evaluation
- State-of-the-Art


36 10.06.2016

ESAS Summer School, Superconducting Transformers

History of LTS Transformers								
Year	Organization	Country	Power in kVA	Data	Voltage per winding	Super- cond.		
1985	GEC-Alstom	F	80	660V/1040V 124A/77A	2,14 V	NbTí		
1988	Kyushu University	J	72	1057V/218V 68A/332A	•	NbTí		
1991	Toshíba	J	30	100V/100V 300A/300A	•	NbTí		
1991	Ktío	J	100	6600V/210V 15A/476A	4,57 V	CWNbTi		
1992	Kyushu University	J	1000	3300V/220V 303A/4545A	10 V	NbTí		
1993	ABB	СН	330	6000V/400V 56A/830A	7,9 V	NbTí		
1995	Osaka University	J	40	460V/150V 50A/200A	0,45 V	NbTí		

Country	Inst.	Application	Data	Phase	Year	HTS
Switzerland	ABB	Distribution	630 kVA, 18,42 kV/420V	3 Dyn11	1996	Bi 2223
Japan	Fuji Electric	Demonstrator	500 kVA, 6,6 kV/3,3 kV	1	1998	Bi 2223
Germany	Siemens	Demonstrator	100 kVA, 5,5 kV/1,1 kV	1	1999	Bi 2223
USA	Waukesha	Demonstrator	1 MVA, 13,8 kV/6,9 kV	1	-	Bi 2223
USA	Waukesha	Demonstrator	5 MVA, 24,9 kV/4,2 kV	3 Dy	-	Bi 2223
Japan	Fuji Electric	Demonstrator	1 MVA, 22 kV/6,9 kV	1	2001	Bi 2223
Germany	Siemens	Railway	1 MVA, 25 kV/1,4 kV	1	2001	Bi 2223
EU	CNRS	Demonstrator	41 kVA, 2050 V/410 V	1	2003	P-YBCO/S-Bi 2223
Korea	U Seoul	Demonstrator	1 MVA, 22,9 kV/6,6 kV	1	2004	Bi 2223
Japan	Fuji Electric	Railway	4 MVA, 25 kV/1.2 kV	1	2004	Bi 2223
Japan	Kuyshu Uni.	Demonstrator	2 MVA, 66 kV/6.9 kV	1	2004	Bi 2223
China	IEE CAS	Demonstrator	630 kVA, 10.5 kV/400 V	3	2005	Bi 2223
Japan	U Nagoya	Demonstrator	2 MVA, 22 kV/6,6 kV	1	2009	P-Bi 2223/S-YBCO
Japan	Kyushu Uni	Demonstrator	400 kVA, 6.9 kV/2.3 kV	1	2010	YBCO
Germany	KIT	Demonstrator	60 kVA, 1 kV/600 V	1	2010	P-Cu/S-YBCO
USA	Waukesha	Prototype	28 MVA, 69 kV	3	Not completed	YBCO
Australia	Callaghan Innovation	Demonstrator	1 MVA, 11 kV/415 V	3 Dy	2013	YBCO
China	IEE CAS	Demonstrator	1.25 MVA, 10.5 kV/400 V	3 Yyn0	2014	Bi 2223
Germany	KIT/ABB	Demonstrator	577 kVA, 20 kV/1 kV	1	2015	P-Cu/S-YBCO

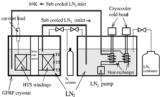
1 MVA Transformers – 1996 - (Kyushu)

Rated power: 1 MVARated Voltage: 22/6,9 kV

• Frequency: 60 Hz

Short-circuit voltage: u_k = 5 %
Cooling: subcooled LN₂ at 64 K

• Volume: 1,5 m x 1,2 m x 2,7 m (l x w x


,

Weight: 5100 kg

Bi-2223 SuperconductorLosses: 160 W bei 65 K

· Successful Field Test

Source: Kimura et al Physica C 372-376, 2002-S. 1694-1697

40 10.06.2016

ESAS Summer School, Superconducting Transformers

Mathias Noe, Institute of Technical Physics

1 MVA Mobile Transformer - 2001 (Siemens)

Rated Power: 1 MVARated Voltage: 25/1,4 kV

• Frequency: 50 Hz

• SC impedance : $u_{\rm k}$ = 25 %

Cooling LN₂ at 67 K

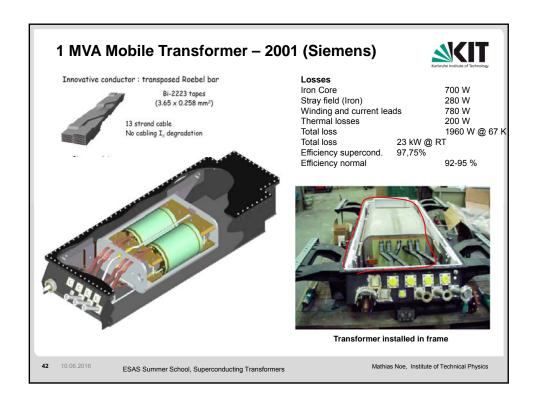
• Volume: 0,88 m x 0,406 m x 1,08 m (l x w x h) \S

Weight active part: 1010 kg
Weight LN₂ Tank: 272 kg
Length Bi-2223 tapes: 6,8 km

Losses: 1960 W bei 67 K
Efficiency: η = 97,75 %

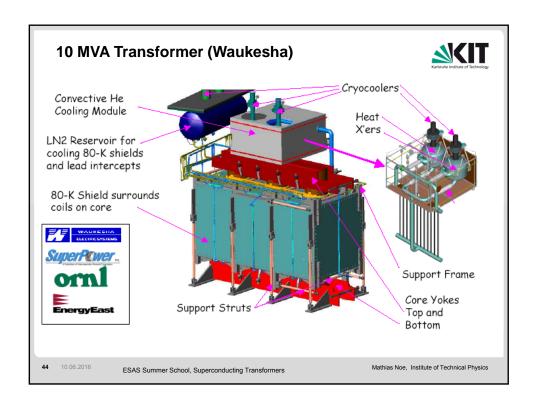
• Efficiency of normal train transformers: $\eta = 92$ -

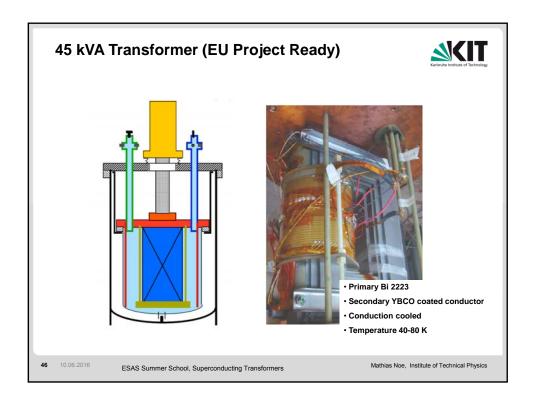
95 %

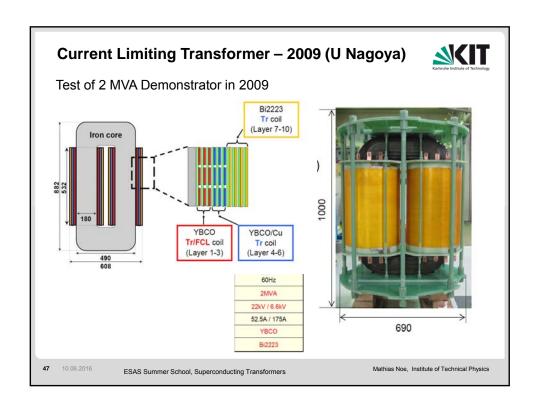


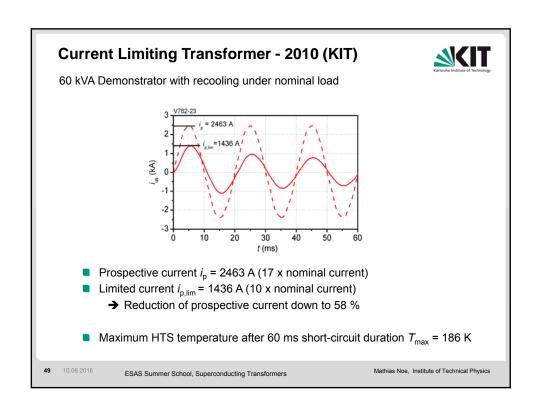
880 mm

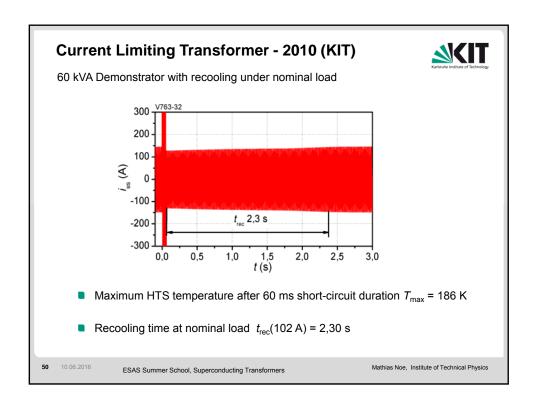
41 10.06.2016

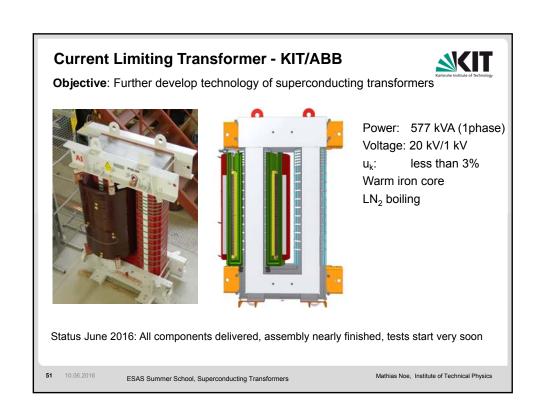

ESAS Summer School, Superconducting Transformers

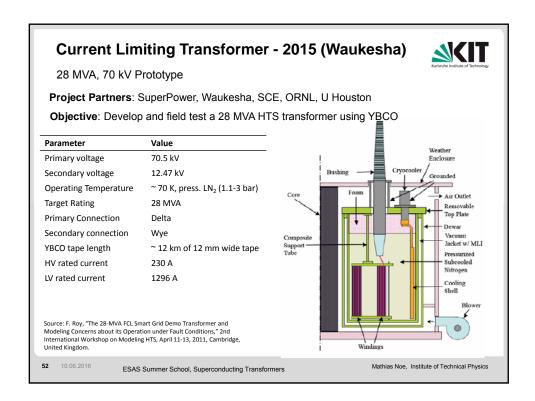












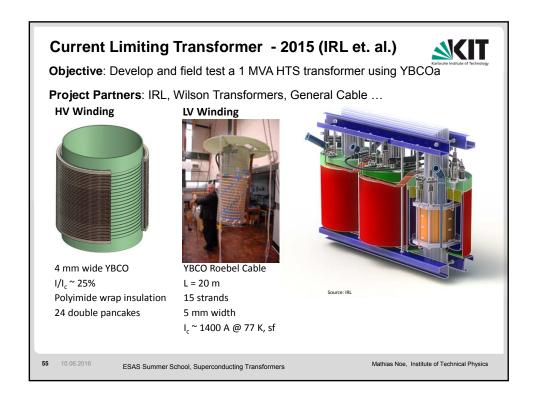
Current Limiting Transformer - 2015 (IRL et. al.) Objective: Develop and field test a 1 MVA HTS transformer using YBCOa Project Partners: IRL, Wilson Transformers, General Cable ... Parameter Value Primary Voltage 11,000 V Secondary Voltage 415 V Maximum Op. Temp. 70 K, liquid nitrogen cooling Target Rating 1 MVA Delta Primary Connection Secondary Connection Wye 20 turns 15/5 Roebel cable per phase LV Winding

30 A rms First HTS Roebel wire in field test

1390 A rms

54 10.06.2016

LV Rated current


HV Rated current

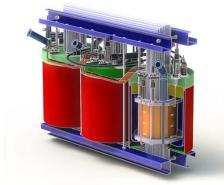
HV Winding

ESAS Summer School, Superconducting Transformers

(20 turn single layer solenoid winding)

918 turns of 4 mm YBCO wire per phase (24 double pancakes of 38.25 turns

Current Limiting Transformer - 2013


Objective: Develop and field test a 1 MVA HTS transformer using YBCOa

Source	Heat load
Cryostat	113 W
Electrical bushing	343 W
AC loss in LV	390 W
AC loss in HV	90 W
Total	936 W

Efficiency at 100% load: ~ 97% Efficiency at 50% load 98.5 %

Current standard

Efficiency at 50% 99.27%

Source: Gallaghan Innovation

More information: Nell D. Glasson, Mike P. Staines, Zhenan Jiang, and Nathan S. Alipress, "Verification Testing for a 1 MVA 3-Phase Demonstration Transformer Using 2G-HTS Roebel Cable", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, Vol. 23, NO. 3, JUNE 2013

56 10.06.2016

ESAS Summer School, Superconducting Transformers

Mathias Noe, Institute of Technical Physics

Status of Superconducting Transformers

- Successful technology development in recent years mainly with YBCO wires
- Successful demonstrator development with a rating up to 4 MVA and medium voltages
- o Only a few grid tests have been taken place
- Time seems ready for more 3-phase medium voltage demonstrators and prototypes for long-term field tests


57 10.06.2016

ESAS Summer School, Superconducting Transformers

Future HTS Transformer Applications?

Future R&D

- Reduce AC loss < 0,5 W/kA m
- Reduce wire cost < 10 €/kA m
- Long length wires and tapes > km
- Lower cooling cost < 25 € / W

Literature

Bernd Seeber, Handbook of Applied Superconductivity, Vol. 1 und 2, IOP 1998

Peter J Lee, Engineering Superconductivity, Wiley Interscience 2001

58 10.06.2016

ESAS Summer School, Superconducting Transformers