

Practical considerations on the use of $J_c(B,\theta)$ in numerical models of the electromagnetic behavior of HTS

Francesco Grilli and Víctor M. R. Zermeño

Karlsruhe Institute of Technology, Institute for Technical Physics, Germany

francesco.grilli@kit.edu

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

Motivation

Given a tape with known $I_c(B,\theta)$, how can we calculate the effective critical current of devices (cables, coils) made of that tape?

Example: Roebel cable

Strand, I_c =150 A

10-strand cable, $I_c=?$

10 x 150 = 1500 A?

77 K, self-field

No, 1000 A! 33 % self-field reduction

We need a tool to predict this value!

Let's start from the model for calculating I_c .

The model solves Ampere's law in terms of A

$$\nabla \times \frac{1}{\mu} \nabla \times \mathbf{A} = \mathbf{J}$$

In the asymptotic limit t $\rightarrow \infty$ from Faraday's equation

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} - \nabla V \qquad \qquad \mathbf{E} = -\nabla V$$

- In the 2-D approximation, the scalar variable E
 - represents the voltage drop (per unit length)
 - must be constant in each conductor
- Superconductor simulated with power-law resistivity

$$E = E_c \frac{J}{J_c(\mathbf{B})} \left| \frac{J}{J_c(\mathbf{B})} \right|^{n-1}$$

Reference: Zermeno et al. 2015 SuST 28 085004

How does the model work?

If I_a is the transport current flowing in the i-th conductor, one has

$$I_{a} = \int_{\Omega_{i}} P_{i} J_{c}(\mathbf{B}) d\Omega_{i} \qquad P_{i} = I_{a} / \int_{\Omega_{i}} J_{c}(\mathbf{B}) d\Omega_{i}$$

And the voltage drop per unit length E_i in the i-th conductor

$$E_{i} = E_{c}P_{i}|P|^{n-1}$$

Test of the model against experimental data

Main features of the Roebel cables assembled at KIT

- 3 designs: 10, 17, 31 strands, transposition length 126, 226, 426 mm
- 12 mm tapes from two manufacturers: SuperOx and SuperPower
- 3 sizes x 2 manufacturers = 6 cables in total
- Length: 2.5 x transposition length

How to define the critical current of a Roebel cable?

2-D calculation

Two possible criteria:

- 1. Current at which $E=E_c$ in at least one conductor (MAX criterion)
- 2. Current at which $E_{AVG} = E_c$ (AVG criterion)

The starting tapes have very different $I_c(B,\theta)$.

The in-field behavior determines the cable's $I_{c_{i}}$

Sample (31 strands)	Measured I _c	(# of strands) x (I_c of the strands)
SuperOx	2747 A	3999 A
SuperPower	2264 A	4247 A

Measured and computed I_c values agree within 9 %

For SuperOx, the sample used for $J_c(B,\theta)$ was a below-average one.

For SuperPower, it was very close to average.

Statistics on I_c of 20 strands

SuperOx: mean=140 A, σ =10 A

SuperPower: mean=147 A, σ =7 A

 $J_c(B,\theta)$ measured on a <u>tape</u>.

The calculated I_c of the <u>strand</u> is:

SuperOx: 125.1 A

SuperPower: 146.0 A

With a correction factor 1.12 (dashed lines) the agreement for SOx is much better than before.

Considerations on cable design

What is the influence of the spacing between the superconducting layers?

Question #1:

Does a loose packing of the strands lead to higher I_c due to the reduction of self-field?

Example: SuperOx cable (31 strands)

Standard spacing: 125 μ m \rightarrow I_c = 2509 A +7.6 % Increased spacing: 350 μ m \rightarrow I_c = 2700 A

Supercond. Sci. Technol. 24 (2011) 065005 (9pp)

doi:10.1088/0953-2048/24/6/065005

The dependence of AC loss characteristics on the spacing between strands in YBCO Roebel cables

Zhenan Jiang¹, K P Thakur¹, Mike Staines¹, R A Badcock¹, N J Long¹, R G Buckley¹, A D Caplin² and Naoyuki Amemiya³

4. Conclusion

Transport AC loss in a nine strand YBCO Roebel cable with 0.25 mm spacers between the strands was measured and compared with that in a nine strand YBCO Roebel cable without spacers. Critical current was increased by 6.8% by spacing, due to a reduced self-field effect. AC loss in

What is the influence of the distance between the superconducting layers?

Question #2:

Can we then increase J_e by pushing the superconducting layers closer to each other?

HTS coated conductors with 30 μ m will be available soon

Example: SuperOx cable (31 strands)

Standard spacing: 125 μ m \rightarrow I_c = 2509 A Reduced spacing: 75 μ m \rightarrow I_c = 2446 A J_e up by 60 %

How does I_c increase with increasing number of strands?

More strands \rightarrow more self-field

Important role of $J_c(B,\theta)$

What is the influence of a background magnetic field?

50 strands self-field

50 strands background field 200 mT

What is the influence of a background magnetic field?

cable's I_c

self-field reduction

Conclusion (1)

- A DC model was used to evaluate critical current of Roebel cables for low-field applications.
- In-field performance of composing strands plays a major role on the effective I_c of the cable.
- Distance between superconducting layers has little influence → great potential for new tapes with thin substrate.
- With moderate fields (hundreds of mT), I_c can be simply calculated from the I_c of the strands.

How does $J_c(B,\theta)$ vary along the length of a tape?

- For modeling devices made of (hundreds of) meters of tape, we use a $J_c(B,\theta)$ model derived from data of a 15 cm long sample.
- We know that the self-field I_c varies along the length.

- How does J_c(B,θ) vary along the length? Simply a multiplicative factor? (e.g. 1.12 factor we used here)
- Recent work says "no".

Sample and length-dependent variability of 77 and 4.2K properties in nominally identical RE123 coated conductors

L Rossi¹, X Hu, F Kametani, D Abraimov, A Polyanskii, J Jaroszynski and D C Larbalestier

Figure 3. I_c as a function of position at $B||_c = 0.5$ T and at $B|_{ab} = 0.6$ T at 77 K in conductor S4 as a function of position. A tendency for I_c to drop for $H||_c$ that correlates to I_c rising for $H||_{ab}$ is evident.

Figure 4. J_c angular dependence for tapes S1, S2, and S4.

Extracting an analytic expression for $J_c(B,\theta)$ is a time consuming process: 1.Find an analytic expression reproducing the angular dependence 2.Find the correct parameters that reproduce the data \rightarrow calculation of effective I_c necessary for a large number of field/angle combinations!

In the example on the left:

1.the $J_c(B,\theta)$ has 11 parameters \rightarrow brute force approach time-consuming \rightarrow manual tweak

2.Still, the agreement is far from perfect.

With the parameter-free approach (see Victor Zermeno's poster), we reach an excellent agreement with experimental data in just six steps.

•No need of thinking about an analytic formula for $J_c(B,\theta)$.

•No need of manual or automatic tweaking of parameters.

With the parameter-free approach (see Victor Zermeno's poster), we reach an excellent agreement with experimental data in just six steps.

•No need of thinking about an analytic formula for $J_c(B,\theta)$.

•No need of manual or automatic tweaking of parameters.

With the parameter-free approach (see Victor Zermeno's poster), we reach an excellent agreement with experimental data in just six steps.

•No need of thinking about an analytic formula for $J_c(B,\theta)$.

•No need of manual or automatic tweaking of parameters.

With the parameter-free approach (see Victor Zermeno's poster), we reach an excellent agreement with experimental data in just six steps.

•No need of thinking about an analytic formula for $J_c(B,\theta)$.

•No need of manual or automatic tweaking of parameters.

With the parameter-free approach (see Victor Zermeno's poster), we reach an excellent agreement with experimental data in just six steps.

•No need of thinking about an analytic formula for $J_c(B,\theta)$.

•No need of manual or automatic tweaking of parameters.

With the parameter-free approach (see Victor Zermeno's poster), we reach an excellent agreement with experimental data in just six steps.

•No need of thinking about an analytic formula for $J_c(B,\theta)$.

•No need of manual or automatic tweaking of parameters.

•The interpolated $J_c(B,\theta)$ is ready to be used in successive simulations (e.g. calculation of I_c or AC losses in a device).

²⁹ From experimental data to a ready-to-go model in 5 minutes!

I_c calculated with the parameter-free method and with analytic expressions agree well.

maximum difference <3 %

Conclusion (2)

- It is important to check how the short sample on which $I_c(B_{EXT}, \theta)$ is measured is representative of the whole tape.
 - Recent work suggests variations of pinning center quality along the length.
- Parameter-free method allows going from experimental $I_c(B_{EXT},\theta)$ data to a ready-to-use local $J_c(B_{LOCAL},\theta)$ model in a few minutes.
 - > No complex analytic expressions
 - No parameter tweaking

The codes for I_c calculation are available for free. The one for extracting $J_c(B,\theta)$ will be soon.

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 3, APRIL 2016

Open-Source Codes for Computing the Critical Current of Superconducting Devices

Víctor M. R. Zermeño, Salman Quaiyum, and Francesco Grilli

www.htsmodelling.com

Practical considerations on the use of $J_c(B,\theta)$ in numerical models of the electromagnetic behavior of HTS

Francesco Grilli and Víctor M. R. Zermeño

Karlsruhe Institute of Technology, Institute for Technical Physics, Germany

francesco.grilli@kit.edu

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu