Realization of a large-scale superconducting generator for a wind power generation system

Minwon Park Changwon National University

ESAS Summer school on HTS Technology for Sustainable Energy and Transport System $8^{th}{\sim}14^{th}$ of Jun. 2016, Bologna, Italy

Contents

- > Basic theory of generator & wind turbine
- > Components of the wind turbine
- > Proposed large-scale wind turbine
- Design process of a large-scale superconducting generator
 - Detail design of rotor part
 - Detail design of stator part
 - Structural analysis considering high torque
 - Thermal analysis considering supporter shapes
 - Superconducting generator cost
- > Characteristic evaluation for superconducting coil
- > Researches trend of superconducting generators for

large-scale wind turbine

Basic theory of generator & wind turbine

ESAS Summer school on HTS Technology for Sustainable Energy and Transport System $8^{th}{\sim}14^{th}$ of Jun. 2016, Bologna, Italy

More detail

➢Principle of operation

- 1. From an external source, the field winding is supplied with a DC current excitation.
- 2. Rotor (field) winding is mechanically turned (rotated) at synchronous speed.
- 3. The rotating magnetic field produced by the field current induces voltages in the outer stator (armature) winding. The frequency of these voltages is in synchronism with the rotor speed.
- > Operation concept HTS application
- The rotor is supplied by DC current I_f that generates a DC flux ϕ_r . The rotor is driven by a turbine with a
- constant speed of N
- The rotating field flux induces a voltage in the stator winding.
- The frequency of the induced voltage depends upon the speed.

- 120f N = -P
- The rms. value of the induced voltage

$$E_{rms} = \frac{k_w \omega N \phi_f}{\sqrt{2}} = 4.44 f N \phi_f k_w$$

The frequency f & speed relation is P is the number of poles. Summer school on HTS Technology for Sustainable Energy and Transport System. $\mathbb{R}^{h_{v-1}4h}$ of Jun. 2016, Bologna, Italy

poles

Very basic of blade aerodynamics

A common form of the Bernoulli's equation, valid at any arbitrary point along a stream

$$\frac{p}{\rho} + \frac{v^2}{2} + gh = constant$$
$$p + \frac{\rho v^2}{2} + \rho gh = p + q + \rho gh = constant$$
$$\therefore q \equiv \frac{\rho v^2}{2}$$

The change in the *pgh* term along the streamline is so small compared with the other terms that it can be ignored. This allows the above equation to be presented in the following simplified equation.

- v : the fluid flow speed at a point on a streamline [m/s]
- g : the value of acceleration due to gravity $[m/s^2]$ h : the elevation of the point above a reference plan [m]
- p: the density of the fluid at all point in the fluid [kg/m³] p: the pressure at the chosen point [Pa]
- q : the dynamic pressure [Pa]

 $p+q=p_0$

 p_0 : the total pressure [kg/m³] p_0 : the total pressure [kg/m³] $8^{th} \sim 14^{th}$ of Jun. 2016, Bologna, Italy

Power Coefficient Cp

➤Wind energy $\frac{dE}{dt} = \frac{d\frac{1}{2}mv^2}{dt} = \frac{1}{2}v^2\frac{dm}{dt},$ $\frac{dm}{dm} = \rho A v$ dt

$$P = \frac{dE}{dt} = \frac{1}{2}v^2 \frac{dm}{dt} = \frac{1}{2}v^2 \rho A v$$

To fully transfer wind energy (100%) from wind energy to kinetic energy, V_1 should be zero.

8

It is ideal condition, therefore, V_1 is commonly lower than V_{o} .

 $4\alpha(1-\alpha)^2$ is Power Coefficient " C_p " which is the ratio of power extracted by the turbine to the total contained in the wind resource. (real less than 50%)

$$P = \frac{1}{2} v^{2} \rho A v = \frac{1}{2} \rho A v^{3}$$

$$P = \frac{1}{2} \rho A_{0} v_{0}^{3} - \frac{1}{2} \rho A_{1} v_{1}^{3} = \frac{1}{2} \frac{dm}{dt} (v_{0}^{2} - v_{1}^{2})$$

$$E: \text{ Kinetic energy (J)} \\ \rho: \text{ Air density (1.225 kg/m^{3})} \\ \text{M: Swept area (m^{2})} \\ \text{Wind speed (m/s)} \\ \text{a: Axial induction factor} \\ \hline v_{0} \\ \hline v_{1} \\ P = \frac{1}{2} \frac{dm}{dt} (v_{0}^{2} - v_{1}^{2}) = \frac{1}{2} \rho A v (v_{0}^{2} - v_{1}^{2}) = \frac{1}{2} \rho A v (v_{0}^{3} - v_{1}^{2}) =$$

Turbine output power, longer blade, better wind quality

>Structure of wind power generation system

10

Components of the wind turbine

Compone	nts of the wind turbine (blade)					
≻ Blade						
Angle of attack	Thickness Camber Mean camber line Chord line					
Mean camber	A line joining the leading and trailing edges of an airfoil equidistant from the upper and					
Chord line	A line drawn from the leading edge of the wing to the trailing edge contrail					
Chord	The chord refers to the imaginary straight line joining the trailing edge and the center of curvature of the leading edge of the cross-section of the airfoil.					
Camber	Camber is the asymmetry between the top and the bottom surfaces of an aerofoil.					
Thickness	A height difference of top and bottom.					
Angle of attack	The angle of attack is the angle at which relative wind meets an airfoil.					

Bernoulli's equation Pressure $Speed^2$ = Constant + 2 Density \rightarrow Increase in speed due to decrease in pressure \rightarrow Generation of life What is the reason that the pressure decrease? The pressure is occurred outward because airflow is curved. = Centrifugal force ^ES^ADécrease ¶r) pressures the formation of June 2016 Statistical Energy and Transport System 8tth~14th of Jun. 2016, Bologna, Italy Ref. www. emaze. com

Components of the wind turbine (blade)

➤ Blade

✓ Material of blade : bla							
Material type	Tensile strength (GPa)	Tensile modulus (GPa)	Typical density (g/cm ³)	Specific strength	Specific modulus		
Carbon Fiber	4.9	230	1.82	27.5	13.5		
Aramid Fiber	3.6	131	1.45	25.5	9.2		
Glass Fiber	3.4	74	2.55	13.7	2.9		
Aluminium Ally	0.4	69	2.7	1.6	26		
Titanium	0.95	110	4.5	3	24		
Mild steel	0.45	205	7.8	0.65	26		
Stainless steel	0.5	196	8.03	0.7	25		

✓ Mechanical property of each materials

Low

•Weigh of carbon is 25% of steel or 70% of aluminum. And strength of carbon is tenfold of steel.

14

→Stronger and lighter material

•Specific stiffness of the glass fiber is similar to the aluminum. But specific strength of the glass fiber is 8.5 times higher than the aluminum.

Components of the wind turbine (Hub)

- A hub is directly bolted to the blades.
- It is component of the wind turbine what receives dynamically high stress.

•Therefore, it is important that selects material to prevent ultimate load_and fatigue load.

- It requires a lifetime of more than 20 years.
- Material of the hub EN-GJS-400-18U-LT (Ductile Cast Iron or Spheroidal Graphite Cast Iron)

→ Excellent mechanical properties, heat, abrasion and mach-inability

Mechanical properties of ductile cast iron

	Tensile stress	Yield stress	Elongation	Impact s	strength	Hardness	The modulus
Part	[Rp N/mm ²]	[Rp0.2 N/mm ²]	ratio [A%]	Average (J)	Minimum	[HB]	of elasticity [N/mm ²]
Value	370 ESAS SI	220 Immer school on HT	12 6 Technology fo	10 r Sustainable Ei	7 nergy and Tran	130~175	165,000

8th~14th of Jun. 2016, Bologna, Italy

Standard : DIN EN 1563

18

17

Components of the wind turbine (Hub inside)

≻ Hub

 \checkmark Component of the rotor hub

Pitch controller

The pitch controller delivers pitch angle and velocity from the encoder to the motor drive.

Encoder

The encoder that is installed at each box delivers signs of blade pitch and velocity to the pitch controller.

Motor drive

The motor drive that receives signal runs the pitch motor.

Battery box

The battery box is installed to run the motor when power outages and emergency stop is occurred.

Rubber mount and cross beam
 The rubber mount and the cross beam protect electric apparatus of inner.

 Pitch bearing

 ESAS Summer school on HTS Technology for Sustainable Energy and Transport System

 8th~14th of Jun. 2016, Bologna, Italy

Components of the wind turbine (Hub)

≻ Hub

✓ Pitch bearing

The outer race of the blade bearing is fixed to the hub. And blades are rotated by the inner race that is engaged at the pinion.

♦ What is bearing?

A bearing is a device to allow constrained relative motion between two or more parts, typically rotation or linear movement. Bearings may be classified broadly according to the motions they allow and according to their principle of operation as well as by the directions of applied loads they can handle.

The main role of the bearing is to reduce friction of machine.

•Mechanical advantage according to the decrease of friction

- 1. Improvement in operational efficiency of machine
- 2. Position fixing of moving machine parts

3. Transformation prevention due to the frictional heat •Material : Steel or Ceramic

Bearing type	Corresponding components	
Floating bearing	Main shaft (front)	
Thrust bearing	Main shaft (rear)	
Slewing bearing	r school on HTS Technology for Sustainab 8바~14대 of Jun, 2016, Bologna	le En a. Ita

1 ESAS Summer school on HTS Technology for Sustainable Energy and Transport System 8 8th...14 alf Sult 2018 Technology (at 1990) 10 and 10 and

ble Energy and Transport System

20

Components of the wind turbine (Gearbox loss)

➤ Gearbox

✓ How to calculate the gearbox losses? Main losses in a gearbox are proportional to the shaft speed

$$P_{Gear} = P_{Gearn} P_N \frac{n}{n_{ratad}}$$

 P_{Gearm} = Loss in the gearbox at rated power

22

 P_N = Rated power of wind turbine

 n_{Rated} = Rated rotor speed

- n = Rated wind speed of wind turbine
- Losses percentage at the rated power for 1-stage : 1.5%
 Losses percentage at the rated power for 3-stage : 3.0%
- ✓ Analysis of gearbox losses on manufacturers

Company	Rated power (MW)	Rated wind speed (m/s)	Rotor speed (m/s)	Gearbox type	Stage	Loss (kW)	Weight (ton)
	3.6	12-13	5-13 spur / planetary gear		3	108	
SIEMENS	2.3	12-13	6-16	spur / planetary gear	3	69	
	1	15	15	spur / planetary gear	3	30	
Acciona	3	10.6	12.3	spur / planetary gear	3	90	25, 31
ACCIONA	1.5	10.5	16.7	spur / planetary gear	3	45	
Dowind	2	12.5	13.9-25.9	spur / planetary gear	3	60	
Dewind	1.25	12	15.7	planetary gear	3	37.5	

^{8&}lt;sup>th</sup>~14th of Jun. 2016, Bologna, Italy

Components of the wind turbine (PCS) > Power converter What is a power converter? power electronic Α converter enables efficient conversion of the variable frequency output of an induction generator. Generator speed fully is Hub Nacelle controllable over a wide rage even to very low speeds. Tower effectively help It can the connection between the generator and grid. WRIG SCIC Transformer 0 Grid E Soft-starter ()oft-starte Grid Capacit bank Capacitor ale freque жł ି **କ** Full scale frequency converter --~~~~ **⊶**[] Grid Grid 0 of any fechnology for Sustainable Eng 8th~14th of Jun. 2016, Bologna, Italy Tra able Energes Grewisansport System DFIGE

26

Components of the wind turbine (PCS)

> Power converter

Fixed speed wind turbine concept
 Asynchronous squirrel cage induction generator (SCIG)

- Variable speed concept with a partialscale power converter
- Doubly fed induction generator (DFIG)

 Limited speed wind turbine concept
 Wound rotor induction generator (WRIG)

- Variable speed concept with a full-scale power converter
- Electrically excited synchronous generator (EESG)
- Permanent magnet synchronous
 Sustainable Energy and Transport System

ESAS Summer school on HTS Technology for Sustainable Energy and Technology for Sustainable Energy and Technology for Sustainable Energy and the school of th

Components of the wind turbine (PCS)

> Power converter

Concept	Generator	Feature
Fixed speed wind turbine concept	SCIG	 Installation of a capacitor bank for reactive power compensation Installation of soft-starter to protect the system from inrush current Use of the stall control method for power control
Limited speed wind turbine concept	WRIG	 Installation of variable rotor resistance for the dynamic speed control (typically 0%~10% above synchronous speed) Installation of a capacitor bank for reactive power compensation Installation of soft-starter to protect the system from inrush current
Variable speed concept with a partial-scale power converter	DFIG	 A wider range of dynamic speed control compared with the limited speed wind turbine concept (the variable speed range is ±30% around the synchronous speed) The power converter performs reactive power compensation and smooth grid connection.
Variable speed concept with a	EESG	 The amplitude and frequency of the voltage can be fully controlled by the power converter at the generator side. → the generator speed is fully controllable over a wide rage even to very low speeds. Connection with generator rotor and exciter (DC current)
power converter	PMSG	 The amplitude and frequency of the voltage can be fully controlled by the power converter at the generator side. → the generator speed is fully controllable over a wide rage even to very low speeds. No additional power supply for the magnet field excitation

28

The large-scale wind turbine using HTS

ESAS Summer school on HTS Technology for Sustainable Energy and Transport System $8^{th}{\sim}14^{th}$ of Jun. 2016, Bologna, Italy

One of examples, the large-scale wind turbine

> Specifications of the wind turbine

Analysis results

- Rotor/generator torque
- -In-plane and out-of-plane tip deflection
- Shaft bending moment M_{v} and M_{z}

124.6 m

7.75 m

120.88 m

The large-scale wind turbine (Min. weight of shaft)

> Normal turbulence model

* **Optimal stiffness** of a composite flexible shaft having minimum weight

Ref. KIMS, Development of 12MW FOWT core technology for co

nt of 12MW FOWT core

The large-scale wind turbine (ECD)

> Extreme coherent gust with direction change

* Horizontal bending moment

At the gust velocity of 15.0 m/s + hub height velocity of 9.2 m/s:

The large-scale wind turbine (Offshore floater)

≻Novel offshore floater

-

Anti-motion device / Station-keeping device

mer school on HTS Technology for Sustainable Energy and Trar 8th~14th of Jun. 2016, Bologna, Italy

ESAS Summer school on HTS Technology for Sustainable Energy and Transport System $8^{th}{\sim}14^{th}$ of Jun. 2016, Bologna, Italy

The	The large-scale wind turbine using HTS									
> C			-			<conven< td=""><td>tional WT></td><td></td><td>Ref. SANDIA RE</td><td>PORT, June 2011 terion: 5MW)</td></conven<>	tional WT>		Ref. SANDIA RE	PORT, June 2011 terion: 5MW)
► SCa	> Scale-up tower properties					Capacity	Scale ratio (α)	Rotor diameter (m)	Blade length (m)	Blade mass (tons)
A scale factor, α , is defined as the ratio of the					5 MW	1	126	61.5	18	
scaled	blade leng	th (L_{τ})	to the n	ominal	blade	10 MW	1.414	178.2	87.0	50
length	(<i>L</i> ₂):	(1)				12 MW	1.549	195.2	95.3	66
-	. 27					13.2 MW	1.625	204.7	99.9	76
	α – <u>S</u>	caled l	ength	$-\frac{L_1}{L_1}$		15 MW	1.732	218.2	106.5	92
	$\alpha = \frac{1}{Nominal \ length} = \frac{1}{L_2}$					Capacity	Scale ratio (α)	Top tower mass (tons)	Nacelle mass (tons)	Hub mass (tons)
The to	otal blade m	ass foll	ows this	s relatio	onship:	5 MW	1	350	240	56.8
		3				10 MW	1.414	990	679	161
	$m_{up} =$	$\alpha^{s}m_{blo}$	ade			12 MW	1.549	1,301	892	211
The ro	tor nower					13.2 MW	1.625	1,501	1030	244
The re		2 5				15 MW	1.732	1,819	1250	295
	$P_{up} =$	α²Ρ				140 120	0 SANDIA		PMSG	
	Conventional					100	0		SCSG	
	scaling	scaling HTS generator scaling				Suc 80	0		092	
Cap.				Blade-	Тор	3 60	0	Heavy blade		
	Top tower (tons)	Nacell e (tons)	Hub (tons)	CFRP	tower	ž Ž	GFRP	Light blade	400	
	(1110)	2 (10110)	(1110)	(tons)	(tons)	40	CFRP	211 169		
12 MW	1,301	400	169	42.7	697	20	66 42.7	109		

ESAS Summer school on HTS Technology for Sustai@abe=Thergy and Tansport System Ref. UOU, Development of 12MW FOWT core technology for confilmercialEation Jun. 2016, Bologna, Single blade Hub Nacelle

HTS technology can dramatically reduce the weight of generator, but is it possible?

Design process of a large-scale superconducting generator

48

Digit 1	Digit 2	Digit 3	
Check the Design Objective	Target of the generator	Cost / Weight / Diameter / Efficiency	
	Rating of generator	Output power / Output voltage	
	Set of generator parameters	Rotating speed / Number of poles / HTS field coi / Stator coil / etc.	
2D Generator Design	Electromagnetic analysis	Magnetic distribution / Output power	
(Modeling in FEM program)		Lorentz force	
	Force / Mechanical analysis	Torque	
		HTS field coil loads	
Generator Layout Drawing	Drawing generator (3D CAD	Rotor part (Rotor body, HTS field coil, Cryostat)	
for 3D Optimization Design	program)	Stator part (Stator body, Coil, Magnetic shield)	
3D Constator Ontimal Design	Confirm the 2D Optimization Model	Electromagnetic analysis	
3D Generator Optimal Design	Commune 2D Optimization Model	Mechanical analysis	
	Electromagnetic Analysis	Magnetic flux density / Lorentz force	
Detailed Analysis	Mechanical Analysis	Torque / Load / Max. stress	
	Thermal Analysis	Cooling method / Cooling path / Temp.	
		Verify the analysis results	
Redesign of the Structure	Based on the Detailed Analysis	Drawing the modified model	
		Analysis of the modified model	
Confirm the designed generator	Confirm the design objective	Cost / Weight / Diameter / Efficiency	
Datailed Drawing	Drawing based on designed	Check the assembly process	
Detailed Leawingmmer schoo	on HTS Technolgeneratorstainable Energy	and Transport System Detail drawing of the generator	

Design process of the superconducting generator

Designs of the large-scale HTS generator

≻Specifications of the HTS generator

Thomas		Value			
Item		value			
Rated L-L voltage		6.6 kV		Air gap	Iron cored bobbin
Rated rotating speed		8 RPM			
Rated torque		12.6 MNm	Rotor su	pport	
The num. of rotor poles		30			
The num. of DPC layers		4			Armature winding
The length of air gap		20 mm	Superco	onducting vinding	
Thickness of vacuum vessel		50 mm	inclu i		
Number of stator coil /phase/p	ole	2			
Current density of copper wire		3 A/mm ²			Torkagad
Safety margin of operating cur	rent	40%	×	Cryostat	
Parts		Materia	l.	Density (kg/m³)	Resear
Rotor wire		(RE)BCO		11,000	FEM model of the H
Rotor body	304 stainless steel		steel	8,190	generator
Vacuum vessel		304 stainless	steel	8,190	
Stator wire		Copper		8,940	
Stator body SAS Sum	ESAS Summer sch 304 staihless Te			for Sustai 8,190 Energy a	nd Transport System

Detail design of rotor part (considering different superconducting wire types)

ESAS Summer school on HTS Technology for Sustainable Energy and Transport System $8^{th}{\sim}14^{th}$ of Jun. 2016, Bologna, Italy

Properties comparison of superconducting wires

50

49

Symbol	A [1]	B [2]	C [3]	D [4]
Туре	(Gd/Y)BCO	YBCO	(Gd)BCO	Bi-2223
Thickness (mm)	0.1	0.2	0.3	0.36
Width (mm)	4	4.8	5	4.5
Min. RT bend diameter (mm)	11	30	-	60
Max. RT rated tensile stress (MPa)	550	150	-	250
Critical current (self field, 77 K)	100 A	100 A	230 A	200 A

52

Comparison of the design parameters

➤Specifications of large-scale HTS generators

Specifications	A	В	С	D		
Rated power (MW)	10	10	10	10		
Rated output voltage (kV)	6.6	6.6	6.6	6.6		
Rated output current (A)	874.77	874.77	874.77	874.77		
Rotating speed (rpm)	10	10	10	10		
Axial length (m)	0.5	0.6	0.2	0.2		
The number of poles	24	24	24	24		
Turns of SC coil	1,300	1,100	900	740		
Total length of SC wire (km)	586	458	265	222		
Operating current (A)	100	98	217	187		
Maximum magnetic field (T)	8.23	4.59	10.9	5.46		
Perpendicular magnetic field (T)	6.96	3.6	9.2	4.8		
The number of stator slots	144	144	144	144		
Turns of copper coil	25	25	25	30		
Current density of stator coil (A/mm ²)	7	7	7	7		
Air-gap length (m)	20	20	20	20		
Diameter of SCSG (m)	5.3	6	5.6	6.8		
Volume of SCSG (m ³)	25	41	23	39		
Active weight of SCSG (ton) 71 98 69 94						
ESAS Summer school on HTS Technology for Sustainable Energy and Transport System						

8th~14th of Jun. 2016, Bologna, Italy

Comparison results

>Total cost of the HTS wire and ratio of the volume to the total length of the HTS wire

 \checkmark The ratio of the volume to the total length of A is the smallest.

✓ Therefore, the specifications and performance of the HTS wire influence physical properties of the generator.
HTS Technology for Sustainable Energy and Transport System
8th~14th of Jun. 2016, Bologna, Italy

54

Detail design of stator part (considering different core materials and winding methods)

ESAS Summer school on HTS Technology for Sustainable Energy and Transport System $8^{th}{\sim}14^{th}$ of Jun. 2016, Bologna, Italy

Stator design of the HTS generator

>Magnetic properties of iron-core (Lamination silicon steel)

Ref. K. Yoshizawa, S. Noguchi, H. Igarashi, IEEE Trans. on applied supercond., vol. 21, (2011) p. 2088-2091. The iron cores of the SCSGs are exposed to the high magnetic field.

- ✤ Iron manufacturers generally provide the magnetic properties under 2T.
- ✤ In the range of the significantly high magnetic field over the saturation magnetic

field of iron-core, the magnetic properties of iron-core should be defined.

Stator design of the HTS generator

> Electromagnetic torque waveforms

Efficiency of the HTS generator >Iron loss curves of silicon lamination steel 50 Hz 60 Hz - 100 Hz - 150 Hz 25 200 Hz 300 Hz 400 Hz 20 Loss (W/kg) P 15 600 Hz 1000 Hz 1500 Hz 10 2000 Hz 0.0 0.2 0.4 0.6 0.8 1.0 1.2 B_{peak} (T) Ref. Infloytica

• <i>K_h</i> : 6.13287e-3	• <i>a</i> : 1.30958
• <i>K_e</i> : 8.12391e-5	• <i>β</i> : 1.91075

57

$$P = K_h f^{\alpha} B^{\beta} + K_e f^2 B^2$$

The efficiencies of the three types of generators are similar about 98%.

Туре	Fu	Illy air-	core ty	ре	Parti	ally iro	n-core	type	Ful	lly iron-	-core ty	/pe
Stator windings	SCW	FCW	SDW	FDW	SCW	FCW	SDW	FDW	SCW	FCW	SDW	FDW
Stator coil (kW)	154	154	154	154	154	154	154	154	154	154	154	154
Stator body (kW)	-	-	-	-	9.1	6.75	7.80	7.13	8.21	6.71	7.74	7.19
Vacuum vessel (kW)	2.88	2.21	1.02	0.92	72	38.4	21	20	42	30	12	12
Rotor body (kW)	-	-	-	-	-	-	-	-	0.42	0.42	0.42	0.42
Windage loss (kW)	0.17	0.17	0.17	0.17	0.15	0.14	0.14	0.14	0.14	0.14	0.14	0.14
Total loss (kW)	157.1	156.4	155.2	155.1	235	199	183	181	204.8	191.3	174.3	173.8
Efficiency (%)	98.50 ^{°°}	98.50	98.50	1 98.50	9776 n. 2016	istainable <mark>98.10</mark> Bologna,	98,26	^{and tran 98.28}	98.05	98.05	98.05	98.05

- The volume and total length of the HTS wire in the fully iron-core type generators with SCW and FCW are the smallest and shortest.
- The weight of the fully air-core type generators with FGW and FDW are the lightest because the mass density of the nonmagnetic material is lower than the magnetic material (M-27).

All items considered (torque ripple, efficiency, length of HTS wire, weight, volume), the fully iron-core SCSG with FDW is the good design for large scale wind power systems.

Modularized 12MW HTS generator

The proposed idea of modularization.

>Configuration of the module for the 12 MW HTS wind power generator

The modularization of the generator enables a smaller cryogenic volume, an easier repair, assembly, and maintenance of the HTS field coil. Modularization will be suitable for commercial mass production and will increase the operational availability of HTS generators in the wind turbine.ⁿ HTS Technology for Sustainable Energy and Transport System 8th-14th of Jun. 2016, Bologna, Italy

Design of the modularized 12MW class HTS generator

> Specification and FEM analysis results

Parts	Property	Value	Parts	Property	Value
	The number of poles	30		The number of slot	180
Effective length		450mm		Connor coil winding type	
	Rotation speed	8 rpm		(Distributed Winding)	Short pitch
Rotor	Turns of SC coil/layer/pole	400		Cooling system	Water cool
	Field current of SC coil	352 A	Stator	Current density of conner	
	Length of SC wire per pole	4.35 km		coil	3 A/mm ²
	Total length of SC wire	130 km(12mm)		Turns of copper coil	15
100 mm 100 mm 100 mm 100 mm 100 mm		Shaded Plot		Diameter	6.7 m
		7,18473 6,46626	Perpendicular magnetic field Maximum magnetic filed Active volume		5.42 T
		5,74779 5,02931 4,31084 9,50297			7 T
		2,87389			25 m ³
		Active weight Total weight (incl. structure)		107 ton	
				180 ton	
	For supporting structure s	space	Inductance per pole		4.84 H
	ESAS Summer school on	HTS Technology for	Sustainable	Energy and Transport System	
		8"~14" OF JUNn 201	ь, воюдna,	Italy	

Maximum magnetic field: 6.3.T Stechnology for Sustainable Energy and Transport System field: 4.4 T 8th of Jun. 2016, Bologna, Italy

Efficiency of the 12 MW HTS Jenerator with an Estator body is about 99%.

This design is suited to standard. (L-L4voltage 20HDBiso1n2, %)

Structural analysis considering high torque

Force and structural analysis and design technique

> Torque characteristics of the superconducting rotating machine

✤ 36.5 MW superconducting motor (AMSC)

Basic specifications

14th of Jun. 2016, Bologna, Italy

Force and structural analysis and design technique > Torque characteristics of the superconducting rotating machine ✤ 12.5 MW HTS wind turbine (CNU) Basic specifications

ESAS Summer school on HTS Technology for Sustainable Energy and Transport System $8^{th}{\sim}14^{th}$ of Jun. 2016, Bologna, Italy

ESAS Summer school on HTS Technology for Sustainable Energy and Transport System $8^{th}{\sim}14^{th}$ of Jun. 2016, Bologna, Italy

<Rotor part of the 12 MW HTS generator>

1.2 m

20 tons truck

Module of the HTS generator (in which HTS one pole is integrated)

Force and structural analysis and design technique > Design process of the HTS field coils Design and structural analysis Design of the basic structure Design the detailed analysis model Check the force at the coil Solve of the analytical model (Dynamic) Design the coil support structure Check the stress Define the mesh (Metal/Composite) Considering the safety factor Define the boundary condition Safety factor > 8 No Ves Solve of the analytical model (Static) Considering the Fatigue load Check the stress 30 % of yield stress No V Yes Below the 40% of yield stress No Complete the structural analysis No

Summer school on HTS Technology for Sustainable Energy and Tenport System Yes 8th~14th of Jun. 2016, Bologn Next step: Thermal analysis

Force and structural analysis and design technique

> Mechanical properties of the materials

- Properties of CFRP
- Tensile strength of the carbon fiber in a laminate: 1.6 GPa

Properties of GFRP

Mechanical Properties	Metric	English
Hardness, Rockwell M	110	110
Tensile Strength at Break	262 MPa	38000 psi
	310 MPa	45000 psi
Flexural Strength	448 MPa	65000 psi
	517 MPa	75000 psi
Flexural Modulus	16.5 GPa	2400 ksi
	18.6 GPa	2700 ksi
Compressive Strength	448 MPa	65000 psi
Izod Impact, Notched	6.41 J/cm	12.0 ft-lb/in
	7.47 J/cm	14.0 ft-lb/in

 Strength (vield) = 262 MPa
 Allowable stress = 87.33 MPa

 ESAS Summer school on HTS Technology for Sustainable Energy and Transport System
 $8^{th} \sim 14^{th}$ of Jun. 2016, Bologna, Italy

Thermal analysis considering supporter shapes

Heat load characteristics of the module (Excitation heat load) >Calculation formula of excitation heat load for general current lead $Q_{opt}(T) = I_{1} \sqrt{2 \int_{-\pi}^{T_{H}} \rho(\tau) k(\tau) \cdot d\tau} , \quad (\frac{L}{A})_{opt} = \frac{1}{\sqrt{2} \cdot I} \int_{T_{J}}^{T_{H}} \frac{k}{\sqrt{\Gamma_{H}} + (\tau) k(\tau) \cdot d\tau} \cdot dT$

$$Q_{opt}(T) = I \sqrt{2} \int_{T}^{T_{H}} \rho(\tau) k(\tau) \cdot d\tau \quad , \quad (\overline{A})_{opt} = \frac{1}{\sqrt{2} \cdot I} \int_{T_{J}}^{T_{H}} \frac{1}{\sqrt{\int_{T_{J}}^{T_{H}} \rho(\tau) k(\tau) \cdot d\tau}} \cdot dT$$

$$\rho(T) k(T) = L_{0}T (L_{0} = 2.45 \times 10^{-8} W\Omega K^{-2})$$
Wiedemann-Franz-Lorentz Law
$$Q_{opt}(T) = I \sqrt{L_{0}(T_{H}^{2} - T^{2})} \quad [W] , \quad (\frac{L}{A})_{opt} = \frac{1}{I} \int_{T_{J}}^{T_{H}} \frac{k}{\sqrt{L_{0}(T_{H}^{2} - T^{2})}} \cdot dT$$
Optimal heat current
$$Q_{opt}(T) = I \sqrt{D_{0}(T_{H}^{2} - T^{2})} \quad [W] , \quad (T_{H}^{2} - T^{2}) \quad [W]$$

✓ Therefore, the excitation heat load of the 12 MW module is 30 W (352 A).

 ESAS Summer school on
 HTS Technology for Sustainable Energy and Transport System

 Ref. crtogenics.nist.gov
 8th~14th of Jun. 2016, Bologna, Italy

Superconducting generator cost

94

Weight of the superconducting generator

>Comparison with conventional generators

Cost of the generator (Current price of HTS wire; 230 \$/kA-m)

Material			Cost	Parts	Cost	
Copper 20.5		20.5	5 \$/kg	Stator coil	985 k\$	
Stainless steel		1.5	\$/kg	Stator body	206 k\$	
Silicon steel plate	1	4.1	\$/kg	Vacuum vessel	18 k\$	
HTS wire		23 \$	\$/m (100 A @ 77 K)	Rotor body	16 k\$	
Active parts	Weig	ht	Material	HTS wire	18,616 k\$	
Stator coil	48 ton		Copper	Structure	306 k\$	
Stator body	50 ton		Silicon steel plate			
Vacuum vessel	12 ton		Stainless steel	Stator coil	3% 10% 0%	
Rotor body	11 ton		Stainless steel	Stator body	2%	
Total length of HTS wire]		
HTS wire	375 km			Vacuum vessel		
				Rotor body		
Total cost of the 12 MW SCSG =10,146,509 \$				HTS wire	85%	
=11,161,160,184 KRW (1\$=1,100 KRW)				Structure		

Ref. Design of direct-driven permithen Exhlag Ref of States (States) በ 2005 States and Transport System Ref. SuperPower (4mm HTS wire) 8th~14th of Jun. 2016, Bologna, Italy

✓ Today's HTS wire price: \$225/kA-m

(100 A performance at 77 K, zero applied magnetic field)

96

 $\checkmark\,$ Improving wire price-performance is key factor for commercialization

ESAS Summer school on HTS Technology for Sustainable Energy and Transport System $8^{th}{\sim}14^{th}$ of Jun. 2016, Bologna, Italy

Materia	I		Cost	Parts	Cost
Copper		20.5	5 \$/kg	Stator coil	985 k\$
Stainless steel		1.5	\$/kg	Stator body	206 k\$
Silicon steel plate	9	4.1	\$/kg	Vacuum vessel	18 k\$
HTS wire		5 \$/	m (100 A @ 77 K)	Rotor body	16 k\$
Active parts	Weig	ht	Material	HTS wire	1,873 k\$
Stator coil	48 ton		Copper	Structure	306 k\$
Stator body	50 ton		Silicon steel plate		
Vacuum vessel	12 ton		Stainless steel	Stator coil	
Rotor body	11 ton		Stainless steel	Stator body	9%
Total length of HTS wire					29%
HTS wire	375 km			Vacuum vessel	
				Rotor body	
Total cost of the 12 MW SCSG =3,403,709 \$				HTS wire	55%
=3,744,080),184 KR	W (1\$			

Ref. Design of direct-driven perindhan bhyghefgen bhyghefgen bhyghefgen byghefgen barbar byghefgen benergy and Transport System Ref. SuperPower (4mm HTS wire) 8th~14th of Jun. 2016, Bologna, Italy

Characteristic evaluation for superconducting coil

ESAS Summer school on HTS Technology for Sustainable Energy and Transport System $8^{th}{\sim}14^{th}$ of Jun. 2016, Bologna, Italy

Characteristic evaluation device for HTS field coil

> Torque characteristics of the superconducting rotating machine

36.5 MW superconducting motor (AMSC)

In case of MW class superconducting generator, tons of load affect the superconducting coils by high torque of the high-capacity and low rotating speed generator. Characteristics evaluation device for superconducting coils are needed to check the effect of the high torque of the generator.

Rated torque	2.9 MNm
The num. of rotor poles	16
Rated rotating speed	120 RPM
Rated armature current	1.27 kA
Rated terminal voltage	6 kV
Rated power	50:5 HW

Rated torque	15.04 MN·m
The num. of rotor poles	30
Rated rotating speed	8 RPM
Rated armature current	1.07 kA
Rated L-L voltage	6.6 kV

Tangential force per 1 pole

Tangential force per 1 pole

-> 0.08 MN (about 8-ton) on HTS Technology for Su- 104 8-MNnm (about ste ton) 8th~14th of Jun. 2016, Bologna, Italy

Characteristic evaluation device for HTS field coil

> Design of the superconducting coil and armature module for evaluation device

- Design of the superconducting generator

- Superconducting coil and armature module for evaluation device

≻Specifications of the s	superconducting generator
Item	Value

100

Rated armature current	875 A
Rated speed	2.5 m/s
Turn number of the stator	25
Number of slot	12
Thickness of magnetic shield	150 mm

>Specifications of module coil for evaluation device

	Item	Value
	Number of DPC	5
	Turn number of coil	1300
	Operating current	100 A
0	perating temperature	20 K

102

Characteristic evaluation device for HTS field coil

> Accelerated distance and external force for moving the stator part

ESAS Summer school on HTS Technægy*frictionsacefficientyofnvollersbearing*em 8th~14th of Jun. 2016, Bologna, Italy

Characteristic evaluation device for HTS field coil
 Accelerated distance and external force for moving the stator part

108

Characteristic evaluation device for HTS field coil

> Evaluation items using characteristic evaluation device

Researches trend of superconducting generators for large-scale wind turbine

Researches trend of the superconducting wind turbine (World) Ref. AMSC

>Sea Titan[™]– American Superconductor (AMSC)

Generator properties

Rated power	10 MW
Poles	24
Diameter	5 m
Length	-
Rotation speed	10 rpm
Current density	-
Temperature	30-40 K
Maximum field	-
Field on stator	-
Output voltage	3.3 kV
Output current	0.6 kA
Voltage frequency	2 Hz

Technical characteristics

✓ HTS superconducting field winding

- ✓ Copper armature winding
- ✓ Generator diameter; 4.5-5 m

✓ Weight; 150-180 tons

✓ Efficiency at Fated 10ad; 96% on HTS Technology for Sustainable Energy and Transport System 8th~14th of Jun. 2016, Bologna, Italy

technology is used to minimize the AC loss on the armature coils. 8th~14th of Jun. 2016, Bologna, Italy

56

Researches	s trend of the superconducting win	d turbine (World)
≻EcoSwing	project (3.6MW real operation)	Horizon 2020 European Union Funding for Research & Innovation
EcoSwing Project refere Funded under EU.3.3.2.4. EcoSwing - Energy C World's First Demon Generator on a Wind	nce: 656024 = H2020-EU.3, H2020-EU.3.3, H2020-EU.3.3.2, H2020-EU.3.3.2.1, H2020-EU.3.3.2.2, H2020- ost Optimization using Superconducting Wind Generators - stration of a 3.6 MW Low-Cost Lightweight DD Superconducting I Turbine	
Project details	or, orgony project	THEVA
Total cost: EUR 13 846 593,75 EU contribution: EUR 10 591 733,64 Coordinated in: Denmark	Topic(s): • LCE-03-2014 - Demonstration of renewable electricity and heating/cooling technologies Call for proposal: H2020-LCE-2014-2 Funding scheme:	Sumitorio Europe Lamred GLCO UNIVERSITEIT TWENTE.

Researches trend of the superconducting wind turbine (Korea)

> Development of the 12 MW Superconducting Synchronous Generator

- 1st year; Optimal design of 12 MW class wind power generation system
- 2nd year; Design of cooling system / Fabrication and test of 10 kW SCSG
- 3rd year; Detail design of 12 MW class SCSG including the cooling system

✓ 12 MW class wind power generation system

8th~14th of Jun. 2016, Bologna, Ita

