Modelling Ramp Losses and Magnetization in a Roebel-cable Based HTS Accelerator Magnet Prototype

Janne Ruuskanen[†], Antti Stenvall[†], Valtteri Lahtinen[†], Enric Pardo[‡]

†Department of Electrical Engineering Tampere University of Technology Tampere, Finland http://notjargon.org janne.ruuskanen@tut.fi ‡Institute of Electrical Engineering Slovak Academy of Sciences Bratislava, Slovakia

HTS Modelling 2016: 5th International Workshop on Numerical Modelling of High Temperature Superconductors June 15-17, 2016 Bologna – Italy

Outline

- Motivation
- Methodology
- Results
- Conclusions

Motivation

Figure: 3D depiction of FM-0

- 1st HTS Roebel-cable based R&D magnet: Feather M-0
- EuCARD-2 project lead by CERN
- Predicting magnetization and ramp losses is important
- Need for efficient modelling tools and methods arises

 We model current penetration using the minimum magnetic energy variation-principle in 2D

- We model current penetration using the minimum magnetic energy variation-principle in 2D
- > The modelling domain is divided into rectangular elements

- We model current penetration using the minimum magnetic energy variation-principle in 2D
- > The modelling domain is divided into rectangular elements
- Discretized Lagrangian:

$$F(\Delta J) = \frac{1}{2} \Delta J^T M \Delta J$$

Subjected to constraints on J, and ramp current

• J limited by B (Kim model), or constant J_c (Bean model)

- We model current penetration using the minimum magnetic energy variation-principle in 2D
- > The modelling domain is divided into rectangular elements
- Discretized Lagrangian:

$$F(\Delta J) = \frac{1}{2} \Delta J^T M \Delta J$$

Subjected to constraints on J, and ramp current

- ▶ J limited by B (Kim model), or constant J_c (Bean model)
- Minimization carried out using Interior point optimizer (IPOPT)

- We model current penetration using the minimum magnetic energy variation-principle in 2D
- ► The modelling domain is divided into rectangular elements
- Discretized Lagrangian:

$$F(\Delta J) = \frac{1}{2} \Delta J^T M \Delta J$$

Subjected to constraints on J, and ramp current

- ▶ J limited by B (Kim model), or constant J_c (Bean model)
- Minimization carried out using Interior point optimizer (IPOPT)
- Simulation tool was programmed in C++ using the Riemannian manifold interface of Gmsh.

Simulation approaches

- Bean model:
 - 1. Ramp current constraint on each cable (Bean CC/cable)
 - 2. Ramp current constraint on each tape (Bean CC/tape)

Simulation approaches

- Bean model:
 - 1. Ramp current constraint on each cable (Bean CC/cable)
 - 2. Ramp current constraint on each tape (Bean CC/tape)
- Kim model:
 - 3. Ramp current constraint on each cable (Kim CC/cable)
 - 4. Ramp current constraint on each tape (Kim CC/tape)

Results

- Benchmarking against Norris strip formula
- Current distribution in modelling domain
- Magnetization in magnet's center
- Ramp losses

Benchmarking against Norris strip formula: Bean model

- Convergence analysis:
 - Loss vs. elements
 - Loss vs. time-steps (integrating P(t) over cycle)

Current distribution in modelling domain

- Current distributions were computed for each time-step
- Each Δt corresponds to change Δl in ramp current

Current distribution in modelling domain

- Current distributions were computed for each time-step
- Each Δt corresponds to change Δl in ramp current
- Coil *I_c* was determited with Kim model: 11.5 kA

Current distribution in modelling domain

- Current distributions were computed for each time-step
- \blacktriangleright Each Δt corresponds to change ΔI in ramp current
- \triangleright Coil I_c was determited with Kim model: 11.5 kA
- Cases result in different current penetration

CC/tape

Magnetization in magnet's center

- Computed from the magnetization currents: $J J_{UNIFORM}$
- Tape-wise current condition resulted in largest magnetization field: ~3.2 mT (Kim model)

Table: Kim CC/tape - normalized magnetization

CC/	Kim	Bean
tape	1	0.89
cable	0.53	0.59

Ramp losses

 Tape-wise current condition resulted in smallest loss per cycle: ~ 2.47 J/m (Kim)

Table:	Kim	CC/ta	ape -	normalized
r	amp	losses	over	cycle

CC/	Kim	Bean
tape	1	1.43
cable	1.75	2.18

Ramp losses

- Tape-wise current condition resulted in smallest loss per cycle: ~ 2.47 J/m (Kim)
- 27 km long string of magnets would generate ~67 kWh heat energy per cycle (Kim CC/tape)

Table: Kim CC/tape - normalized ramp losses over cycle

CC/	Kim	Bean
tape	1	1.43
cable	1.75	2.18

- MMEV-based simulation tool for predicting magnetization and ramp losses in HTS accelerator magnet
 - Uses IPOPT for minimizing the MMEV-Lagrangian

- MMEV-based simulation tool for predicting magnetization and ramp losses in HTS accelerator magnet
 - Uses IPOPT for minimizing the MMEV-Lagrangian
- Magnetization and ramp losses were computed using 4 different approaches

- MMEV-based simulation tool for predicting magnetization and ramp losses in HTS accelerator magnet
 - Uses IPOPT for minimizing the MMEV-Lagrangian
- Magnetization and ramp losses were computed using 4 different approaches
- ► Cable-wise current condition: Less magnetization, but larger losses

- MMEV-based simulation tool for predicting magnetization and ramp losses in HTS accelerator magnet
 - ► Uses IPOPT for minimizing the MMEV-Lagrangian
- Magnetization and ramp losses were computed using 4 different approaches
- Cable-wise current condition: Less magnetization, but larger losses
- Real situation is in between these two current condition cases
 - Contact resistance
 - Transposition length
 - Current terminal

- MMEV-based simulation tool for predicting magnetization and ramp losses in HTS accelerator magnet
 - Uses IPOPT for minimizing the MMEV-Lagrangian
- Magnetization and ramp losses were computed using 4 different approaches
- Cable-wise current condition: Less magnetization, but larger losses
- Real situation is in between these two current condition cases
 - Contact resistance
 - Transposition length
 - Current terminal
- Experiments will give us more information

- MMEV-based simulation tool for predicting magnetization and ramp losses in HTS accelerator magnet
 - Uses IPOPT for minimizing the MMEV-Lagrangian
- Magnetization and ramp losses were computed using 4 different approaches
- Cable-wise current condition: Less magnetization, but larger losses
- Real situation is in between these two current condition cases
 - Contact resistance
 - Transposition length
 - Current terminal
- Experiments will give us more information
- MMEV-solver with IPOPT performed well
 - Outlook: Using parallelization, more complex magnets could be simulated rapidly

CHEERS!