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Introduction

• This talk presents a development of the Green’s function method into a 
Boundary Element Method (BEM) that enables efficient combination with the 
Finite Element Method

• The method developed also enables application to the diffusion equation 
which together with the Laplace transform method solves the High 
Temperature Superconductivity (HTS) modeling problem using the A-V 
Formulation
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Objectives

• Develop Green’s function over a uniform finite region of arbitrary shape and 
dimension for the diffusion equation into a BEM

• Develop Green’s function over a finite multi-domain region of arbitrary shape and 
dimension with different material properties for the diffusion equation into a BEM

• Use BEM over finite region with uniform properties and FEM over region with non-
uniform properties in a manner that retains all the good aspects of both methods

• Apply a Laplace transform to enable coupling the BEM and FEM method for the 
diffusion equation
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Motivation

• Construction of Green’s function over a finite region enables decoupling of 
FEM and BEM matrix forms

• BEM enables collapsing bulk domains into boundary domains hence 
reducing mesh requirement whilst maintaining accuracy

• By transforming diffusion equation into the s-domain, the time aspects of the 
HTS model can be extracted from the domain onto the boundaries recovering 
the essential attractiveness of the BEM method
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BEM-FEM (de)-Coupling
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Illustration of two 1-D g-functions

g1 g2

( ) ∫∫ Ω+Γ∇−∇= JdgdgAAgA 1111 µ

( ) ∫∫ Ω+Γ∇−∇= JdgdgAAgA 2222 µ

• Simple 1-dimensional illustration of Green’s function for a uniform finite 
domain

JA µ−=∇ 2

( )xg δ−=∇ 2 g is a Piecewise 

affine function
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Illustration of two 1-D g-functions

g1 g2

• Simple 1-dimensional illustration of Green’s function for a multi-domain finite 
region

Region2Region1 Region3
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Illustration over multi-domains

g

( ) 2 ∫∫ +Γ∇−∇= dgAAgA

Region2

Boundary conditions for region 2 are obtained using the 

method of the earlier slide. If region has nonlinear 

properties, FEM can be used to solve within that region
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• Extension to 2 dimensions

( )xG δ−=∇2

g1

g2

g3

g4

g5

g6

g7

g8

Superposition of piecewise affine functions 

with radial and angular dependence

Similar extension to 3D

( )( )∑
=

+
− <<=

N

i
iii xygG

1
1

1 /tan θθ

Plot of G at different points, X0,Y0

X0,Y0

X0,Y

X0,Y0

X0,Y0 X0,Y
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• Simple 1-dimensional illustration of Green’s function for a multi-domain finite 
region with nonlinear material properties

• Conventionally the FEM-BEM coupling is carried out for multi-domain systems. 
Where BEM is used for the boundaries of large bounding regions and FEM for 
nonlinear sub-domains

• Using the fundamental solution for the conventional BEM method results in coupled 
FEM-BEM matrix forms that may be difficult to solve since resulting coupled 
matrices do not have the attractive features of conventional FEM matrix forms

• The conventional FEM-BEM coupled matrices are also full matrices that can pose 
memory storage problems since they can not be stored sparse forms

• Using the green’s functions developed in this presentation for finite regions results in 
decoupled matrix forms that retains all the attractive features of FEM and BEM 
individually



Implementation via Freefem++
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• Freefem++ does not explicitly implement any kind of BEM but the software 
package provides enough computational capability within its environment to 
enable the approach in this talk to be tested

• Boundary elements and interior elements (nodes, edges, triangles, tetrahedra) for 2D 
and 3D can be accessed from created Freefem++ meshes

• Line integrals and surface integrals can be easily calculated using modules within 
Freefem++

• Computational and graphical post-processing is also very easily carried within the 
Freefem++ software environment

• Exporting data for computational and graphical post-processing is also possible
• Freefem++ also provides and links to a variety of direct and iterative solvers for 
sparse and full matrices 
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( ) ∫∫ +Γ∇−∇= GJddGAAGA µ

• Solving simple magneto-static problems

A −=∇ 2

G δ−=∇2

J



BEM-FEM (de)-Coupling

Bologna, Italy 12June 16, 2016

( ) ( ) ( ) ( ) ( )( ) Γ∇−∇= ∫
− dsgsAsAsgesA xyzxyz

Ct*

• Application to the Diffusion Equation
• Green’s functions in this case become exponentials of the affine functions used 
for solving static Laplace or Poisson equations

• Apply Laplace transform and activation function to convert bulk integrals into 
boundary integrals

( ) ( ) 02 =+∇ sskAsAxyz

( )tzyxsskgsgxyz ,,,)()(2 δ−=+∇

Boundary computation

Initial terms vanish because of activation function 

applied to both input signal and green’s function



If the sub-domain has 

nonlinear parameters, FEM 

can be used to solve. Thermo

electro-magnetic coupling is 

also easily incorporated in the 

FEM solution

Obtain the inverse Laplace of 

the solution. Inversion is 

carried out once for the entire 

duration of the time 

simulation

Obtain the Laplace 

transform of both the 

magnetic field input 

and greens functions

Application to A-V Formulation for HTS modeling
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Move from larger 

bounding domains to 

smaller sub-domains

Use BEM to obtain 

boundary conditions 

for bounding inner 

sub-domains

Greens functions are 

obtained for points on 

boundary of bounding 

sub-domain

Use the Laplace transform of 

the diffusion equation to 

obtain solution of the 

diffusion at each bound on 

the bounding sub-domain



Illustrative 2D Examples
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Illustrative 3D Examples
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Results for twisted 

tapes still in the works



Conclusion and Further Work
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• The BEM method outlined shows that simple piecewise functions can be easily 
constructed to satisfy the requirements of the Dirac function so it can be used for 
numerical computations involving the Poisson and Diffusion equations

• The Green’s function obtained can be used to decompose sub-domains from larger 
domains that can be solved using the FEM method if nonlinear parameters are 
involved

• Using the Laplace transform, the diffusion equation can also be decomposed from 
the domain bulk onto the domain boundaries

• Verify outlined methodology experimentally and with standard numerical software 
computation tools


