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    HTS Insert Description 

            

     

 

 

• Six double YBCO pancake modules 

stacked alternated with five heater spacers. 

 

• Double pancake coil modules with un-

insulated conductor and insulated stainless 

steel cowind. 

 

• The cowind serves both as turn to turn 

insulation and reinforcement. It is insulated 

by a 5-7 μm alumina layer. 

 

• Electrical stand-off between the two 

pancakes of a module is provided by a G-10 

sheet. 

Heater  

elements 

[1] H. W. Weijers et al., “Progress in the development of a superconducting 32 T magnet with REBCO high field coils,” 

IEEE Trans. Appl. Supercond., vol. 24, no. 3, Jun. 2014, Art. ID. 4301805. 

SuperPower 

SCS4050 



     Test case 1: HTS insert + Resistive Outsert 

            

     

•  Test performed at 4.2 K in self-field 

and in a background magnetic field of 

15 T (Large Bore Resistive magnet). 

 

• Prototype coil energized at a 200 A 

current 

 

• Two out of three heaters of each 

module energized simultaneously for 

0.8 s.  

 

•  Coil discharged across the normal 

zones without energy extraction.   

 

• The symmetry condition allows one to 

decrease the number of degrees  

 

 

 

 

 

 

heater ON 

heater ON 

heater OFF 

Symmetry condition 2 

Symmetry condition 1 



  

  Test case 2: double HTS insert + 17-section LTS outsert 

   with constant current 

•   Set-up composed of: 

a) 2 HTS insert coils 

b) 17-section LTS outsert 

 

• HTS insert energized at a 173 A constant 

current 

 

• LTS outsert of the 32 T magnet project: 

transport current 134 A 

 

• All heaters fired simultaneously with 19 A 

heater current. New design for heater 

electrical insulation  

 

• The outsert quench detection system reacts 

on the voltage induced on the outsert. The 

outsert quench protection system is not 

triggered: outsert current constant 

Symmetry condition 1 

Symmetry condition 2 



  

  Test case 3: double HTS insert + 17-section LTS outsert 

   with variable current 

• Magnet composed of: 

a) 2 HTS insert coils 

b) 17-section LTS outsert 

 

• The HTS insert is energized at a      

constant current of 222 A. 

 

• LTS outsert of the 32 T magnet 

project at 214 A 

 

• All heaters are fired with 19 A heater 

current 

 

• The induced voltages in the outsert 

meet the criterion, the outsert quench 

protection system is triggered 

resulting in the outsert fast discharge.  

Symmetry condition 1 

Variable current in the 17-sections outsert 



  

   Outline 

• HTS Insert Description 

 

• NHML high field HTS coils 

1) Test case 1: HTS insert + Resistive Magnet 

2) Test case 2: double HTS insert + 17-section LTS ousert with constant current 

3) Test case 3: double HTS insert + 17-section LTS ousert with variable current 

 

• 2D FEM 

1) Thermal Model Equation 

2) Coil constitutive law 

3) Anisotropic homogenization 

 

• Comparison between simulation and experimental data 



𝜌 𝑇𝑖 𝐶𝑝 𝑇𝑖
𝑑𝑇𝑖(𝑥, 𝑦, 𝑡)

𝑑𝑡
−  𝛻 ∙ 𝒌 𝑇𝑖 𝛻𝑇𝑖

=
𝐽2

𝜎𝑖 𝑇𝑖 , 𝐵𝑖 , 𝐸𝑖
+ 𝑄ℎ𝑒𝑎𝑡, 𝑖(𝑥, 𝑦, 𝑡) + 𝑄𝑎𝑥𝑖𝑎𝑙,𝑖

𝑐𝑜𝑛𝑑 (𝑥, 𝑦, 𝑡) 

 

  

   2D FEM Thermal Model Equations 

HEAT BALANCE EQUATION 

• 𝜕𝑇
𝜕𝑧
 in each pancake assumed negligible  

• The heat balance equation is solved on each pancake: 

       

Conceptual scheme of 

the ‘quasi 3D model’ 

Joule heating 
Axial conduction 

between pancakes 

𝑻𝒊(𝒙, 𝒚, 𝒕) temperature evolution on the ith  pancake 

Boundary conditions: 

− Adiabatic conditions 

− Heater pulse 𝑄ℎ𝑒𝑎𝑡,𝑖 𝑥, 𝑦, 𝑡  

      on the heater area 

Initial condition  

𝑇 𝑡 = 0 s = 4.2 K 

∀ 𝑖 = 7…12 



  

  2D FEM Thermal Model Equations 

[2] M Breschi, L Cavallucci, P L Ribani, A.V. Gavrilin and H. W. Weijers, “Analysis of quench in the NHMFL REBCO 

prototype coils for the 32T Magnet Project”, Supercond. Sci. Technol., 29, 055002, 2016 

ONE 2D MESH INSTEAD OF  6  

Only one 2D pancake is discretized with a mesh. At each mesh point, a set of heat balance 

equations is written for an array of temperatures 

𝑄𝑎𝑥𝑖𝑎𝑙
𝑐𝑜𝑛𝑑 =

𝑇𝑖+1 − 𝑇𝑖  

𝑉𝑝(𝑅𝐺10
𝑖,𝑖+1 + 𝑅𝑐𝑧) 

−
𝑇𝑖 − 𝑇𝑖−1 

𝑉𝑝 𝑅𝐺10
𝑖,𝑖+1 + 𝑅𝑐𝑧

 

 𝑻 = 𝑇7(𝑥, 𝑦) … 𝑇𝑖(𝑥, 𝑦) … 𝑇12(𝑥, 𝑦)  

Conceptual 

scheme  

2D COMSOL 

implementation 

RG10, RCZ distributed 

thermal resistances 



  

  2D FEM: Coil Constitutive Law 

𝑉𝑡𝑒𝑟𝑚 =   𝑅𝑁𝑍
𝑐𝑜𝑖𝑙 1 𝑡 + 𝑅𝑁𝑍

𝑐𝑜𝑖𝑙 2 𝑡 + 𝑅𝑗𝑜𝑖𝑛𝑡 𝐼𝑜𝑝  +𝐿𝑖𝑛𝑠𝑒𝑟𝑡
𝑑𝐼𝑜𝑝

𝑑𝑡
 + 𝑀𝑖𝑛𝑠𝑒𝑟𝑡

𝑗 𝑑𝐼𝑗

𝑑𝑡
17
𝑗=1  

𝑅𝑁𝑍
𝑐𝑜𝑖𝑙 1 =

4

𝐼𝑐𝑜𝑖𝑙
2    

𝐽2

𝝈𝒊
𝒄𝒐𝒊𝒍 𝟏(𝑥, 𝑦)

𝑑𝑉𝑖
𝑉𝑖

12

𝑖=7

 

𝑅𝑁𝑍
𝑐𝑜𝑖𝑙 2 =

4

𝐼𝑐𝑜𝑖𝑙
2    

𝐽2

𝝈𝒊
𝒄𝒐𝒊𝒍 𝟐(𝑥, 𝑦)

𝑑𝑉𝑖
𝑉𝑖

12

𝑖=7

 

• The operation current Iop in the insert is obtained from the lumped parameter circuit 

describing the mutual induction coupling between the insert and ousert 

• The resistances of coil 1 and coil 2 

can be computed from the power 

dissipated in all pancakes 



                2D FEM: Anisotropic homogenization 

            

     

• Longitudinal electrical conductivity 𝝈𝑳 

The tape layers are assumed in parallel and the current that flows in YBCO layer 𝐼𝑌𝐵𝐶𝑂  is 

evaluated by: 

𝐸𝑐
𝐼𝑜𝑝
𝐼𝑐

𝑛

= 
𝐼𝑜𝑝 − 𝐼𝑌𝐵𝐶𝑂

 𝜎𝑖 𝑇𝑖 , |𝑩𝑖|, |𝑬𝑖| 𝑆𝑖
𝑖≠𝑌𝐵𝐶𝑂
𝑖

 

𝐸 =
𝐼𝑜𝑝 − 𝐼𝑌𝐵𝐶𝑂

 𝜎𝑖𝑆𝑖
𝑖≠𝑌𝐵𝐶𝑂
𝑖

 

𝐼𝑌𝐵𝐶𝑂 

𝜎𝐻𝑜𝑚 =
𝐼𝑜𝑝

 𝑆𝑖𝑖 ∙ 𝐸
 

• Transversal electrical conductivity 𝝈𝑻  

In general,  the tape layers are assumed in series, accounting for the alumina insulation layers 

between the turns. 

bisection method 
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• Comparison of measured and computed 

coil currents during the quench test at 14 

A, 16 A and 19 A maximal heater current 

  

  Model vs experiment: case study 1 

 

 

• Comparison of measured and computed coil 

currents during the quench test at 14 A, 16 

A and 19 A maximal heater current 

• Comparison of measured and computed coil 

overall resistance during the quench test at 

16 A maximal heater current 

Experimental set-up  

• I coil (t=0s) = 200.0 A 

• background magnetic field 15 T 



   Model vs experiment: case study 1 

  
Normal Zone Propagation Velocity 

• NZPV defined as the azimuthal propagation 

velocity of the front at temperature Tcs.  

NZPV 

𝟗. 𝟎 ÷ 𝟏𝟓 [𝐜𝐦/𝐬] 

t = 1.5 s - 16 A heater current 



   Model vs experiment: case study 2 

  

 

 

Experimental set-up  

• I coil 1&2 = 173.0 A 

• I outsert = 134.0 A (constant in time) 

• Measured vs computed insert currents: 

heater current of 19 A 

Temperature distribution on 

pancakes at t = 2s 

T7[K] T9[K] T11[K] 

T8[K] T10[K] T12[K] 



   Model vs experiment: case study 2 

  

 

 

• Measured vs computed teminal 

voltages of modules of coil 1 

with heater current of 19 A 

 

• Experimental acquisition system 

cannot  measure voltages above 

10.5 V 

coil 1 
* 

* 



   Model vs experiment: case study 3 

  

 

 

Experimental set-up  

• I coil 1&2 = 222.0 A 

• I outsert = 214 A (variable in time) 

Variable current in the 17 sections outsert 

• Measured vs computed insert currents: 

heater current of 19 A 

Peak related to the inductive 

coupling between the insert 

and the outsert 



   Model vs experiment: case study 3 

  

 

 

• Measured vs computed teminal voltages of 

modules of coil 1 with 19 A heater current 

 

• Experimental aquisition system can measure 

voltages that exceed 10.5 V 

coil 1 • The agreement is not yet 

satisfactory, possibly due to 

inhomogeneities of the critical 

current. Specific measurements on 

these tapes at different locations 

show Ic-values higher or lower 

than those implemented, in a +/-

20% range.  

further work required 



    Conclusion 

• A ‘quasi 3D FEM model’ is developed in COMSOL Multiphysics environment to simulate 

quench in HTS coils. 

• Only one 2D pancake is discretized with a mesh. A set of heat balance equations is written for 

an array of temperatures  𝑻 = 𝑇7(𝑥, 𝑦) … 𝑇𝑖(𝑥, 𝑦) … 𝑇12(𝑥, 𝑦)  

• All pancakes interact with each other through distributed thermal resistances. 

• An anisotropic homogenization procedure is applied to reduce the degrees of fredom in the 

model 

• Quench experiments on NHMFL prototype coils developed in the frame of the 32 T magnet 

project have been analyzed: 

1)  A good agreement between simulated and experimental decay of the current in the 

HTS insert coils. 

2)  A rather good agreement between simulated and experimental teminal voltages in the 

modules is obtained for constant current in the outsert between; the agreement is still not 

satisfactory for variable current in the outsert 
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