Modeling of superconductors interacting with non-linear magnetic materials: 3D variational principles, force-free effects and applications

Enric Pardo, Milan Kapolka

Institute of Electrical Engineering Slovak Academy of Sciences

What is the optimum enery loss in superconductors?

Two tapes connected at the ends

For superconductors:

the highest possible!

Superconductors optimize the entropy production, not the loss!

Superconducors can be modelled as an optimization problem

E Pardo and M Kapolka

Modeling of superconductors interacting with non-linear magnetic materials: **3D variational principles**, force-free effects and applications

Enric Pardo, Milan Kapolka

Institute of Electrical Engineering Slovak Academy of Sciences

Modeling of superconductors interacting with non-linear magnetic materials: **3D variational principles**, force-free effects and applications

Enric Pardo, Milan Kapolka

Institute of Electrical Engineering Slovak Academy of Sciences

We acknowledge funding from:

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 280432

ERDF ITMS 26240120011 ITMS 26230120002

Talk available at **zenodo.org** Citable DOI

E Pardo and M Kapolka

General variational principle Power applications 3D modelling Non-linear magnetic materials

Flux-free effects cause anisotropic E(J)

Anisotropic power law:

$$\mathbf{E}(\mathbf{J}) = E_c \left[\frac{J_{\parallel}^2}{J_{c\parallel}^2} + \frac{J_{\perp}^2}{J_{c\perp}^2} \right]^{\frac{n-1}{2}} \cdot \left(\frac{J_{\parallel}}{J_{c\parallel}} \frac{J_{\perp}}{J_{c\parallel}} \mathbf{e}_{\parallel} + \frac{J_{\perp}}{J_{c\perp}} \mathbf{e}_{\perp} \right)$$

A Badia, C Lopez DOI: 10.1088/0953-2048/28/2/024003

E Pardo and M Kapolka

Minimum Magnetic Entropy Production (MEMEP)

Equations

$$\mathbf{E}(\mathbf{J}) = -\frac{\Delta \mathbf{A}}{\Delta t} - \nabla \phi$$
 for given $\mathbf{E}(\mathbf{J})$ relation $abla \cdot \mathbf{J} = 0$

are the Euler-Lagrange equations of

Minimum Magnetic Entropy Production (MEMEP)

You find J by minimizing the functional

$$L = \int_{V} dV \left[\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{J}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) + \mathbf{\nabla} \mathbf{J} \cdot \mathbf{J} \right]$$
$$U(\mathbf{J}) = \int_{0}^{\mathbf{J}} d\mathbf{J}' \cdot \mathbf{E}(\mathbf{J})'$$

Cross-sectional models:

if you keep the current constrains, you can ignore the scalar potential

E Pardo et al. DOI: 10.1088/0953-2048/28/4/044003

E Pardo and M Kapolka

General variational principle

Power applications

Transformers

Magnets

3D modelling

Non-linear magnetic materials

E Pardo and M Kapolka

General variational principle Power applications Transformers Magnets 3D modelling Non-linear magnetic materials

E Pardo and M Kapolka

Transformer with Roebel cable in low-voltage winding

1 MVA 11 kV/415 V 3 phase transformer **Robinson Research Institute in Wellington and industrial partners**

Roebel cable solenoid

AC loss agrees with model

E Pardo et al. DOI: 10.1088/0953-2048/28/11/114008

General variational principle

Power applications

Transformers

Magnets

- Real geometry
- Continuous approximation
- Screening current induced field

3D modelling

Non-linear magnetic materials

General variational principle

Power applications

- Transformers
- Magnets
 - Real geometry
 - Continuous approximation
 - Screening current induced field

3D modelling

Non-linear magnetic materials

Example winding

26 pancakes400 turns per pancake

pancake 1 radius=50 mm pancake 26

more than 10000 turns

Anisotropic field dependent J_c

Anisotropic field dependent J_c

Important screening currents

Detailed current density at all turns

E Pardo and M Kapolka

General variational principle

Power applications

- Transformers
- Magnets
 - Real geometry
 - Continuous approximation
 - Screening current induced field

3D modelling

Non-linear magnetic materials

Continuous approximation

Pancake coil approximated by taking:

Less turns

No separation between turns

L Prigozhin, V Sokolovsky DOI: 10.1088/0953-2048/24/7/075012

E Pardo and M Kapolka

Practically the same results but faster!

E Pardo and M Kapolka

We computed up to 40000 turns

10000 turns: **2.7 hours** 40000 turns: **2 days**

fulfills requirements for high-field magnets

H W Weijers et al. 2014 IEEE TAS S Awaji et al. 2014 IEEE TAS

E Pardo and M Kapolka

Up to 500 000 elements in the superconductor

Computing time scales as second power

E Pardo and M Kapolka

General variational principle

Power applications

Transformers

Magnets

- Real geometry
- Continuous approximation
- Screening current induced field

3D modelling

Non-linear magnetic materials

Screening currents are important

E Pardo and M Kapolka

Screening currents are important

E Pardo arXiv:1602.05433 **Stationary state** after several cycles current time 0.8 0.6 0.4 magnetic field 0.2 B from at bore center screening 0 currents [T] -0.2 -0.4 -0.6 50 100 150 200 250 0 current [A]

E Pardo and M Kapolka

The variational method is efficient for large number of elements

Promising for 3D modelling

E Pardo and M Kapolka

General variational principle Power applications 3D modelling Non-linear magnetic materials General variational principle Power applications 3D modelling Novel variational principle Force-free effects in films 3D bulk

Non-linear magnetic materials

E Pardo and M Kapolka

Novel 3D variacional principle

M Kapolka, E Pardo arXiv:1605.09610

 $\mathbf{J} = \nabla \times \mathbf{T} \rightarrow \mathbf{current potential}$

 $\boldsymbol{\mathsf{T}}$ is the minimization variable

$$L = \int_{V} \mathrm{d}V \left[\frac{1}{2} \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{J}}{\Delta t} + \Delta \mathbf{J} \cdot \frac{\Delta \mathbf{A}_{a}}{\Delta t} + U(\mathbf{J}) \right]$$

or

$$L = \int_{V} \mathrm{d}V \left[\frac{1}{2} \Delta \mathbf{T} \cdot \frac{\Delta \mathbf{B}_{J}}{\Delta t} + \Delta \mathbf{T} \cdot \frac{\Delta \mathbf{B}_{a}}{\Delta t} + U(\nabla \times \mathbf{T}) \right]$$

You can forget about scalar potential!

Still easy to take transport currents into account

E Pardo and M Kapolka

Thin surface

E Pardo and M Kapolka

Model agrees with thin film formula

Power-law exponent **1000** Tape midplane

Applied field: 20 mT

E Pardo and M Kapolka

General variational principle Power applications 3D modelling Novel variational principle Force-free effects in films 3D bulk

Non-linear magnetic materials

E Pardo and M Kapolka

Flux-free effects cause anisotropic E(J)

Anisotropic power law:

$$\mathbf{E}(\mathbf{J}) = E_c \left[\frac{J_{\parallel}^2}{J_{c\parallel}^2} + \frac{J_{\perp}^2}{J_{c\perp}^2} \right]^{\frac{n-1}{2}} \cdot \left(\frac{J_{\parallel}}{J_{c\parallel}} \frac{J_{\perp}}{J_{c\parallel}} \mathbf{e}_{\parallel} + \frac{J_{\perp}}{J_{c\perp}} \mathbf{e}_{\perp} \right)$$

A Badia, C Lopez DOI: 10.1088/0953-2048/28/2/024003

E Pardo and M Kapolka

Flux-free effects in thin films

E Pardo and M Kapolka

General variational principle Power applications 3D modelling Novel variational principle Force-free effects in films 3D bulk

Non-linear magnetic materials

E Pardo and M Kapolka

Flux-free effect increases J_c

Perpendicular field component: 23 mT Film top view

E Pardo and M Kapolka

Asymmetric current saturation

Perpendicular field component: **50 mT** Film **top view**

E Pardo and M Kapolka

General variational principle Power applications 3D modelling Novel variational principle Force-free effects in films 3D bulk

Non-linear magnetic materials

E Pardo and M Kapolka

3D bulk

Frequency: 50 Hz sinusoidal Power-law exponent: 100 $J_c = 10^8 \text{ A/m}^2$

Good resolution for 3D

E Pardo and M Kapolka

B_a

3D current flow

Vertical component is important

E Pardo and M Kapolka

Vertical component is important

E Pardo and M Kapolka

3D variational principle for the magnetic material

Reversible non-linear materials

Equation

is the Euler-Lagrange equation of

$$L_M = \int_V dV \left[\underbrace{U(\mathbf{M})}_{V} - \frac{1}{2} \mathbf{B}_M \cdot \mathbf{M} - \mathbf{B}_a \cdot \mathbf{M} - \mathbf{B}_J \cdot \mathbf{M} \right]$$
$$U(\mathbf{M}) = \int_0^{\mathbf{M}} d\mathbf{M}' \cdot \mathbf{B}(\mathbf{M}')$$

E Pardo and M Kapolka

3D variational principle for the magnetic material

$$L_{M} = \int_{V} dV \left[\underbrace{U(\mathbf{M})}_{V} - \frac{1}{2} \mathbf{B}_{M} \cdot \mathbf{M} - \mathbf{B}_{a} \cdot \mathbf{M} - \mathbf{B}_{J} \cdot \mathbf{M} \right]$$
$$U(\mathbf{M}) = \int_{0}^{\mathbf{M}} d\mathbf{M}' \cdot \mathbf{B}(\mathbf{M}')$$

Problem restricted to the magnetic material volume

Functionals for magnetic material and superconductor solved iteratively

Superconductor with non-linear magnetic substrate

Magnetic substrate saturates in part of the coil

100 turns, 50% of critical current

E Pardo and M Kapolka

Conclusions

E Pardo and M Kapolka

Cross-sectional variational method

Results agree with experiments: transformer

Models coils with more than 10 000 turns for real cross-section 40 000 turns for continuous approximation

Up to half million elements in the superconductor

High potential for 3D modelling

E Pardo and M Kapolka

3D modelling

Novel variational principle in T formulation

Takes force-free effects into account

Thin films:

Tilted magnetic field changes current patterns

Bulk samples:

3D current penetration

Significant vertical component due to shape effects

Full power of the method still not achieved!

Non-linear magnetic material

3D variational principle

Restricts to the material volume

Modelled coils with magnetic substrate for one hundred turns

E Pardo and M Kapolka

Variational methods are suitable for power and magnet applications

Thank you for your attention!

E Pardo and M Kapolka

Would you like to know more?

Talk available at zenodo.org

E Pardo and M Kapolka

AC loss in test coils agrees with experiments

E Pardo et al. DOI: 10.1088/0953-2048/28/4/044003

Magnetic field dependent J_c

Magnetic field dependent power-law exponent

E Pardo and M Kapolka

Thin surface

Frequency: **50 Hz** sinusoidal Power-law exponent: **30** $J_c = 10^{10} \text{ A/m}^2$

E Pardo and M Kapolka

Jc(B) dependence

E Pardo and M Kapolka

Power loss

