Two ways of evaluating the loss per AC cycle in a superconducting coil

F. Gömöry1, J. Sheng1,2

1Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovakia
2Institute of Electrical Engineering. Shanghai Jiao Tong University, Shanghai, China
1) Motivation

2) Macroscopic and microscopic dissipation

3) Example – 2 FEM techniques:
 - A-formulation FEM, \(J = J_c \tanh(E/E_c) \)
 - H-formulation FEM, \(J = J_c (E/E_c)^{1/n} \)

4) Conclusions

CC (12 mm wide) pancake coil with 10 turns
Motivation

how to test a numerical model?

• experiment

 real materials rather complex

• comparing with the results of other models

 how to distinguish the correct one?
Macroscopic and microscopic dissipation

AC loss – particular advantage: two ways for evaluation

\[\int_{t_0}^{t} I_{coil}(t)U_{coil}(t)dt = \int_{0}^{T} \int_{V} j(r,z,\theta)E(r,z,\theta)dV \]

- **Power supply**
 - \(U_{ps} \)
 - \(I_{ps} \)

- **Load**
 - \(U_{coil} \)
 - \(I_{coil} \)

Macroscopic point of view:
\[P_{ps}(t) = I_{ps}(t)U_{ps}(t) \quad \cong \quad P_{coil}(t) = I_{coil}(t)U_{coil}(t) \]

Microscopic point of view
\[P_L(r,z,\theta) = j(r,z,\theta)E(r,z,\theta) \]

Local values:
- \(j(r,z,\theta) \)
- \(E(r,z,\theta) \)

F. Grilli et al. 2014 IEEE Trans Appl Supercond 24 8200433
Evaluation of macroscopic quantities: A-FEM method

\[I_{i(t)} = \int_{S} j(r, z, t) dS \]

constraint: \(I_{i(t)} = I_{\text{coil}}(t) \)

fulfilled by choosing the set of \(\nabla \varphi_i \)

Acknowledgements:
Ernst Helmut Brandt
Francesco Grilli

\[E(r, z) |_i = -\frac{\partial A(r, z)}{\partial t} - \nabla \varphi_i \]

Acknowledgement:
Victor Zermeno
neutral zone (in each turn)

\[E(r_{0i}, z_{0i}) = 0 \]

then from

\[E_i(r, z) = -\frac{\partial A(r, z)}{\partial t} - \nabla \varphi_i \]

follows

\[\nabla \varphi_i = -\frac{\partial A(r_{0i}, z_{0i})}{\partial t} = -\frac{\partial A_{0i}}{\partial t} \]

E. Pardo 2008
Evaluation of macroscopic quantities: A-FEM method

Turn i:

\[L_i = 2\pi R_i \]
\[S_i = \pi R_i^2 \]
\[\nabla \varphi_i = -\frac{\partial A_{0i}}{\partial t} \]

\[
U_i(t) = \int_{L_i} \tilde{E}_i(t) \cdot d\tilde{l} = \int_{L_i} \left(-\frac{\partial \tilde{A}}{\partial t} - \nabla \varphi_i(t) \right) \cdot d\tilde{l} =
\]
\[
= \int_{L_i} \left(-\frac{\partial \tilde{A}}{\partial t} + \frac{\partial A_{0i}}{\partial t} \right) \cdot d\tilde{l} = U_{\Phi,i}(t) + U_{\text{turn},i}(t)
\]

\[
U_{\Phi,i}(t) = -\int_{L_i} \frac{\partial \tilde{A}}{\partial t} \cdot d\tilde{l} = -\oint_{\partial S_i} \nabla \times \frac{\partial \tilde{A}}{\partial t} \cdot dS = -\frac{\partial}{\partial t} \oint_{\partial S_i} \nabla \times \tilde{A} \cdot dS = -\frac{\partial}{\partial t} \oint_{S_i} \tilde{B} \cdot dS = -\frac{\partial \Phi_i}{\partial t}
\]

\[
U_{\text{turn},i}(t) = \int_{L_i} \frac{\partial A_{0i}}{\partial t} \cdot d\tilde{l} = -\int_{L_i} \nabla \varphi_i \cdot d\tilde{l} \approx -2\pi R_i \nabla \varphi_i
\]

\[
U_{\text{coil}}(t) = \sum_{i=1}^{N_{\text{turns}}} U_{\text{turn},i}(t) = -2\pi \sum_{i=1}^{N_{\text{turns}}} R_i \nabla \varphi_i
\]
Evaluation of macroscopic quantities: H-FEM method

Formulation:

$$
\begin{align*}
1 \frac{1}{r} \frac{\partial E_\varphi}{\partial z} &= -\mu_0 \mu_r \frac{\partial H_r}{\partial t} \\
1 \frac{1}{r} \frac{\partial r E_\varphi}{\partial r} &= -\mu_0 \mu_r \frac{\partial H_z}{\partial t} \\
J_\varphi &= \frac{\partial H_r}{\partial z} - \frac{\partial H_z}{\partial r} \\
E_\varphi &= E_c \left(\frac{J_\varphi}{J_{c0}} \right)^n
\end{align*}
$$

Constraint:

$$
I_{i(t)} = \int_{S} j(r, z, t) dS \\
I_{i(t)} = I_{coil}(t)
$$
Evaluation of macroscopic quantities: \textit{H-FEM} method

Current distribution (\(J\)) is setting as external current density for \(mf\) model. \(Mf\) model is used just for calculating \(A_J\).

\[
\sum_{i=1}^{N_{\text{turns}}} \int_{S_{i}} r d\vec{s} \cdot \left[\vec{E}_i(t) + \frac{\partial \vec{A}_J}{\partial t} + \frac{\partial \vec{A}_a}{\partial t} \right]
\]

\[
\nabla^2 \vec{A}_J = -\mu_0 \vec{J} \quad ; \quad \vec{A}_a = 0
\]

\[
U_{\text{coil}}(t) = \sum_{i=1}^{N_{\text{turns}}} U_{\text{turn},i}(t) = -2\pi \sum_{i=1}^{N_{\text{turns}}} R_i \nabla \phi_i
\]

\(E(J)\) is calculated by PDE model.

\textbf{Settings:}

\[
\begin{align*}
\vec{J}_e &= \vec{J} \\
\sigma_{\text{HTS}} &= 1 \text{S} / \text{m}; \\
\sigma_{\text{Air}} &= 0 \text{S} / \text{m};
\end{align*}
\]

computation details: A-FEM method

$$j(r, z, t) = j_c \tanh \left(\frac{E(r, z, t)}{E_c} \right) = j_c \tanh \left(- \frac{1}{E_c} \frac{\Delta [A(r, z) - A_{0,i}]}{\Delta t} \right)$$

not power law!

$$E_c = 10^{-4} \text{ V/m}$$

$$N_{steps} = 40$$

variable

$$\Delta t = \frac{T}{N_{steps}} = \frac{1}{fN_{steps}}$$

grid for saving A data

points per thickness

$$d_{max}$$

points per tape width:

$$N_w$$

numerical tolerance

$$h_{SC} = 10 \mu m$$

points per thickness

$$N_h$$

width:

$$N_w$$

not power law!
computation details: \(H\)-FEM method

E-J power law: \(E = E_c (J / J_{c0})^n \)

\[
dt = \frac{T}{N_{\text{steps}}} = \frac{1}{fN_{\text{steps}}}
\]

\(E_c = 10^{-4} \text{ V/m} \)

\(n = 23 \)

\(N_{\text{step}} = 400 \)

Applied current:

\(N_w \): Points along the width during meshing;

\(N_t \): Points along the thickness during meshing;

\(n_t \): Numerical error tolerance during computing

Meshing: Mapping in HTS domain, Finer triangle in other domain

Lagrange or Curl
checking of calculation correctness : A-FEM method

\[
f = 2500 \text{ Hz}
\]
\[
d_{\text{max}} = 18.5 \text{ m}, N_w = 101, N_h = 3, n_{\text{tol}} = 10^{-8}
\]

\[
\Gamma = \frac{2\pi Q l}{\mu_0 I_a^2}
\]

\[
F = \frac{I}{I_c}
\]

\[
j_c = \text{const.}
\]

1 data point – 4 hours

Could the experimental data help?
checking of calculation correctness: A-FEM method

\[f = 2500 \text{ Hz} \]
\[d_{\text{max}} = 18.5 \mu m, \quad N_w = 101, \quad N_h = 3, \quad n_{\text{tol}} = 10^{-8} \]

\[j_c = \text{const.} \]
1 data point – 4 hours

Acknowledgement:
Jano Šouc

probably not!
checking of calculation correctness: A-FEM method

\[f = 2500 \text{ Hz} \]
\[d_{\text{max}} = 18.5 \mu\text{m}, N_w = 221, N_h = 7, n_{\text{tol}} = 10^{-12} \]

Graphs:

- Left graph: Plot of \(Q \) vs. \(I_a \)
- Right graph: Plot of \(I' = 2\pi Q/\mu J^2 \) vs. \(F = I/I_c \)

\(j_c = \text{const.} \)
1 data point – 4 hours
checking of calculation correctness : A-FEM method

\[f = 2500 \text{ Hz} \]
\[d_{\text{max}} = 18.5 \, \mu\text{m}, \quad N_w = 221, \quad N_h = 11, \quad n_{\text{tol}} = 10^{-12} \]

\[j_c = \text{const.} \]

1 data point – 5 hours
checking of calculation correctness: A-FEM method

\[f = 2500 \text{ Hz} \]
\[d_{\text{max}} = 18.5 \mu \text{m}, \ N_w = 451, \ N_h = 11, \ n_{\text{tol}} = 10^{-12} \]

\[j_c = \text{const.} \]

1 data point – 7 hours

-> good resolution along the tape width is essential
checking of calculation correctness : A-FEM method

$f = 3.85 \text{ Hz}$

$d_{max} = 18.5 \text{ µm}$, $N_w = 451$, $N_h = 11$, $n_{tol} = 10^{-12}$

$\Gamma = \frac{2\pi Q}{\mu_0 I_a^2}$

$F = \frac{I_d}{I_c}$

$\dot{j}_c = \text{const.}$

1 data point – 4.5 hours

consequence of the used $E(j)$ relation
checking of calculation correctness: A-FEM method

\[j_c = \text{const.} \]

consequence of the used \(E(j) \) relation
checking of calculation correctness: A-FEM method

\[f = 36 \text{ Hz} \]
\[d_{\text{max}} = 18.5 \mu\text{m}, N_w = 451, N_h = 11, n_{\text{tol}} = 10^{-12} \]

\[j_c = \text{const.} \]

1 data point – 3 hours
checking of calculation correctness: \textit{H-FEM} method

\[f = 36 \text{ Hz} \]

\[N_w = 100, \quad N_h = 1, \quad n_{tol} = 10^{-7} \]

Shape function (Curl linear)

\[j_c = \text{const.} \]

2 h46 min (each point)

\[t_{step} = 1e^{-6} \text{ s} \]

Good agreement between two evaluation methods
checking of calculation correctness: \textit{H-FEM} method

\[f = 36 \text{ Hz} \]
\[N_w = 25, \ N_h = 1, \ n_{tol} = 10^{-7} \] Shape function (Curl linear)

\[j_c = \text{const.} \]

25 min (each point)
\[t_{\text{step}} = 1 \times 10^{-6} \text{ s} \]

very rough meshing was used in HTS zone, results wrong but still agree with each other
checking of calculation correctness: \(H \)-FEM method

\[f = 72 \text{ Hz} \]
\[N_w = 100, \quad N_h = 1, \quad n_{tol} = 10^{-7} \]
Shape function (Curl linear)

\[j_c = \text{const.} \]

1 h 32 min (each point)
\[t_{\text{step}} = 1 \times 10^{-6} \text{ s} \]
checking of calculation correctness: \(H\text{-FEM method} \)

\[f = 1 \text{ Hz} \]
\[N_w = 100, \quad N_h = 1, \quad n_{tol} = 10^{-7} \quad \text{Shape function (Curl linear)} \]

\[j_c = \text{const.} \]

3 h 16 min (each point)
\[t_{\text{step}} = 5 \times 10^{-5} \text{ s} \]

agreement between two methods does not change with frequency

Do these two methods always agree with each other in H-FEM method?
checking of calculation correctness: \(H \)-FEM method

\[
f = 36 \text{ Hz} \\
N_w = 25, \ N_h = 1, \ n_{tol} = 10^{-7} \ (\text{Lagrange linear})
\]

\[
j_c = \text{const.}
\]

20 min (each point)
\(t_{\text{step}} = 1 \times 10^{-5} \text{ s} \)
checking of calculation correctness: H-FEM method

$f = 36 \text{ Hz}$

$N_w = 100$, $N_h = 1$, $n_{tol} = 10^{-7}$ (Lagrange linear)

$j_c = \text{const.}$

$t_{\text{step}} = 5 \times 10^{-6} \text{ s}$

$1 \text{ h 5 min (each point)}$
checking of calculation correctness: *H*-FEM method

\[f = 36 \text{ Hz} \]
\[N_w = 400, \; N_h = 1, \; n_{tol} = 10^{-7} \text{ (Lagrange linear)} \]

\[j_c = \text{const.} \]

1 h 2 min (each point)
\[t_{step} = 1 \times 10^{-5} \text{ s} \]

better agreement can be achieved by finer meshing!
calculation correctness: comparison of two methods

\(f = 36 \text{ Hz} \)

<table>
<thead>
<tr>
<th>(I_a) [A]</th>
<th>(Q) [mJ] (-) A-FEM</th>
<th>(Q) [mJ] (-) H-FEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1.87</td>
<td>1.82</td>
</tr>
<tr>
<td>130</td>
<td>9.06</td>
<td>9.10</td>
</tr>
</tbody>
</table>

\(j_c = \text{const.} \)

comparison of calculated voltage waveforms:

apparently only inductive signal
calculation correctness: comparison of two methods

\(f = 36 \text{ Hz} \)

<table>
<thead>
<tr>
<th>(I_a) [A]</th>
<th>(Q) [mJ] (-A)-FEM</th>
<th>(Q) [mJ] (-H)-FEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1.87</td>
<td>1.82</td>
</tr>
<tr>
<td>130</td>
<td>9.06</td>
<td>9.10</td>
</tr>
</tbody>
</table>

\(j_c = \text{const.} \)

comparison of calculated voltage waveforms after compensating the inductive component
Conclusions

- Comparing the macroscopic and microscopic approach of AC loss evaluation is a useful tool in checking the numerical model for AC problem.
- In the methods using the macroscopic current as a constraint, main task is the determination of macroscopic voltage.
- In A-formulation, macroscopic voltage is calculated as an independent variable, and such comparison is straightforward; calculation parameters e.g. necessary mesh density can be found.
- In H-formulation, macroscopic voltage is derived from the solution, then it is not an independent variable, but still some preliminary checks are possible; e.g. shape function Curl (linear) much better than Lagrange (linear).
Comparing the macroscopic and microscopic approach of AC loss evaluation is a useful tool in checking the numerical model for AC problem.

In the methods using the macroscopic current as a constraint, main task is the determination of macroscopic voltage.

In A-formulation, macroscopic voltage is calculated as an independent variable, and such comparison is straightforward; calculation parameters e.g. necessary mesh density can be found.

In H-formulation, macroscopic voltage is derived from the solution, then it is not an independent variable, but still some preliminary checks are possible; e.g. shape function Curl (linear) much better than Lagrange (linear).

Voltage on coil is a measurable quantity – allows more detailed comparison with experiments than the check of AC loss value.