Magnetization loss for stacks of ReBCO tapes

N. Bykovsky¹, G. De Marzi², D. Uglietti¹, P. Bruzzone¹, L. Muzzi²

SWISS PLASMA CENTER

HTS MODELLING 2016

15 – 17 June, Bologna, Italy

Outline

- 2 Numerical model
- Samples for the VSM measurements
- Experimental results
- Magnetization loss
- Conclusion

Outline

Introduction

- 2 Numerical model
- Samples for the VSM measurements
- Experimental results
- Magnetization loss
- Conclusion

HTS fusion cable concept at SPC:

• Strand – stack of HTS tapes twisted and soldered between copper profiles:

• Cable – copper cored Rutherford design:

• EDIPO sample – 60 kA/12 T cable prototypes:

2 cables made of SuperPower & SuperOx tapes 20 strands per cable twisted at 1 m 16 tapes per strand twisted at 320 mm

1/15

IIIIÌ

Introduction Numerical model Samples for the VSM measurements Experimental results Magnetization loss Conclusion
Work motivation

- ✓ Feasibility of the proposed HTS strand and cable designs for fusion magnets was experimentally demonstrated with the DC tests performed in EDIPO
 - Improvement of the mechanical properties of the strand against the transverse Lorentz force is the ongoing task ...
 - AC loss mechanisms of the proposed cable design:
 - 1 Hysteresis loss in the stacked tapes
 - 2 Inter-tape coupling current loss
 - ③ Inter-strand coupling current loss (dominant one in the prototypes)
 - 4 Eddy current loss

• Study of the magnetization loss in the stacked tapes is the scope of this work:

- influence of the number of tapes in the stack?
- ... width of the tapes?
- ... orientation of the applied magnetic field?
- ... manufacturer of the HTS tape?

Outline

Introduction

2 Numerical model

Samples for the VSM measurements

- Experimental results
- Magnetization loss

6 Conclusion

Description of the model

Description of the model

- A_a vector potential of the applied magnetic field
- Transport current is implemented as a constraint for ΔI

Procedure of the calculation

Procedure of the calculation

• Magnetic moment per unit length: $m(t) = -m_z(t) = \sum_{k=1}^N x_k I_k(t)$

Instantaneous power loss:

$$P(t) = \sum_{k=1}^{N} E_k(t) I_k(t) = \sum_{k=1}^{N} \frac{E_c}{I_{b_k}^n} |I_k(t)|^{n+1}$$

- Hysteresis loss: $Q = \int P(t) dt$
- Magnetization loss: $Q = \oint m \cos \theta_a \, \mathrm{d}B_a$

Benchmarking

• Parameters: $n_t = 1$, w = 4 mm, $N_x = 100$, n = 1000, $j_c(B,\theta) = 40$ kA/mm²

Numerical model

Benchmarking

- Parameters: $n_t = 1$, w = 4 mm, $N_x = 100$, n = 1000, $j_c(B,\theta) = 40$ kA/mm²
- Verification of the *n*-value in the model was done by considering a saturated state of the tape (expressed analytically)

Numerical model

Benchmarking

- Parameters: $n_t = 1$, w = 4 mm, $N_x = 100$, n = 1000, $j_c(B,\theta) = 40$ kA/mm²
- Verification of the *n*-value in the model was done by considering a saturated state of the tape (expressed analytically)
- ✓ Numerical model is validated

Numerical model

• Brandt's solution ($n_t = 1$):

 $Q_{\text{brandt}} = w j_c B_c q_1 (B_a/B_c), \quad B_c = \frac{\mu_0 j_c d}{\pi}$

 $q_1(x) = 2\ln(\cosh x) - x \tanh x$

- Brandt's solution $(n_t = 1)$: $Q_{\text{brandt}} = w j_c B_c q_1 (B_a/B_c), \quad B_c = \frac{\mu_0 j_c d}{\pi}$ $q_1(x) = 2\ln(\cosh x) - x \tanh x$
- Mawatari's solution $(n_t = \infty)$:

$$\begin{split} &Q_{\text{mawatari}} = w j_c B_c q_{\infty} \left(B_a / B_c, 2D / \pi w \right) \\ &q_{\infty}(x,a) = a^2 \int_0^x (x - 2\xi) \ln \left(1 + \frac{\sinh^2(1/a)}{\cosh^2 \xi} \right) \mathrm{d}\xi \\ &D \gg w: q_{\infty}(x,a \gg 1) = q_1(x) \\ &D \to d: q_{\infty}(x,a \ll 1) = q_{\text{slab}}(x,a) = \begin{cases} a^2 x^3 / 3, \ x \le 1/a \\ x - 2/(3a), \ x > 1/a \end{cases} \end{split}$$

- Brandt's solution $(n_t = 1)$: $Q_{\text{brandt}} = w j_c B_c q_1 (B_a/B_c), \quad B_c = \frac{\mu_0 j_c d}{\pi}$ $q_1(x) = 2\ln(\cosh x) - x \tanh x$
- Mawatari's solution $(n_t = \infty)$: $Q_{\text{mawatari}} = w j_c B_c q_\infty \left(B_a / B_c, 2D / \pi w \right)$ $q_\infty(x, a) = a^2 \int_0^x (x - 2\xi) \ln \left(1 + \frac{\sinh^2(1/a)}{\cosh^2 \xi} \right) d\xi$ $D \gg w: q_\infty(x, a \gg 1) = q_1(x)$ $D \rightarrow d: q_\infty(x, a \ll 1) = q_{\text{slab}}(x, a) = \begin{cases} a^2 x^3 / 3, \ x \le 1/a \\ x - 2/(3a), \ x > 1/a \end{cases}$

 n_t -tape stack one can consider as the stack with infinite number of tapes but with some effective distance between the tapes $D_{\text{eff}}(n_t)$:

$$Q_{n_t} = w j_c B_c q_{n_t} \left(B_a / B_c, 2D / \pi w \right)$$
$$q_{n_t}(x, a) \approx q_\infty \left(x, a + \frac{0.34a^{0.10}}{n_t^{4.44a + 0.65} - 1} \right)$$

 n_t -tape stack one can consider as the stack with infinite number of tapes but with some effective distance between the tapes $D_{\text{eff}}(n_t)$:

$$Q_{n_t} = w j_c B_c q_{n_t} \left(B_a / B_c, 2D / \pi w \right)$$
$$q_{n_t}(x, a) \approx q_\infty \left(x, a + \frac{0.34a^{0.10}}{n_t^{4.44a + 0.65} - 1} \right)$$

Outline

- Introduction
- 2 Numerical model
- Samples for the VSM measurements
- Experimental results
- Magnetization loss
- Conclusion

Fabrication of the samples

HTS tape	<i>I</i> _c , A	<i>n</i> -value
SuperPower 4 mm	155 ± 2	33
SuperPower 3 mm	70 ± 1	29
SuperOx 4 mm	164 ± 1	34

- Tapes were measured at 77 K/self-field before the stacks fabrication
- Soldering device ensures correct tapes stacking in the cross-section
- · Edges of the stacks were cut by the electro-erosion process

Cross-section of the SuperPower stacks

- Top row: 4 mm wide, 100 µm thick tapes Bottom row: 3 mm wide, 60 µm thick tapes
- 3 mm wide stacks have slightly distorted geometry (parabolic shape)
- Thickness of the solder between tapes is negligible, i.e. $D = 100 \mu m / 60 \mu m$ for the modelling

HTS tape	Number of tapes, n_t	Orientation of the sample, θ_a
SuperPower width 4 mm length 4 mm	1	0°
SuperPower width 4 mm length 5 mm	1 8 16 28	$\begin{array}{c} 0^{\circ} \ / \ 45^{\circ} \\ 0^{\circ} \ / \ 45^{\circ} \\ 0^{\circ} \ / \ 45^{\circ} \ / \ 90^{\circ} \\ 0^{\circ} \ / \ 45^{\circ} \end{array}$
SuperPower width 4 mm length 10 mm	1 16	0° 0°
SuperPower width 3 mm length 5 mm	1 8 16 28	0° 0° 0°
SuperOx width 4 mm length 5 mm	1 16	0° 0°

– VSM system at ENEA

HTS tape	Number of tapes, n_t	Orientation of the sample, θ_a
SuperPower width 4 mm length 4 mm	1	0°
SuperPower width 4 mm length 5 mm	1 8 16 28	0° / 45° 0° / 45° 0° / 45° / 90° 0° / 45°
SuperPower width 4 mm length 10 mm	1 16	0° 0°
SuperPower width 3 mm length 5 mm	1 8 16 28	0° 0° 0°
SuperOx width 4 mm length 5 mm	1 16	0° 0°

— VSM system at ENEA

· Finite length effect of the samples

Conclusion

Test program

HTS tape	Number of tapes, n_t	Orientation of the sample, θ_a
SuperPower width 4 mm length 4 mm	1	0°
SuperPower width 4 mm length 5 mm	1 8 16 28	0° / 45° 0° / 45° 0° / 45° / 90° 0° / 45°
SuperPower width 4 mm length 10 mm	1 16	0° 0°
SuperPower width 3 mm length 5 mm	1 8 16 28	0° 0° 0°
SuperOx width 4 mm length 5 mm	1 16	0° 0°

— VSM system at ENEA

- · Finite length effect of the samples
- Geometry aspects on the magnetization behaviour (different w, D)

HTS tape	Number of tapes, n_t	Orientation of the sample, θ_a
SuperPower width 4 mm length 4 mm	1	0°
SuperPower width 4 mm length 5 mm	1 8 16 28	0° / 45° 0° / 45° 0° / 45° / 90° 0° / 45°
SuperPower width 4 mm length 10 mm	1 16	0° 0°
SuperPower width 3 mm length 5 mm	1 8 16 28	0° 0° 0°
SuperOx width 4 mm length 5 mm	1 16	0° 0°

— VSM system at ENEA

- · Finite length effect of the samples
- Geometry aspects on the magnetization behaviour (different *w*, *D*)
- Shielding effect for the different number of tapes in the stack n_t

HTS tape	Number of tapes, n_t	Orientation of the sample, θ_a
SuperPower width 4 mm length 4 mm	1	0°
SuperPower width 4 mm length 5 mm	1 8 16 28	0° / 45° 0° / 45° 0° / 45° / 90° 0° / 45°
SuperPower width 4 mm length 10 mm	1 16	0° 0°
SuperPower width 3 mm length 5 mm	1 8 16 28	0° 0° 0°
SuperOx width 4 mm length 5 mm	1 16	0° 0°

— VSM system at ENEA

- · Finite length effect of the samples
- Geometry aspects on the magnetization behaviour (different w, D)
- Shielding effect for the different number of tapes in the stack n_t
- Effect of the orientation of the magnetic field θ_a

HTS tape	Number of tapes, n_t	Orientation of the sample, θ_a
SuperPower width 4 mm length 4 mm	1	0°
SuperPower width 4 mm length 5 mm	1 8 16 28	$\begin{array}{c} 0^{\circ} \ / \ 45^{\circ} \\ 0^{\circ} \ / \ 45^{\circ} \\ 0^{\circ} \ / \ 45^{\circ} \ / \ 90^{\circ} \\ 0^{\circ} \ / \ 45^{\circ} \end{array}$
SuperPower width 4 mm length 10 mm	1 16	0° 0°
SuperPower width 3 mm length 5 mm	1 8 16 28	0° 0° 0°
SuperOx width 4 mm length 5 mm	1 16	0° 0°

— VSM system at ENEA

- · Finite length effect of the samples
- Geometry aspects on the magnetization behaviour (different w, D)
- Shielding effect for the different number of tapes in the stack n_t
- Effect of the orientation of the magnetic field θ_a
- · Magnetization loss from the area of minor magnetization loops

Outline

- Introduction
- 2 Numerical model
- Samples for the VSM measurements
- Experimental results
- Magnetization loss
- Conclusion

Conclusion

Magnetization loops

Saturated state of the finite length tape:

$$\frac{m_{\text{sat}}}{l} = \frac{1}{4} I_c w \left(1 - \frac{w}{3l}\right) \left(\frac{\dot{B}w}{2E_c}\right)^{1/n} \frac{2n}{2n+1}$$

- Moment is corrected by (1 w/3l)
- *B*–effect due to finite *n*-value

Magnetization loops

Conclusio

Shielding effect of the stacked tapes

Conclusion

Shielding effect of the stacked tapes

Tapes were not damaged during the stacks fabrication (curves overlap in the high-field zone)

Conclusior

Shielding effect of the stacked tapes

Shielding effect of the stacked tapes

- Tapes were not damaged during the stacks fabrication (curves overlap in the high-field zone)
- 'Smoothing' of the curves is due to the self-field effect
- Tapes of different widths have comparable *I_c* field dependence

- Magnetization of the tapes correspond mainly to \vec{B}_{\perp} component, with a slightly reduced j_c due to \vec{B}_{\parallel} component
- ① One should take into account the torque acting on the sample $\vec{\tau} = \vec{m} \times \vec{B}_a$ in the measurements (possible mechanical issue)

Outline

- Introduction
- 2 Numerical model
- Samples for the VSM measurements
- Experimental results
- Magnetization loss
- 6 Conclusion

 $T = 5 \text{ K}, B_a = 10 \pm 1 \text{ T}$

 $T = 77 \,\mathrm{K}, B_a = 2.0 \pm 0.5 \,\mathrm{T}$

 $T = 5 \text{ K}, B_a = 10 \pm 1 \text{ T}$

• Numerical and experimental results are in good agreement, but *I_c* angular dependence used in the model for the SP tapes is not well representative.

 $T = 5 \text{ K}, B_a = 10 \pm 1 \text{ T}$

- Numerical and experimental results are in good agreement, but *I_c* angular dependence used in the model for the SP tapes is not well representative.
- 3 mm wide stacks have stronger demagnetization effect (ratio *D*/*w* is smaller)

 $T = 5 \text{ K}, B_a = 10 \pm 1 \text{ T}$

- Numerical and experimental results are in good agreement, but *I_c* angular dependence used in the model for the SP tapes is not well representative.
- 3 mm wide stacks have stronger demagnetization effect (ratio D/w is smaller)
- Presumably, less regular results at 77 K is due to small absolute values of the loss (~30 times smaller than the values at 5 K)

Comparison with the EDIPO test results

Magnetization loss per strand $Q [J/(m \cdot cycle)]$ for $B_{dc} = 2T$ and $B_{ac} = 0.3T$ at 5 K:

	SP	SO
HTS cables in the EDIPO test	0.2 -	- 0.5
Numerical model	0.21	0.22
Analytical approach	0.20	0.18

- Frequency range of the applied AC field in the EDIPO test is $\approx 0.1 2$ Hz. Magnetization loss was extracted by the data extrapolation to 0 Hz.
- Twisting of the strand has been considered by varying θ_a in the calculation
- Conclusions from the VSM study of the field's orientation effect on the magnetization loss were used in the analytical approach

Outline

- Introduction
- 2 Numerical model
- Samples for the VSM measurements
- Experimental results
- Magnetization loss

Conclusion

- Using the numerical modelling, analytical approach for the magnetization loss of the stack with arbitrary number of tapes is proposed.
- Various effects of the stack on its magnetization behavior have been figured out using the VSM measurements.
- Developed numerical tools are well agreed with the different experimental results and will be used further for assessment of the stack magnetization.
- Next modelling tasks to validate the transport current term and to improve the optimization algorithms.

Acknowledgments

Enric Pardo – helpful advices regarding the modelling Nikolay Mineev – $j_c(B,\theta)$ data for the SuperOx tapes at 77 K Giordano Tomassetti – advanced optimization algorithms