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Motivation

I 1st HTS Roebel-cable based R&D
magnet: Feather M-0

I EuCARD-2 project lead by CERN
I Predicting magnetization and ramp

losses is important
I Need for efficient modelling tools and

methods arises
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Figure: 3D depiction of FM-0
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Figure: Modelling domain



Methodology

I We model current penetration using the minimum magnetic energy
variation-principle in 2D

I The modelling domain is divided into rectangular elements
I Discretized Lagrangian:

F (∆J) = 1
2∆JT M∆J

Subjected to constraints on J , and ramp current
I J limited by B (Kim model), or constant Jc (Bean model)

I Minimization carried out using Interior point optimizer (IPOPT)
I Simulation tool was programmed in C++ using the Riemannian

manifold interface of Gmsh.
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Simulation approaches
I Bean model:

1. Ramp current constraint on each cable (Bean CC/cable)
2. Ramp current constraint on each tape (Bean CC/tape)

I Kim model:
3. Ramp current constraint on each cable (Kim CC/cable)
4. Ramp current constraint on each tape (Kim CC/tape)
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Results

I Benchmarking against Norris strip formula
I Current distribution in modelling domain
I Magnetization in magnet’s center
I Ramp losses



Benchmarking against Norris strip formula: Bean model

I Convergence analysis:
I Loss vs. elements
I Loss vs. time-steps (integrating P(t) over cycle)
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Current distribution in modelling domain

I Current distributions were
computed for each time-step

I Each ∆t corresponds to change
∆I in ramp current

I Coil Ic was determited with Kim
model: 11.5 kA

I Cases result in different current
penetration
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Magnetization in magnet’s center

I Computed from the magnetization currents: J − JUNIFORM
I Tape-wise current condition resulted in largest magnetization field:

∼3.2 mT (Kim model)

Table: Kim CC/tape - normalized
magnetization

CC/ Kim Bean
tape 1 0.89
cable 0.53 0.59
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Ramp losses

I Tape-wise current condition
resulted in smallest loss per
cycle: ∼ 2.47 J/m (Kim)

I 27 km long string of magnets
would generate ∼67 kWh heat
energy per cycle (Kim CC/tape)

Table: Kim CC/tape - normalized
ramp losses over cycle

CC/ Kim Bean
tape 1 1.43
cable 1.75 2.18
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Conclusions

I MMEV-based simulation tool for predicting magnetization and ramp
losses in HTS accelerator magnet
I Uses IPOPT for minimizing the MMEV-Lagrangian

I Magnetization and ramp losses were computed using 4 different
approaches

I Cable-wise current condition: Less magnetization, but larger losses
I Real situation is in between these two current condition cases

I Contact resistance
I Transposition length
I Current terminal

I Experiments will give us more information
I MMEV-solver with IPOPT performed well

I Outlook: Using parallelization, more complex magnets could be simulated
rapidly
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CHEERS!


