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Inductive Type Limiters are commonly simulated in FEM
software. For a proper accuracy, both electromagnetic and
thermal phenomena must be taken into account.

The properties of high temperature superconducting (HTS)
materials, such as electrical resistivity, heat capacity,
thermal conductivity, critical current density and n-index,
are strongly dependent on temperature values.

Motivation
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Develop a practical tool for a fast and accurate prediction of
the behaviour of inductive type FCLs in electrical grids.

Reverse Engineering Simulations: Matlab/Simulink
FEM Simulations: Matlab/Simulink + Cedrat Flux2D

Objective
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Primary winding

Material Copper

Number of turns 60

Conductor cross section 1.5 mm2

Inner radius 32.5 mm

Width 0.7 mm

Height 40 mm

Secondary winding

Material Superpower SCS4050

Number of turns 1

Conductor cross section 0.4 mm2

Critical current density at 77 K 250 A·mm-2

Inner radius 40 mm

Width 0.1 mm

Height 4 mm

Cryostat

Material Extruded polystyrene

Inner radius 31.5 mm

Outer radius 60.5 mm

Wall thickness 6 mm

Dimensions

(Dimensions in mm)
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Test Circuit

Secondary

Core

Primary

Open : 0.00 s – 1.25 s

Close : 1.25 s – 2.75 s

Open : 2.75 s – 5.00 s

Normal current: 0.4 A

Prospective current: 131.5 A

1.5 s

(Dimensions in mm)
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Temperature dependent properties:

 Convective heat transfer.

 Critical current density.

 n-value.

 Resistivity of copper, silver, Hastelloy, (Re)BCO.

 Thermal conductivity.

 Heat capacity.

(Dimensions in mm)
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Convective boiling

Film boiling

ℎ =
𝑄ℎ

Δ𝑇
[W·m-2·K-1]

𝑄ℎ : Convective heat transfer (W·m-2)

Δ𝑇 : Temperature difference (K)

Reference:

 Kaufmann B, Dreier S, Haberstroh C
and Grossmann S 2013 Integration of
LN2 Multiphase Heat Transfer Into
Thermal Networks for High Current
Components IEEE Trans. Appl.
Supercond. 23 5000104–5000104.

Parameters: Convective Heat Transfer Coefficient
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𝑇0 : LN2 temperature (77.2 K)

𝑇C : Critical temperature (93.0 K)

𝛿 : Fitting parameter (-67.09)

𝛾 : Fitting parameter (0.4107)

𝜅: Fitting parameter (22.96)

References:

 Lee W S, Nam S, Kim J, Lee J and Ko T K
2015 A Numerical and Experimental
Analysis of the Temperature Dependence
of the n-Index for 2G HTS Tape
Surrounding the 77 K Temperature Range
IEEE Trans. Appl. Supercond. 25 1–4.

 Cedrat 2007 Flux 10 User’s Guide vol 2.

𝐽𝐶 𝑇 = 𝐽𝐶 𝑇0 ∙
1 −

𝑇
𝑇𝐶

𝛿

1 −
𝑇0
𝑇𝐶

𝛿

𝛾

[A·mm−2]

𝑛 𝑇 = 𝑛 𝑇0 ∙
𝑇0
𝑇

𝜅

Parameters: Critical Current Density and n-Value
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𝐸𝐶 : Critical electrical field (1 µ ∙ cm-1)

𝐽 : Current density (K)

𝐽𝐶 : Critical current density (A∙m-2)

𝑛 : n-value

𝑇 : Temperature (K)
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𝜌𝑌𝐵𝐶𝑂,𝑆 𝐽, 𝑇 =

𝐸𝑐

𝐽
∙

𝐽

𝐽𝑐 𝑇

𝑛 𝑇

𝜌𝑌𝐵𝐶𝑂,𝑁 𝑇 = 1.25 × 10−7 ∙ 𝑇 + 1.15 × 10−5

[Ω·m]

𝜌𝑌𝐵𝐶𝑂,𝑆

𝑇𝐶

Parameters: Resistivity of Superconducting Layer
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𝜌𝐶𝑜𝑝𝑝𝑒𝑟 𝑇 = 6.85 × 10−11 ∙ 𝑇 − 3.30 × 10−9

𝜌𝑆𝑖𝑙𝑣𝑒𝑟 𝑇 = 6.11 × 10−11 ∙ 𝑇 − 1.97 × 10−9

𝜌𝐻𝑎𝑠𝑡𝑒𝑙𝑙𝑜𝑦 𝑇 = 1.17 × 10−10 ∙ 𝑇 + 1.25 × 10−6

[Ω·m]

Parameters: Resistivity of Copper, Silver and Hastelloy
Layers
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𝜆𝑌𝐵𝐶𝑂 𝑇 = 5

𝜆𝐶𝑜𝑝𝑝𝑒𝑟 𝑇 = 416.3 − 5.904 × 10−2 ∙ 𝑇 +
7.087 × 107

𝑇3

𝜆𝑆𝑖𝑙𝑣𝑒𝑟 𝑇 = 431.4 − 1.817 × 10−2 ∙ 𝑇 +
1.708 × 107

𝑇3

𝜆𝐻𝑎𝑠𝑡𝑒𝑙𝑙𝑜𝑦 𝑇 = 0.0238 ∙ 𝑇 + 5.896

[W·m-1·K-1]

Parameters: Thermal Conductivity
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𝐶𝑌𝐵𝐶𝑂 𝑇 = 4.05 × 106 − 1.73 × 108 ∙ 𝑇−0.9747

𝐶𝐶𝑜𝑝𝑝𝑒𝑟 𝑇 = −9.463 × 107 ∙ 𝑇−0.8292 + 4.279 × 106

𝐶𝑆𝑖𝑙𝑣𝑒𝑟 𝑇 = −1.983 × 108 ∙ 𝑇−1.23 + 2.643 × 106

𝐶𝐻𝑎𝑠𝑡𝑒𝑙𝑙𝑜𝑦 𝑇 = 4.14 × 106 +
5.92 × 105 − 4.14 × 106

1 +
𝑇

120.42

2.39

[J·K-1]

Parameters: Volumetric Heat Capacity
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Approach 1:
Coupled
Electromagnetic-
Thermal
Simulation

FEM Computation

Transient Thermal

JcYBCO, nYBCO

Update parameters
TCu, TAg, 

THastelloy, TYBCO

Losses

End

Final time step?

Yes

Compute next 

time step

tk = tk-1+Δt

No

Initial conditions

definition
Start

Update parameters

Test circuit 

parameters

FEM Computation

Transient Magnetic

tk-1 tk

ICC

UPrimary, IPrimary

ΨPrimary

tk

CCu, CAg, CHastelloy,CYBCo

kCu, kAg, kHastelloy,kYBCo

ρCu, ρAg, ρHastelloy,ρYBCo

hLN2

tk

tk-1
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Approach 1: Coupled Electromagnetic-Thermal Simulation

Co-Simulation:
Matlab/Simulink + Cedrat Flux2D
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Approach 1: Coupled Electromagnetic-Thermal Simulation
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Approach 1: Coupled Electromagnetic-Thermal Simulation

Secondary

Core

Primary
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Approach 1: Coupled Electromagnetic-Thermal Simulation

Primary winding

Secondary winding

Line

Load
Voltage 

source

Switch
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Approach 1: Coupled Electromagnetic-Thermal Simulation
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Approach 1: Coupled Electromagnetic-Thermal Simulation
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Approach 2: Reverse Engineering Methodology

Matlab/Simulink
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Approach 2: Reverse Engineering Methodology

Reference:

 Pina J M, Suárez P, Neves M V, Álvarez
A and Rodrigues A L 2010 Reverse
engineering of inductive fault current
limiters J. Phys. Conf. Ser. 234 032047.



Numerical Simulations of an Inductive Type Fault Current Limiter Based on Electromagnetic and Temperature Dependent Parameters

Problem and Approaches
○ ● ○ ○

27

Approach 2: Reverse Engineering Methodology

𝑖2 = −𝑁1 ∙ 𝑖1 −𝑖𝑐 𝑇 ≤ 𝑁1 ∙ 𝑖1 ≤ 𝑖𝑐 𝑇

𝑖2 =
1 − 𝑘2
𝑘1 − 1

∙ 𝑁1 ∙ 𝑖1 +
𝑘1 − 𝑘2
𝑘1 − 1

∙ 𝑖𝑐 𝑇 𝑁1 ∙ 𝑖1 < −𝑖𝑐 𝑇

𝑖2 =
1 − 𝑘2
𝑘1 − 1

∙ 𝑁1 ∙ 𝑖1 +
𝑘2 − 𝑘1
𝑘1 − 1

∙ 𝑖𝑐 𝑇 𝑁1 ∙ 𝑖1> 𝑖𝑐 𝑇

𝑖𝐶 𝑇 = 𝐽𝐶 𝑇 ∙ S𝑇𝑎𝑝𝑒

 
𝑘1 = 90
𝑘2 = 3
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Approach 2: Reverse Engineering Methodology
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Approach 2: Reverse Engineering Methodology
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RConvection

RCopper/2 RCopper/2

CCopperPCopper

RSilver/2 RSilver/2

CSilver

RHastelloy/2 RHastelloy/2

CHastelloy

RYBCO/2 RYBCO/2

CYBCO RConvectionPSilver PHastelloy PYBCO

77.2 V

TCopper TSilver THastelloy TYBCO

Reference:

 de Sousa W, Polasek A, Dias 
R, Matt C and de Andrade R 
2014 Thermal-electrical 
analogy for simulations of 
superconducting fault 
current limiters Cryogenics
62 97–109.
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Experimental Test Bench
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Line Current

Prospective current: 
 131.5 A
Peak current:
 43.3 A (Experimental)
 67.4 A (FEM Coupling)
 59.0 A (Reverse Engineering)
Limited current (excluding 1st peak):
 36.8 A (Experimental)
 37.2 A (FEM Coupling)
 34.9 A (Reverse Engineering)
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Line Current
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Linked Flux and Hysteresis Loop

Maximum flux:
 0.239 Wb (Experimental)
 0.252 Wb (FEM Coupling)
 0.242 Wb (Reverse Engineering)
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Linked Flux and Hysteresis Loop
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Current in Superconducting Secondary

Maximum current (1st peak):
 342.6 A (Experimental)
 142.7 A (FEM Coupling)
 152.0 A (Reverse Engineering)
Maximum current (steady-state):
 74.2 A (Experimental)
 95.1 A (FEM Coupling)
 82.9 A (Reverse Engineering)
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Current in Superconducting Secondary
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Temperature in Superconducting Secondary

Maximum temperature:
 80.2 K (Experimental)
 80.1 K (FEM Coupling)
 80.2 K (Reverse Engineering)
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Good agreement between experimental and simulations were
achieved.

The reverse engineering methodology provides results in few seconds
while the electromagnetic-thermal coupled simulation based on FEM
takes several days (5~7 days depending on mesh quality).
Furthermore, complex grids can be easily simulated by means of the
reverse engineering methodology.

Experimental temperature measurements shows drift due to thermal
inertia of the RTD sensor. Ripple during fault occurrence is also
observed.

Conclusions
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