3-D NUMERICAL MODELLING OF AC LOSSES IN MULTI-FILAMENTARY MGB₂ WIRES

<u>G.Escamez</u>^{1,2}, F.Sirois³, M.Tousignant³, V.Lahtinen⁴, A.Stenvall⁴, B.Ramdane², G.Meunier², A.Badel², C-E Bruzek¹, P.Tixador²

- ¹ Nexans France
- ² G2ELab Institut Néel Grenoble
- ³ Polytechnique Montréal
- ⁴ Tampere University of Technology

TAMPERE UNIVERSITY OF TECHNOLOGY

4th HTS workshop modelling (2014)

- During the round table of the last workshop, one model was suggested as new 3-D benchmark
 - Twisted round conductors in metal matrix (e.g. MgB₂)
- Our approach for the modelling of multi-filamentary 3-D wires has been
 - 3-D modeling of a simple cable model
 - Characterization of a real MgB₂ wire
 - 3-D modeling of this wire

Our objectives

- To optimize the design of high current SC cables, it is compulsory to calculate the AC losses of the cable
- It is <u>computationally demanding</u> to model in details the complete cable
- One approach is to calculate accurately the AC losses of one wire in detail with transport current and field

Development of a numerical model to calculate AC losses of one MgB₂ wire with transport current and external field

Outline

- 1) Three-filament wire benchmark
- 2) Simulations of MgB₂ wires
 - A) Numerical model
 - B) AC loss calculations
- 3) Improvement of the convergence

1) Three-filament benchmark

- Simple FEM model
 - 3 filaments in air
 - About 185,000 DoFs

Numerical model

- Dirichlet conditions are applied on the outside of the box
- Periodic conditions are used on the external faces
- Transport current imposed by integral constraint(s)

List of tests

1) Benchmark for calculations of self-field and external field AC losses (only SC)

7

- 2) AC loss with current and applied field
- 3) Addition of a resistive matrix
- 4) Addition of a nonlinear relative permeability for the matrix

Motivation for the benchmark

- 1) Check the computed quantities of this simple example (no experiment possible)
- 2) Study the performance of software
- 3) Check the difference between various formulations

Software packages

- FLUX (CEDRAT-G2ELab), commercial code, <u>T-Φ formulation</u>
 - Dedicated for machines, SC package included
- COMSOL, commercial code, <u>H formulation</u>
 - Code used in the superconducting communities for 2-D calculations
- Daryl-Maxwell (Polytechnique Montréal), homemade soft,
 - <u>H formulation</u>, developed by R. Rivard, S. Dufour and F. Sirois
- LoSt (TUT), homemade soft, H and H- φ - ψ formulation
 - Developed by V. Lahtinen and A. Stenvall

AC hysteresis losses

Conclusions of the benchmark

- AC loss calculations are in the range of 8 to 10 %
- No significant difference noticed between T- Φ formulation and H formulation
- For more complicated models
 - COMSOL limits were already reached
 - Fixed time steps necessary
- All the others calculations have been made on Daryl-Maxwell (with the help from V. Lahtinen for validations)
- Multiple examples of more complicated geometries have been tested (EUCAS 2015)

Change of geometry

• To impose a combinaison of transport current and an external field to the model, the model was adapted

12

AC losses with current and appl. field

 AC loss simulations with transport current and applied field in an air matrix

New geometry for the AC loss calculations

Addition of a resistive matrix

- The resistivity of the matrix was defined as $p=1 n\Omega.m$
- Compared to the previous results, the AC losses are the summation of hysteresis losses and coupling losses

Coupled AC losses

- Addition of a relative permeability dependent of the magnetic field for the matrix (according to [1])
- AC losses are increasing by about 20 %
- Increase of the computation time by about 30 %. In average, 3 to 4 more iterations at each time step (200 steps per period)

Relative permeability of the matrix is following equation :

$$M(H) = \mu_0(H + \sigma(\mu_{RMAX} - 1) \tanh(H / \sigma))$$

With
$$\sigma$$
=4.2E3 A/m and μ_{RMAX} =50

[1] Gömöry et al, SuST, (2009)

Conclusion of the three-filament model

- This benchmark and the other examples gave us confidence on our ability to calculate with accuracy the AC losses
- The models can be heavy in terms of computation time
- For the calculation on a real cable, a new model for the real wire had to be created

Outline

- 1) Three-filament wire benchmark
- 2) Simulations of MgB₂ wires
 - A) Numerical model
 - B) AC loss calculations
- 3) Improvement of the convergence

Multi-scale problems

3-D numerical modelling

- Numerical model
 - 682 560 elements
 - 798 520 DoFs
- I_c function of B
- Twist pitch 20 mm (1/6th of the twist pitch)
 - Periodic conditions applied on the external faces
- Monel and Nickel
 - ρ at operating temperature
 - M(H) taken into account

Experimental characterization

• Measurements realized to identify material parameters

Numerical considerations

- Model made on Daryl-Maxwell
- Three nonlinearities
- Alternative material law used for SC (percolation)¹

$$E = E_0 \left(\frac{J}{J_{c_0}} - 1\right)^n$$

- Fixed time step (800 steps per period) Direct solver PARDISO
- Computation time 13 days
- ¹ Zeimetz et al, SuSt (2001)

AC loss calculations in the model

- In the model, we compute
 - Hysteresis losses coming from the superconducting filaments
 - Eddy current losses
 - Coupling loss in the matrix
- The AC losses are computed with : $p_{AC} = \iiint \vec{J}\vec{E} dV$
- Analytical calculations exist for all these losses under certain hypothesis

Outline

- 1) Three-filament wire benchmark
- 2) Simulations of MgB₂ wires
 - A) Numerical model
 - B) AC loss calculations
- 3) Improvement of the convergence

In case of pure AC (50 Hz) loss calculations

First test case : pure AC excitations (currents and fields)

Simulations AC+DC

- AC ripples (harmonics) can be superposed to DC current
- Change of excitation waveforms
- Computation of the losses between 20 ms and 30 ms

Results

- AC loss calculation and analytical calculations for 1 % AC ripples
- Error between analytical calculations and numerical models = 27 %
- Transverse resistivity considered as pure nickel

Outline

- 1) Three-filament wire benchmark
- 2) Simulations of MgB₂ wires
 - A) Numerical model
 - B) AC loss calculations
- 3) Improvement of the convergence

Improvement of the convergence

- To improve the convergence of the model, it is possible to adapt the relaxation coefficient of Newtown-Raphson
- Two methods are suggested
 - Fujiwara method
 - Optimal method
- Simulations on the three-filament wires have been made to see the improvement of the convergence

Results for the three-filament model

- Results: time steps and Newton method $(T-\varphi)$ only)
 - Without relaxation factor: harder to converge with percol. model

Numerical considerations

- Results: computation times vs. Newton method
 - Sensitive to relaxation scheme chosen
 - Fujiwara method: requires less iterations, but more time overall
 - Optimal method: variant of Fujiwara method implement in FLUX

Conclusions

- 3-D numerical have been developed and tested on various geometries
- We created a full realistic numerical model based on experimentally characterized material models (article in progress)
- Ways exist to improve the convergence and to speed up the computation

 Feel free to contact us if you want to join this benchmarking initiative ⁽²⁾

THANK YOU

- In a 2-D model, only the AC losses in the superconducting filaments are calculated
- In a 3-D model, the coupling AC losses are also computed

The power law in DC

- Using the power law with DC signals leads to a problem at an infinite time.
- When the superconductor is full -> no more superconducting

Use of another E-J law

• We suggested another law called percolation law

