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Motivation

how to test a numerical model ?

• comparing with the results of other models

• experiment

real materials rather complex

how to distinguish the correct one ?



Macroscopic and microscopic dissipation

AC loss – particular advantage : two ways for evaluation
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Evaluation of macroscopic quantities: A-FEM method
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neutral zone (in each turn)
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Evaluation of macroscopic quantities: A-FEM method
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Evaluation of macroscopic quantities: A-FEM method



Evaluation of macroscopic quantities: H-FEM method
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Formulation :

PDE model :



Evaluation of macroscopic quantities: H-FEM method

Settings:

Formulation :
Current distribution (J) is setting as 
external current density for mf 
model. Mf model is used just for 
calculating AJ.

Magnetic Field (mf) model :

[1] E Pardo Superconductor Science and Technology 28 (2015): 044003.

E(J) is calculated by PDE model.
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computation details : A-FEM method
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computation details : H-FEM method
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steps steps
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dt
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Nstep= 400

Meshing: Mapping in HTS domain, Finer triangle in other domain

variable

f

n
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Nt

nt

Shape 

function

Lagrange or Curl

E-J power law:

Applied
current:

Nw: Points along the width 
during meshing;
Nt:: Points along the thickness 
during meshing;
nt :: Numerical error tolerance 
during computing
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checking of calculation correctness : A-FEM method
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could the experimental data help ?

f = 2500 Hz 
dmax= 18.5 µm, Nw = 101, Nh =3, ntol = 10-8 1 data point – 4 hours

jc = const. 



checking of calculation correctness : A-FEM method

f = 2500 Hz 
dmax= 18.5 µm, Nw = 101, Nh =3, ntol = 10-8

probably not!
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1 data point – 4 hours

jc = const. 



checking of calculation correctness : A-FEM method

f = 2500 Hz 
dmax= 18.5 µm, Nw = 221, Nh =7, ntol = 10-12
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checking of calculation correctness : A-FEM method

f = 2500 Hz 
dmax= 18.5 µm, Nw = 221, Nh =11, ntol = 10-12
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checking of calculation correctness : A-FEM method

f = 2500 Hz 
dmax= 18.5 µm, Nw = 451, Nh =11, ntol = 10-12
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-> good resolution along the tape width is essential



checking of calculation correctness : A-FEM method

f = 3.85 Hz 
dmax= 18.5 µm, Nw = 451, Nh =11, ntol = 10-12
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consequence of the used E(j) relation



checking of calculation correctness : A-FEM method

jc = const. 

consequence of the used E(j) relation
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checking of calculation correctness : A-FEM method

f = 36 Hz 
dmax= 18.5 µm, Nw = 451, Nh =11, ntol = 10-12 1 data point – 3 hours
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checking of calculation correctness : H-FEM method

f = 36 Hz 
Nw = 100, Nh =1, ntol = 10-7 , Shape function (Curl linear)

jc = const. 

good agreement between two evaluation methods

2 h46 min (each point) 
tstep=1e-6 s



checking of calculation correctness : H-FEM method

f = 36 Hz 
Nw = 25, Nh =1, ntol = 10-7 Shape function (Curl linear)

jc = const. 

very rough meshing was used in HTS zone, results wrong but still agree with each other

25 min (each point) 
tstep=1e-6 s



checking of calculation correctness : H-FEM method

f = 72 Hz 
Nw = 100, Nh =1, ntol = 10-7 Shape function (Curl linear)

jc = const. 

1 h 32 min (each point) 
tstep=1e-6 s



checking of calculation correctness : H-FEM method

f = 1 Hz 
Nw = 100, Nh = 1, ntol = 10-7 Shape function (Curl linear)

jc = const. 

3 h 16 min (each point) 
tstep=5e-5 s

agreement between two methods does not change with frequency
Do these two methods always agree with each other in H-FEM method?



checking of calculation correctness : H-FEM method

f = 36 Hz 
Nw = 25, Nh =1, ntol = 10-7 (Lagrange linear)

jc = const. 

NO!

20 min (each point) 
tstep=1e-5 s



checking of calculation correctness : H-FEM method

f = 36 Hz 
Nw = 100, Nh =1, ntol = 10-7 (Lagrange linear)

jc = const. 

1 h 5 min (each point) 
tstep=5e-6 s



checking of calculation correctness : H-FEM method

f = 36 Hz 
Nw = 400, Nh =1, ntol = 10-7 (Lagrange linear)

jc = const. 

better agreement can be achieved by finer meshing!

1 h 2 min (each point) 
tstep=1e-5 s



calculation corectness: comparison of two methods

f = 36 Hz jc = const. Ia [A] Q [mJ] – A-FEM Q [mJ] – H-FEM

80 1.87 1.82

130 9.06 9.10

comparison of calculated voltage waveforms:
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apparently only inductive signal



calculation corectness: comparison of two methods

f = 36 Hz jc = const. Ia [A] Q [mJ] – A-FEM Q [mJ] – H-FEM

80 1.87 1.82

130 9.06 9.10
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Conclusions

� Comparing the macroscopic and microscopic approach of AC loss evaluation is 

a useful tool in checking the numerical model for AC problem

� In the methods using the macroscopic current as a constraint, main task is the 

determination of macroscopic voltage

� In A-formulation, macroscopic voltage is calculated as an independent variable, 

and such comparison is straightforward;

calculation parameters e.g. necessary mesh density can be found

� In H-formulation, macroscopic voltage is derived from the solution, then it is 

not an independent variable, but still some preliminary checks are possible; 

e.g. shape function Curl (linear) much better than Lagrange (linear)



Conclusions

� Comparing the macroscopic and microscopic approach of AC loss evaluation is 

a useful tool in checking the numerical model for AC problem

� In the methods using the macroscopic current as a constraint, main task is the 

determination of macroscopic voltage

� In A-formulation, macroscopic voltage is calculated as an independent variable, 

and such comparison is straightforward;

calculation parameters e.g. necessary mesh density can be found

� In H-formulation, macroscopic voltage is derived from the solution, then it is 

not an independent variable, but still some preliminary checks are possible; 

e.g. shape function Curl (linear) much better than Lagrange (linear)

� Voltage on coil is a measurable quantity – allows more detailed comparison 

with experiments than the check of AC loss value


