Energy-Based Variational Model for Vector Magnetic Hysteresis

L. Prigozhin1 V. Sokolovsky1 J. W. Barrett2 S. E. Zirka3

1Ben-Gurion University of the Negev, Israel
2Imperial College London, UK
3Dnepropetrovsk National University, Ukraine

June 15, 2016
1. Magnetic levitation systems
2. Coated conductors with soft magnetic substrates.
3. Metamaterials used for:
 - magnetic cloaking;
 - distant invisible transfer of magnetic field;
 - ...
Models for hysteresis in type-II superconductors are better developed.

Modeling magnetic materials in hybrid systems: a constant (finite or infinite) permeability μ_r or a nonlinear function $\mu_r(h)$.

Should the magnetic hysteresis be neglected?
Models for hysteresis in type-II superconductors are better developed.

Modeling magnetic materials in hybrid systems: a constant (finite or infinite) permeability μ_r or a nonlinear function $\mu_r(h)$.

Should the magnetic hysteresis be neglected? Not always.

Example: coated conductors with a Ni substrate.

- The characteristic magnetic field for a sc strip (Brandt and Indenbom, 1993), $H_c = J_c/\pi$, is of the order $10^3 - 10^4$ A/m.
- Coercivity of a Ni substrate is similar, about 6000 A/m (Ijaduola et al. 2004).
Wanted: a model for magnetic hysteresis

Requirements: the model should

- be vectorial:

![Diagram showing b lines for a weak (left) and strong (right) external field.]

Fig: \(b \) lines for a weak (left) and strong (right) external field.

- predict the magnetization losses;
- be able to account for material anisotropy;
- be included into the Maxwell equations as a local constitutive relation with memory.
Models for quasistationary hysteresis

The most popular macroscopic models are

- **The Preisach model (1935):** a black-box-type method for storing, and using for interpolation, a vast amount of experimental data.

- The Jiles-Atherton model (1984): much simpler to implement but can show a nonphysical behaviour and needs a patch, not sufficiently accurate.

The models are scalar; their vectorial versions exist but are not physically justified too.

Energy loss: can be estimated only for closed loops.
The most popular macroscopic models are

- **The Preisach model (1935):** a black-box-type method for storing, and using for interpolation, a vast amount of experimental data.

- **The Jiles-Atherton model (1984):** much simpler to implement but can show a nonphysical behaviour and needs a patch, not sufficiently accurate.
The most popular macroscopic models are

- The Preisach model (1935): a black-box-type method for storing, and using for interpolation, a vast amount of experimental data.

- The Jiles-Atherton model (1984): much simpler to implement but can show a nonphysical behaviour and needs a patch, not sufficiently accurate.

Other disadvantages:

- The models are scalar; their vectorial versions exist but are not physically justified too.

- Energy loss: can be estimated only for closed loops.
The Bergqvist (1997) model:

- based on consistent energy arguments and an assumption on the dry-friction-like pinning of the domain walls;
- intrinsically vectorial;
- the dissipated and stored energies are predicted for any moment in time.
The Bergqvist (1997) model:

- based on consistent energy arguments and an assumption on the dry-friction-like pinning of the domain walls;
- intrinsically vectorial;
- the dissipated and stored energies are predicted for any moment in time.

Subsequent works: Bergqvist et al. (97, 04, 14) Henrotte, Hameyer, Steentjes, Geuzaine, … (06, 12, 13, 14).

Weak points: derivation and numerical implementation
An approximation to make the magnetization update explicit. Should be avoided in the vectorial case.
This talk:

- A simplified energy-based model:
 - derivation;
 - variational structure;
 - numerical algorithm.
- The composite Bergqvist model.
- Identification of the parameters in the model.
- Coupling with the Maxwell equations: an example.
A simplified model: Assumption 1

A1: The density of magnetic field energy in a magnetic material

\[W = \frac{1}{2} \mu_0 h^2 + U(m) \] changes as

\[\dot{W} = h \cdot \dot{b} - |r \dot{m}|, \]

where \(b = \mu_0 (h + m) \),

\(h \cdot \dot{b} \) - the rate of magnetic field work, and

\(|r \dot{m}| \) - the rate of dissipation due to the irreversible movement of magnetic domain walls.

Here \(r \) is a scalar or a symmetric positive-definite matrix.
A simplified model: Assumption 1

A1: The density of magnetic field energy in a magnetic material

\[W = \frac{1}{2} \mu_0 h^2 + U(m) \] changes as

\[\dot{W} = h \cdot \dot{b} - |r \dot{m}|, \]

where \(b = \mu_0 (h + m) \),
\(h \cdot \dot{b} \) - the rate of magnetic field work, and
\(|r \dot{m}| \) - the rate of dissipation due to the irreversible movement of magnetic domain walls.

Here \(r \) is a scalar or a symmetric positive-definite matrix.

This yields

\[\mu_0 h \cdot \dot{h} + \nabla U(m) \cdot \dot{m} = \mu_0 h \cdot (\dot{h} + \dot{m}) - |r \dot{m}| \]

or

\[(h - f(m)) \cdot \dot{m} = |k \dot{m}|, \]

where \(f(m) = \frac{1}{\mu_0} \nabla U(m) \) and \(k = \frac{1}{\mu_0} r \).
Bergqvist presented the magnetic field as a sum,
\[h = h_r + h_i, \]
where
the field \(h_r = f(m) = \frac{1}{\mu_0} \nabla U(m) \) is called reversible, because the
magnetic work it delivers is fully converted into internal energy.
It is assumed \(h_r \parallel m \).
The field \(h_i = h - h_r \) is called irreversible and is related to dissipation.
Bergqvist presented the magnetic field as a sum,
\[h = h_r + h_i, \]
where
the field \(h_r = f(m) = \frac{1}{\mu_0} \nabla U(m) \) is called reversible, because the magnetic work it delivers is fully converted into internal energy. It is assumed \(h_r \parallel m \).
The field \(h_i = h - h_r \) is called irreversible and is related to dissipation.
The energy-based relation \((h - f(m)) \cdot \dot{m} = |k\dot{m}| \) becomes
\[h_i \cdot \dot{m} = |k\dot{m}|. \]

A2: For an isotropic material this relation holds if the following “dry-friction law” is postulated:
\[|h_i| \leq k; \]
if \(|h_i| < k \) then \(\dot{m} = 0 \); if \(\dot{m} \neq 0 \) it has the direction of \(h_i \).
Equivalent formulation of this law is:

\[h_i \in \tilde{K} := \{ u \in \mathbb{R}^3 : |k^{-1}u| \leq 1 \} \quad \text{and} \quad \dot{m} \cdot (u - h_i) \leq 0 \quad \text{for any} \quad u \in K. \]
Equivalent formulation of this law is:

\[h_i \in \tilde{K} := \{ u \in \mathbb{R}^3 : |k^{-1}u| \leq 1 \}\] and

\[\dot{m} \cdot (u - h_i) \leq 0 \text{ for any } u \in \tilde{K}. \]

Written in this form, the constitutive relation:

- agrees with the "dry friction law" also in the anisotropic case;
- means that \(\dot{m} \) is a subgradient of the indicator function of the set \(\tilde{K} \) at the point \(h_i \) (the variational structure);
The variational structure

Equivalent formulation of this law is:

\[h_i \in \tilde{K} := \left\{ u \in \mathbb{R}^3 : |k^{-1}u| \leq 1 \right\} \quad \text{and} \quad \dot{m} \cdot (u - h_i) \leq 0 \quad \text{for any} \quad u \in K. \]

Written in this form, the constitutive relation:

- agrees with the "dry friction law" also in the anisotropic case;
- means that \(\dot{m} \) is a subgradient of the indicator function of the set \(\tilde{K} \) at the point \(h_i \) (the variational structure);
- is similar to the relations between:
 - the rate of plastic deformations and stress in elasto-plasticity with the yield stress \(k \);
 - the electric field and current density in type-II superconductivity models.
S1. Let $h(t)$ be given.
If $h_i \in \tilde{K}$ then $h_r = h(t) - h_i$ belongs to the set

$$K(t) := \{u \in \mathbb{R}^3 : |k^{-1}(h(t) - u)| \leq 1\}.$$

The model can be reformulated for h_r,

Find $h_r \in K(t)$ and m such that

$$\dot{m} \cdot (u - h_r) \geq 0 \text{ for any } u \in K(t),$$

and discretized in time,

Find $h_r \in K(t)$ and m are such that

$$(m - \hat{m}) \cdot (u - h_r) \geq 0 \text{ for any } u \in K(t).$$

Finally, we express m via h_r.
S2. Since \(h_r \parallel m \) we set \(m = M_{an}(h_r) \frac{h_r}{h_r} \), where \(M_{an} \) is a nondecreasing anhysteretic function s.t. \(M_{an}(0) = 0 \), and define

\[
S(u) = \int_0^u M_{an}(s)ds.
\]

Then \(m = \nabla S(h_r) \).
Numerical solution: Step 2

S2. Since $h_r \parallel m$ we set $m = M_{an}(h_r) \frac{h_r}{h_r}$, where M_{an} is a nondecreasing anhysteretic function s.t. $M_{an}(0) = 0$, and define

$$S(u) = \int_0^u M_{an}(s)ds.$$

Then $m = \nabla S(h_r)$. On each time level the problem becomes

Find $h_r \in K(t)$ such that

$$(\nabla S(h_r) - \hat{m}) \cdot (u - h_r) \geq 0$$

for any $u \in K(t)$.

Equivalently, h_r is the unique solution to the optimization problem

$$\min_{u \in K(t)} \{S(u) - \hat{m} \cdot u\}$$

which we could solve very efficiently (2-3 iterations). Bergqvist and other authors after him used instead a projection: $h_r = Proj_{K(t)}\{\hat{h}_r\}$ (explicit formulae).
Scalar example: \(h = (H_m \sin t, 0) \).

\(M_{an} \) and \(k \) are chosen to approximate the major hysteresis loop.

The minor loop and the initial magnetization curve are bad.
Rotating field: \(h = H_m(t)(\cos t, \sin t) \). Same \(M_{an} \) and \(k \). The amplitude \(H_m(t) \) first grows, then remains constant.

The model solution \(\mathbf{m} = (m_x, m_y) \) (solid line) and the one based on the explicit approximation (dashed line) are close in this case.
The simplified model: Examples

Left: elliptic field
\[h = H_m(t)(3 \cos t, \sin t); \]

Right: anisotropic case
\[k = \text{diag}(k_0, 0.5k_0). \]

Explicit approximation (dashed line) vs model solution (solid line).
Modification 1: The composite Bergqvist model

One dry friction coefficient is replaced by a distribution of the pinning strength values.

In practice, a mixture of N types of “pseudparticles” is assumed,

\[m = \sum_{l=1}^{N} w^l m^l, \]

where the l-th particle type has the magnetization m^l and volume fraction $w^l \geq 0$; $\sum_{l=1}^{N} w^l = 1$.

Here $m^l = M_{an}(h_r^l) \frac{h_r^l}{h_r^l}$ obeys the dry friction law and h_r^l solves

\[\min_{u \in K^l(t)} \{ S(u) - \hat{m}^l \cdot u \}, \]

where $K^l(t) := \{ u \in \mathbb{R}^3 : |\{ k^l \}^{-1}(h(t) - u)| \leq 1 \}$.

To account for the partial reversibility of material response set, say, $k^1 = 0$ and $K^1(t) := \{ h(t) \}$.

Vector magnetic hysteresis model

HTS Modelling 2016, Bologna
Modification 1: The composite Bergqvist model

Example: \(N = 20, \ w^l \equiv 1/N, \ k^l = 140 \frac{l-1}{N-1} \) A/m.

Improvement of the initial magnetization curve and minor hysteresis loops.
The idea: magnetic domains do not evolve independently driven by the magnetic field $h(t)$ but interact. The “driving force” is

$$h_{\text{eff}} = h + \alpha m,$$

where α is a material parameter. Such approach was used also for other models (J-A, Preisach, etc.); an explanation: Della Torre, 99.
Modification 2: The interaction term

With \(h_{\text{eff}} = h + \alpha m \) we find \(h_l^l \) for \(l = 1, \ldots, N \) solving

\[
\min_{u \in K^l(t,m)} \{ S(u) - \hat{m}^l \cdot u \}
\]

with the sets \(K^l(t) \) replaced by

\[
K^l(t, m) := \{ u \in \mathbb{R}^3 : |(k^l)^{-1}(u - h(t) - \alpha m)| \leq 1 \}
\]

if \(k^l \neq 0 \) and \(K^l(t, m) := \{ h(t) + \alpha m \} \) otherwise. Since

\[
m = \sum_{l=1}^{N} w^l m^l = \sum_{l=1}^{N} w^l M_{an}(h_r^l) \frac{h_r^l}{h_r^l}.
\]

the constraints in the opt. problems depend on the unknown solution: the whole problem becomes quasi-variational.
Identification of parameters

Parameters of the model:

- anhysteretic function M_{an}, a spline;
- weights w^l: assuming $N = 41$ and $k^l = 20 \times (l - 1) \text{ A/m}$ we seek w^l s.t. $w^l \geq 0$, $\sum_{l=1}^{N} w^l = 1$;
- the material parameter α.

A non-oriented steel: the experimental data and fitting results
Identification of parameters

The anhysteretic function M_{an} (left) and weights w^l (right). The reversible part ($k^1 = 0$) is strong; only 17 of 41 possible weights are nonzero;

$$\alpha = 8.8 \cdot 10^{-4}$$
We assumed the material is isotropic and included the hysteresis model with the identified parameters as a constitutive relation with memory,

\[m = M[h_{\text{eff}}], \]

into the Maxwell equations. The local operator \(M \) keeps track of the internal variables \(h_r \) and \(m_l \) at each point of a ferromagnet.

A Newton-like iterations with the numerically approximated derivatives were used to treat this nonlinearity.

Another constitutive relation is the Ohm law, \(e = \rho j \).

The magnetization and eddy current losses, respectively, are:

\[P_m = \int_0^t \int_\Omega \sum_{l=1}^N |r_l m_l'|, \quad P_j = \int_0^t \int_\Omega \rho |j|^2. \]
We solved a 2D eddy current and magnetization problem using an A-V formulation. Hence, the computation was confined to the domain of fm or conducting material.

The formulation is similar to that proposed in [d’Aquino et al. 2013] but employs the Bergqvist model for magnetization.

The geometrical configuration: hollow cylinder in a perpendicular field.

The fe mesh: 6424 triangles; 2352 triangles in the fm domain.
Simulation results

The external field first grows as $h_e(t) = \{10^3 t, 0\}$ A/m for 100 s, then rotates 90° counter clockwise in the next 100 s.

Magnetic induction, b.
Simulation results

Magnetization, $|m|$. Left: $t = 100$ s; right: $t = 200$ s.
Simulation results

Eddy current density, j. Left: $t = 100$ s; right: $t = 200$ s.

Losses (per unit of length):
- magnetization - 2.3 J/m, eddy current - 0.7 J/m.
Conclusions

The considered model

- is based on consistent energy arguments and a clear albeit simplified dry friction assumption;
- is vectorial, has a variational formulation, and can be employed in a f.e.m simulation;
- has sufficient degrees of freedom to be fitted to hysteretic behaviour of different materials;
- predicts the dissipation loss at any moment in time.

The typically employed simplifying approximation can be inaccurate and should be avoided.

Further comparison to experiments would be desirable.
Conclusions

- The considered model
 - is based on consistent energy arguments and a clear albeit simplified dry friction assumption;
 - is vectorial, has a variational formulation, and can be employed in a f.e.m simulation;
 - has sufficient degrees of freedom to be fitted to hysteretic behaviour of different materials;
 - predicts the dissipation loss at any moment in time.

- The typically employed simplifying approximation can be inaccurate and should be avoided.

- Further comparison to experiments would be desirable.

Thank you!