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Motivation

Figure: 3D depiction of FM-0

magnet: Feather M-0
» EuCARD-2 project lead by CERN

losses is important

> Need for efficient modelling tools and
methods arises

» 1st HTS Roebel-cable based R&D
» Predicting magnetization and ramp

Figure: Modelling domain
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Methodology

» We model current penetration using the minimum magnetic energy
variation-principle in 2D

» The modelling domain is divided into rectangular elements

» Discretized Lagrangian:
1
F(A)) = §AJT/\//AJ

Subjected to constraints on J, and ramp current
» J limited by B (Kim model), or constant J. (Bean model)

» Minimization carried out using Interior point optimizer (IPOPT)

» Simulation tool was programmed in C++ using the Riemannian
manifold interface of Gmsh.



Simulation approaches

» Bean model:
1. Ramp current constraint on each cable (Bean CC/cable)
2. Ramp current constraint on each tape (Bean CC/tape)
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Simulation approaches

» Bean model:
1. Ramp current constraint on each cable (Bean CC/cable)
2. Ramp current constraint on each tape (Bean CC/tape)
» Kim model:
3. Ramp current constraint on each cable (Kim CC/cable)
4. Ramp current constraint on each tape (Kim CC/tape)

N
Jc(BHaBL)chO 1+——

By
Kim model

N
N

5
RS
R
R

.
Rt
Nk

R

X
X

X

N

2%

Je/deo

20 0

50
70 %0 3 2
0 [deg.] 1B [T]

CC/cable CC/tape




Results

v

Benchmarking against Norris strip formula

v

Current distribution in modelling domain
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Ramp losses



Benchmarking against Norris strip formula: Bean model

» Convergence analysis:

> Loss vs. elements
> Loss vs. time-steps (integrating P(t) over cycle)
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Current distribution in modelling domain

» Current distributions were ,, me d0EI
computed for each time-step i llll l
» Each At corresponds to change ]
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Current distribution in modelling domain
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» Current distributions were \ il
computed for each time-step i llll
» Each At corresponds to change ‘
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Current distribution in modelling domain

» Current distributions were
computed for each time-step

» Each At corresponds to change

Al in ramp current

» Coil /. was determited with Kim

» Cases result in different current
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Magnetization in magnet’s center

» Computed from the magnetization currents: J — Jynirorm

» Tape-wise current condition resulted in largest magnetization field:
~3.2 mT (Kim model)
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= = = - Bean, CC/tape

Kim, CC/cable
Kim, CC/tape

Table: Kim CC/tape - normalized
magnetization

cc/ \ Kim Bean

tape 1 0.89
cable | 0.53 0.59

B from magnetization currents [mT]
o
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Ramp losses

» Tape-wise current condition
resulted in smallest loss per
cycle: ~ 2.47 J/m (Kim)

Table: Kim CC/tape - normalized
ramp losses over cycle

cc/ \Kim Bean

tape 1 1.43
cable | 1.75 2.18

Loss [W/m]
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Ramp losses

Tape-wise current condition
resulted in smallest loss per
cycle: ~ 2.47 J/m (Kim)

» 27 km long string of magnets
would generate ~67 kWh heat
energy per cycle (Kim CC/tape)

Table: Kim CC/tape - normalized
ramp losses over cycle

cc/ \Kim Bean

tape 1 1.43
cable | 1.75 2.18

Loss [W/m]
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Conclusions

» MMEV-based simulation tool for predicting magnetization and ramp
losses in HTS accelerator magnet

» Uses IPOPT for minimizing the MMEV-Lagrangian

» Magnetization and ramp losses were computed using 4 different
approaches

» Cable-wise current condition: Less magnetization, but larger losses

» Real situation is in between these two current condition cases

» Contact resistance
» Transposition length
» Current terminal

» Experiments will give us more information
» MMEV-solver with IPOPT performed well

» Outlook: Using parallelization, more complex magnets could be simulated
rapidly



CHEERS!



