Discontinuity lines in Nb thin films with artificial border micro-indentations

Jonathan I. Avila

Postdoc at Experimental physics of nano-structured materials
Physics Department, University of Liège
BELGIUM
Email: javila@ulg.ac.be
Collaborators

J. Brisbois, O. A. Adami, N. D. Nguyen, A. V. Silhanek (Ulg, BE)
P. Vanderbemden, B. Vanderheyden (Ulg, BE)
R. B. G. Kramer (Institut Neél, Grenoble, FR)
M. Motta, W. A. Ortiz (Sao Carlos, BR)

Defects in superconductor films

- **Defects** play a key role in type II superconductors acting as **pinning sites** for vortices, allowing dissipation-less current transport in the mixed state.
- Defects in the borders generate long range regions where the current changes direction abruptly: the discontinuity or **d-lines**.
FIG.I1: Left, Magneto-optical image of thin film samples with defects, Right: representation of d-lines

Simple current model: current has uniform magnitude j_c

Simple d-lines model: d-lines are equidistant from 2 nearest straight edges. For semi-circular and triangular defect of height R, its associated d-line will be (BB model):

$$y \approx \frac{x^2}{2R} - \frac{R}{2} \quad (11)$$
FIG. I2: (a) upper flux penetration in triangular indentation of 10 \(\mu \)m height and lower intensity profile along dotted line. (b) \(1/2a \) vs triangular defect height, where parameter 'a' is obtained from d-line shape fit \(y=ax^2+b \)

From Eqn (I1)

\[
\frac{1}{2a} = R = h \tag{I2}
\]

Experimental values much higher than predicted!
Calculating the magnetic field distribution of a 2D superconductor in the mixed state. Two cases: Local and Non-Local

Local or longitudinal case:

Neglecting displacement currents, Maxwell eqns are:

\[j = \nabla \times H \quad (1) \]
\[\mu_0 \frac{\partial H}{\partial t} = -\nabla \times E \quad (2) \]

Replacing (1) in the constitutive relationship, and replacing in (2):

\[E = \rho \, j = \rho \, \nabla \times H \quad (2) \]
\[\mu_0 \frac{\partial H}{\partial t} = -\nabla \times (\rho \, \nabla \times H) \quad (3) \]
Because of the symmetry, the currents must be planar, and therefore H must point in the z direction and be independent of z:

$$H = (h(x, y, t) + h_a(t)) \hat{z} \quad \text{(4)}$$

$$\rho = \rho(x, y) \quad \text{(5)}$$

$$\frac{\partial h}{\partial t} = \nabla \cdot (\rho \nabla h)/\mu_0 - \frac{\partial h_a}{\partial t} \quad \text{(6)}$$

Boundary condition $h=0$

It follows that h is also a current stream-function, since:

$$j = \nabla \times (h \hat{z}) \quad \text{(7)}$$

And then

$$j = |j| = |\nabla \times (h \hat{z})| = |\nabla h| \quad \text{(8)}$$

Ref: E. H. Brandt, PRB 52, 21 (1995), 15442
Magnetic field in thin film: non-local or transversal case

Introducing the sheet current:

\[J = d \ j \] \hspace{1cm} (12)

Where \(d \) is the thickness of the film, and introducing the stream function \(g \):

\[J = \nabla \times (g \ \hat{z}) \] \hspace{1cm} (13)

The current induced field \(H_d \) time derivative is now given by:

\[
\frac{\partial H_d}{\partial t} = \iint Q(r, r') \frac{\partial g(r')}{\partial t} dS', \quad \text{with} \quad (14)
\]

\[Q(r, r') = \lim_{z \to 0} \frac{1}{4\pi} \frac{2z^2 - R^2}{(z^2 + R^2)^{5/2}}, \quad R = |r - r'| \] \hspace{1cm} (15)
And the equation for the time evolution of \(g \) is given by:

\[
\nabla \cdot (\rho \nabla g) / d \mu_0 = \frac{\partial H_a}{\partial t} + \frac{\partial H_d}{\partial t}
\]

\((17) \)

\[
\nabla \cdot (\rho \nabla g) / d \mu_0 = \frac{\partial H_a}{\partial t} + \iint Q \frac{\partial g}{\partial t}
\]

\((18) \) Implemented in Matlab

Integration of eqn (18) is not trivial as \(\frac{\partial g}{\partial t} \) is inside the integral. Here an algorithm based on space Fourier transforms \((F) \) was used.

\[
\frac{\partial H_d}{\partial t} = \iint Q(r - r') \frac{\partial g}{\partial t}, \text{ apply } F()
\]

\((19) \)

\[
F\left(\frac{\partial H_d}{\partial t}\right) = F\left(\iint Q(r - r') \frac{\partial g}{\partial t}\right) = \frac{k}{2} F\left(\frac{\partial g}{\partial t}\right)
\]

\((20) \)

\[
\frac{\partial g}{\partial t} = F^{-1}\left(\frac{2}{k} F\left(\frac{\partial H_d}{\partial t}\right)\right)
\]

\((22) \)

\[
\frac{\partial g}{\partial t} = F^{-1}\left(\frac{2}{k} F\left(\nabla \cdot (\rho \nabla g) / d - \frac{\partial H_a}{\partial t}\right)\right)
\]

\((23) \)

Where it was used that the Fourier transform of \(Q(r-r') \) is \(k/2 \)

-What about the resistivity?
In a type II superconductor, the resistivity above H_{c1} can be modeled by:

\[\frac{\rho}{\rho_0} = \begin{cases} \rho_0 \left| \nabla h \right| j_c^{n-1}, & \text{for } \left| \nabla h \right| < j_c, \ T < T_c \\ \rho_0, & \text{for } \left| \nabla h \right| > j_c, \ T < T_c \\ \rho_n, & \text{for } T > T_c \end{cases} \]

(9)

Where j_c is the critical current, and n is the creep exponent.

FIG.2: Resistivity vs current for different creep exponents for $T<T_c$
Taking a magnetic field dependent critical current:

\[j_c = j_{c0} \left(\frac{H}{H_{c2}} \right)^{-\gamma} \] \hspace{1cm} (10)

Wide range of 0<\gamma<1.9 in literature, here used 0.37 from experimental fit

MODEL 2

\[j_c = j_c(H) : \]

\[\rho = \begin{cases}
\rho_0 \left(\frac{H}{H_{c2}} \right)^{(n-1)} |\nabla h|^{n-1}, & \text{for } T<T_c \\
\rho_n, & \text{for } T>T_c
\end{cases} \] \hspace{1cm} (11)
Calculations summary:

400μm x 400μm, 10 μm height, 20 μm base triangular defect
Constant field rate 10^{-3} T/s

1) Local or longitudinal case considering constant j_c
2) Non-local or transversal case considering constant j_c
3) Non-local or transversal case considering $j_c = j_c(H)$
ANIM.1: Local case: d-line under external field ramp of 0.001 T/s. N=51, $\rho_0=10^{-14}$ Ωm, $j_c=10^{10}$ A/m². Triangular defect of 20μm base and 10μm height.
ANIM.2: Non-Local MODEL 1: d-line under external field ramp of 0.001 T/s. $N=51$, $\rho_0=10^{-14} \, \Omega \cdot m$, $j_c=10^{10} \, A/m^2$, $d=100\, nm$. Triangular defect of $20\, \mu m$ base and $10\, \mu m$ height.
ANIM.3: Non-Local case MODEL 2: d-line under external field ramp of 0.001 T/s.
N=51, $\rho_0=1.57\times10^{-7}$ Ωm, $j_{c0}=1.36\times10^9$ A/m2, $H_{c2}=1.625$T, $d=100$nm, triangular defect of 20μm base and 10μm height.
FIG. 5: D-lines for previous configurations + bean model prediction
FIG. 6: Graph 1/2a vs n for different models, obtained from second order fit of d-lines $y=ax^2+\text{const.}$
Conclusions

Resistivity model is relevant as it modifies the dynamics of magnetization and therefore the shape of d-lines.

\[j_c = j_c(H) \] provide 1/2a values higher than BB model, in better accordance with experimental measurements.

Necessary to include other parameters like temperature variations

Acknowledgements

Postdoctoral fellowship from project ARC13/18-08, FNRS, financed by the French Community of Belgium (Wallonia-Brussels Federation), the Brazilian National Council for Scientific and Technological Development (CNPq) and the São Paulo Research Foundation (FAPESP), Grant No. 2007/08072-0, and the program for scientific cooperation F.R.S.-FNRS-CNPq V 4/225 - NR/DeM - 2.327. J.B. acknowledges support from F.R.S.-FNRS (Research Fellowship). The work of A.V.S. is partially supported by “Mandat d’Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS.