

Multiphysics FEA to Investigate Design Strain Constraints for Solenoids *Heading Towards* Aspected and Reinforced HTS

<u>Ernesto Bosque</u>, Ulf Trociewitz, David Hilton, Youngjae Kim, Daniel Davis, and David Larbalestier

Applied Superconductivity Center National High Magnetic Field Laboratory – USA

HTS MODELLING 2016 5th International Workshop on Numerical Modelling of High Temperature Superconductors June 15-17, 2016 Bologna – Italy https://events.unibo.it/htsmodelling2016

Outline

Motivation: HTS Towards High Field (30+ T) NMR Magnet Systems: *Platypus* Bi₂Sr₂CaCu₂O_{8+x} (Bi2212), Processing, and Coil Properties

•COMSOL Multiphysics for modeling coils

- Building of These Models
- Field Computations
- Structural Mechanics (fully coupled)
- Added Thermal Stresses

•Development of a Test Plan for experimental prototype coils

•Introduction of coil reinforcement methods

•Entering realm of React-and-Wind Conductors (Bi2223, ReBCCO), and otherwise laminated, aspected Bi2212

Platypus: An HTS NMR Magnet System

Bi2212 Critical Strain 'cliff'

AZIMUTHAL STRAIN (i.e. axial tension along wire) of 0.6% is known to break the ceramic filaments and degrade conductor critical current, plot from C.Scheurlein.

Bi2212 Experimental Stress-Strain Curve

Nonlinear Elasticity Modulus for Bi2212 Conductor

Plotted on the primary axis is a typical stress-strain curve from D.McRae and B.Walsh
Plotted on the secondary axis stress-dependent modulus for all stress calculations of the conductor – modulus taken as the tangential modulus and formulated as a function of stress

•Note the low modulus beyond 120 MPa

(i.e. easier to strain conductor at higher stress)

Building a Model: *Platypup* – the prototype coil

Model based on 2D-axisymmetric, Hex-Packed Winding – after OPHT (shown here is a particular cross section of *Platypup3* featuring an azimuthal slice with a crossover from Layer 3 to Layer 4)

Each domain attributed independent material properties (527 domains for model shown)

All properties at 4.2 K, and thermal contractions determined from integrated α 's between 300 K and 4.2 K

*Magnetization of Inconel600 later utilized to study material effect on field homogeneity

Comparison of Ideal vs Real:

PDE Assumptions

Magnetic Fields (mf):

•General PDEs $\mathbb{P} \times \mathbf{H} = \mathbf{J}\mathbf{e}$ $\mathbf{B} = \mathbb{P} \times \mathbf{A}$

•*J_e* defined as *Current / Area_of_EachWire* •Far field evaluated with perfect conductor

	PARAMETER	DESCRIPTION
WireD	1.3[mm]	Bare Wire
WireIns	0.047[mm]	InHouse Total Insulation
CondD	WireD+WireIns	Insulated Conductor
WireDD	0.955*WireD	
WireInsD	0.6*WireIns	Densified Properties
CondDD	WireDD+WireInsD	
Cum	400[4]	
Curr	400[A]	Insert Current
a1_ctr	a2_bore	Insert Current Inner Radius
a1_ctr a2_ctr	400[A] a2_bore a1_ctr+(6+(m_ctr-3)*sqrt(3))*(CondD)/2	Insert Current Inner Radius Outer Radius
a1_ctr a2_ctr b_ctr	400[A] a2_bore a1_ctr+(6+(m_ctr-3)*sqrt(3))*(CondD)/2 (n_ctr+0.5)*(CondDD)/2	Insert Current Inner Radius Outer Radius Half Height (densified)
a1_ctr a2_ctr b_ctr m_ctr	400[A] a2_bore a1_ctr+(6+(m_ctr-3)*sqrt(3))*(CondD)/2 (n_ctr+0.5)*(CondDD)/2 18	Insert Current Inner Radius Outer Radius Half Height (densified) Layers
a1_ctr a2_ctr b_ctr m_ctr n_ctr	400[A] a2_bore a1_ctr+(6+(m_ctr-3)*sqrt(3))*(CondD)/2 (n_ctr+0.5)*(CondDD)/2 18 15	Insert Current Inner Radius Outer Radius Half Height (densified) Layers Turns (windings per layer)
a1_ctr a2_ctr b_ctr m_ctr n_ctr J_e	400[A] a2_bore a1_ctr+(6+(m_ctr-3)*sqrt(3))*(CondD)/2 (n_ctr+0.5)*(CondDD)/2 18 15 Curr/(pi/4*WireDD^2)	Insert Current Inner Radius Outer Radius Half Height (densified) Layers Turns (windings per layer) Transport Density per Wire

Z [mm]

Platypup1

Platypup1: Solid Mechanics $-\Box \cdot \sigma = F_V$ [I = 400 A]

Platypup1: Experimental Results

Platypup3: Structural Reinforcement

Platypup-1 and 3: Experimental Result Comparison

Experimental results show that Platypup3 was NOT Strain Limited Unfortunately, the results are hindered by low Ic elsewhere in the coil, but after cyclic loading, the coil shows no systemic degradation – in contrast to what is seen in Platypup1

Platypup3: V-I Curve of Inner Layer During Cyclic Loading

Current Work w.r.t Bending Strains React-and-Wind Conductors / Laminated Bi2212

Conclusions

•Multiphysics FEA proving to be an invaluable resource in designing new prototype coils to investigate strain limits of conductors

•Development of test plans for experimentation give good validation of models with respect to real coil performance

•Confidence has been obtained to predict behavior of larger magnet systems – with obviously higher material and manufacturing costs

•Study of laminated, aspected conductors may help further push HTS technology toward High Field, High Homogeneity Magnet applications