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Motivation

Given a tape with known 1.(B,6),
how can we calculate the effective
critical current of devices (cables,
colls) made of that tape?

Picture sources:
Univ. Houston
Daibo et al. 10.1109/TASC.2011.2179691




Example: Roebel cable

Strand, [:=150 A 10 gtrand cable, I=?

10 x 150 = 1500 A?
77 K, self-field No, 1000 Al

33 % self-field reduction

Tape, 1.=340 A

We need a tool to predict this value!




Let’s start from the model for calculating .

® The model solves Ampere’s law in terms of A

[] % i [IxA=J
U
® In the asymptotic limit t = «~ from Faraday’s equation
E :—a—A—DV =1V
ot

® In the 2-D approximation, the scalar variable E
B represents the voltage drop (per unit length)
® must be constant in each conductor

@ Superconductor simulated with power-law resistivity
n—1

E=E

J.(B)|J:(B)
Reference: Zermeno et al. 2015 SuST 28 085004



How does the model work?

® Inversion of the E-J relationship

-J.(B

)P
*3.(8)|3.(B) | Prgg_

§ C C

Sk

® If | Is the transport current flowing in the I-th conductor,
one has

.= | PJ,(B)dQ, P = IE/J J.(B)dQ

® And the voltage drop per unit length E; in the I-th conductor

E =ER|P[”



Test of the model against
experimental data




Malin features of the Roebel cables assembled at KIT

® 3 designs: 10, 17, 31 strands, transposition length 126, 226, 426 mm
B 12 mm tapes from two manufacturers: SuperOx and SuperPower

B 3 sizes x 2 manufacturers = 6 cables in total

® Length: 2.5 x transposition length




How to define the critical current of a Roebel cabl e?

2-D calculation

Cross section

Analysis plane—
Source: Nii et al. 2012 SuST 25 095011

Two possible criteria:

1. Current at which E=E_ in at least one conductor
(MAX criterion)

2. Current at which E,,s=E. (AVG criterion)




The starting tapes have very different
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The in-field behavior determines the cable’'s |

Sample Measured |, | (# of strands) x ( |, of the strands)
(31 strands)

SuperOx 2747 A 3999 A
SuperPower 2264 A 4247 A

B (T)
0.14
0.12
0.1
0.06
0.04
0.02

10




Measured and computed |, values agree within 9 %

4000

3500

- Statistics on | of 20 strands
- SuperOx: mean=140 A,0=10 A

2000

cable’s IC

| SuperPower: mean=147 A, o=7 A

1500

1000

o 7 . ——

=sweox | J (B,0) measured on a tape_.

: ‘ : O SuperPower
O i i i T
0 10 20 30 40

50 .
number of srands The calculated |. of the strand_ is:

For SuperOx, the sample SuperOx:  125.1 A
used for J.(B,0) was a
below-average one. SuperPower: 146.0 A

For SuperPower, it was very
close to average.
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With a correction factor 1.12 (dashed lines) the
agreement for SOx is much better than before.
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Considerations on cable design




What is the influence of the spacing between the
superconducting layers?

Question #1.:

Does a loose packing of the strands lead to higher I, due to
the reduction of self-field?

Example: SuperOx cable (31 strands)

Standard spacing: 125 um > 1.=2509 A
+7.6 %

Increased spacing: 350 ym = 1.= 2700 A

w—



IOP PUBLISHING SUPERCONDUCTOR SCIENCE AND TECHNOLOGY

Supercond. Sci. Technol. 24 (2011) 063005 (9pp) doi: 1010885 3-2045824/6/06 5005

The dependence of AC loss characteristics

on the spacing between strands in YBCO
Roebel cables

Zhenan Jiang', K P Thakur', Mike Staines', R A Badcock',
N J Long', R G Buckley', A D Caplin® and Naoyuki Amemiya’

4. Conclusion

Transport AC loss in a nine strand YBCO Roebel cable with
0.25 mm spacers between the strands was measured and
compared with that in a nine strand YBCO Roebel cable
without spacers. Ciritical current was increased by 6.8%
by spacing, due to a reduced self-field eftect. AC loss in
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What is the influence of the distance between the
superconducting layers?

Question #2:

Can we then increase J, by pushing the superconducting
layers closer to each other?

HTS coated conductors with 30 um will be available soon
Example: SuperOx cable (31 strands)

Standard spacing: 125 pm > [;=2509 A"] |_down by 2.5 %

Reduced spacing: 75 ym = |_= 2446 A Je Up by 60 %

—



How does |. increase with increasing number of strands?

® More strands - more self-field
® Important role of J.(B,6)
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magnetic flux density (T)

What is the influence of a background magnetic fiel d?
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magnetic flux density (T)
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cable’s I (A)

What is the influence of a background magnetic fiel

cable’s |,
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Conclusion (1)

® A DC model was used to evaluate critical current of Roebel
cables for low-field applications.

B In-field performance of composing strands plays a major
role on the effective I, of the cable.

B Distance between superconducting layers has little
Influence - great potential for new tapes with thin
substrate.

® With moderate fields (hundreds of mT), |. can be simply
calculated from the |, of the strands.

20



How does J.(B,0) vary along the length of a tape?

® For modeling devices made of (hundreds of) meters of tape, we use a
J.(B,6) model derived from data of a 15 cm long sample.

® We know that the self-field I, varies along the length.

e A
Eﬂ]ﬂu .rIL:-‘-h--.r--'\-- 'rr:i;wl%“-mr_awrﬂ”v—'. N Lyt ..\.--'-i-.J.----\-""“-_,p-"‘-'"‘Ia..n. qf'h--u""-ﬂ-u I _m"""':l,'rh 1'-‘-::.,-1,-:-":.- - -;""-'.:;:-1:‘“;' - W S e
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Source: SuperPower, Inc. M4_288_6
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00 S—— : . e i ; : : SE— . ; — L — : : R —
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position [m

® How does J (B,0) vary along the length? Simply a multiplicative factor?
(e.g. 1.12 factor we used here)

® Recent work says “no”.
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Supercond. Sci. Technol. 29 (2016) 054006 (9pp) doi:10.1088 /0953-2048,/29,/5 /054006

Sample and length-dependent variability of
77 and 4.2K properties in nominally identical
RE123 coated conductors

L Rossi', X Hu, F Kametani, D Abraimov, A Polyanskii, J Jaroszynski and
D C Larbalestier
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Figure 3. /. as a function of position at Blle = 0.5 T and at Bl- 0 (deg')

lab = 0.6 T at 77 K in conductor 84 as a function of position. A
tendency for /. to drop for Hlle that correlates to /. rising for Hllab is
evident.

Figure 4. J. angular dependence for tapes S1, S2, and S4.
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A parameter-free approach
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Extracting an analytic expression for
J.(B,0) is a time consuming process:

1.Find an analytic expression
reproducing the angular dependence

2.Find the correct parameters that
reproduce the data - calculation of
effective |, necessary for a large
number of field/angle combinations!

In the example on the left:

1.the J.(B,0) has 11 parameters -
brute force approach time-consuming
- manual tweak

2.Still, the agreement is far from
perfect.



A parameter-free approach

step: 1 - mean error (%) = 2.0051
350 ‘ . . .
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With the parameter-free approach
(see Victor Zermenao’s poster), we
reach an excellent agreement with
experimental data in just six steps.

*No need of thinking about an analytic
formula for J.(B,6).

No need of manual or automatic
tweaking of parameters.

*The interpolated J.(B,0) is ready to
be used in successive simulations
(e.g. calculation of I, or AC losses in a
device).



A parameter-free approach
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With the parameter-free approach
(see Victor Zermenao’s poster), we
reach an excellent agreement with
experimental data in just six steps.

*No need of thinking about an analytic
formula for J.(B,6).

No need of manual or automatic
tweaking of parameters.

*The interpolated J.(B,0) is ready to
be used in successive simulations
(e.g. calculation of I, or AC losses in a
device).



A parameter-free approach
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With the parameter-free approach
(see Victor Zermenao’s poster), we
reach an excellent agreement with
experimental data in just six steps.

*No need of thinking about an analytic
formula for J.(B,6).

No need of manual or automatic
tweaking of parameters.

*The interpolated J.(B,0) is ready to
be used in successive simulations
(e.g. calculation of I, or AC losses in a
device).



A parameter-free approach

step: 4 - mean error (%) = 0.49598
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With the parameter-free approach
(see Victor Zermenao’s poster), we
reach an excellent agreement with
experimental data in just six steps.

*No need of thinking about an analytic
formula for J.(B,6).

No need of manual or automatic
tweaking of parameters.

*The interpolated J.(B,0) is ready to
be used in successive simulations
(e.g. calculation of I, or AC losses in a
device).



A parameter-free approach

250 step: 5 - mean error (%) = 0.40022
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With the parameter-free approach
(see Victor Zermenao’s poster), we
reach an excellent agreement with
experimental data in just six steps.

*No need of thinking about an analytic
formula for J.(B,6).

No need of manual or automatic
tweaking of parameters.

*The interpolated J.(B,0) is ready to
be used in successive simulations
(e.g. calculation of I, or AC losses in a
device).



A parameter-free approach

250 step: 6 - mean error (%) = 0.33579
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With the parameter-free approach
(see Victor Zermenao’s poster), we
reach an excellent agreement with
experimental data in just six steps.

*No need of thinking about an analytic
formula for J.(B,6).

No need of manual or automatic
tweaking of parameters.

*The interpolated J.(B,0) is ready to
be used in successive simulations
(e.g. calculation of I, or AC losses in a
device).

<l From experimental data to a ready-to-go model in 5 minutes!



|. calculated with the parameter-free method and with
analytic expressions agree well.
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Conclusion (2)

® [tis important to check how the short sample on which | (Bgy+,0) IS
measured is representative of the whole tape.
» Recent work suggests variations of pinning center quality along the length.
® Parameter-free method allows going from experimental | (Bg,-,6) data
to a ready-to-use local J.(B| oca ,0) model in a few minutes.
» No complex analytic expressions
» No parameter tweaking
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The codes for |, calculation are available for free.
The one for extracting J.(B,0) will be soon.

[EEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 3, APRIL 2016 4901607

Open-Source Codes for Computing the Critical
Current of Superconducting Devices

Victor M. R. Zermeno, Salman Quaiyum, and Francesco Grilli

HTS MODELLING www.htsmodelling.com
WORKGROUP
O
CoMSOoL ‘% ‘\ [f{ b

MATLAB
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