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* Motivation
 Model description
* Self-protection mechanisms in NI coils

e Stability enhancement mechanisms
* Reducing risk of quenching during charging/discharging

* Preserving magnetic field during quench recovery

e Conclusions
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Motivation
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= Some advantages of NI coils:

= Highly thermally and electrically stable: due to low turn-turn electrical
and heat resistances, current and heat not only flow along conductors but
also across conductors

= High coil constant
= Self-protection may be a possibility

= No need to dump all current—> faster recovery to original state

= Transient conditions must be acceptable for ~1 second or more

= Some disadvantages of Ni coils:

= Uncontrolled current flow (which leads to higher stability)
= Slow charging and discharging time

= Local current concentration

= Self-protected coils have limited control over
= Maximum peak temperature during transients

= Magnetic field profile and magnitude during transients 3
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Goals & General Approach
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= Goals
= Study the underlying mechanisms that enable self-protection in NI coils
= Enhance operational stability by controlling current and heat flows by
manipulating turn-turn electrical and thermal resistances
= Enable mission-critical applications such as aviation motors/generators

= General Approach
= To study quench and charging/discharging behaviors in NI coils, entire
coil must be modeled

= Mutual inductance from all turns of all coils

= Current flow involves entire length of a cluster of neighboring turns during
current sharing occurs

= Thermal propagation remains local

= Electrical behavior must be modeled with spirally-wound turns, not co-

centric turns
= Difficult to model all turnsin 2D or 3D via FEM
= Most viable modeling approach couples equivalent circuit network with 2D

or 3D thermal and magnetic field models
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Coupled multiphysics full-scale NI multi-coil model

NC STATE
UNIVERSITY

Self, mutual
Inductance calculation (L,M)

Equivalent circuit

s Point->volume
(1D) network model

: azimuthal current

Interpolation . radi :
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Quench-enabled equivalent circuit network model
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= Any number of turns and coils, in any dimensions
= Capable of modeling quench w/temperature-dependence and power law for
superconductor current
= Most computationally intense part of model
= Use adaptive # of nodes-per-turn to reduce ODE system size
= Denser nodes-per-turn in highly dynamic volumes, e.g., where quench happens
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3D multi-coil thermal and magnetic field models
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= Thermal + magnetic field models
= Same configuration as network model— any numbers of turns and coils
= Also spirally wound
= Add arbitrary turn-to-turn thermal and electrical contact/interfacial resistances to
manipulate thermal & electrical behaviors

=  Use point-to-3D interpolations and 3D-to-point probes to couple network and 3D
models
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Temperature-dependent homogenized conductors
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Model building via COMSOL GUI

Matlab codes
Convert ODEs, etc into
COMSOL scripts

v

COMSOL scripts
Combined with COMSOL
.mph file

COMSOL Model
runs as single
.mph file

gcﬂwmm GROUP
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P Joon, = 0

Uy _uk+n - jk 1Rrk 1+ ijrk =0 Power law

—L - ZMKI "’V ric (o 1o Te) /

Isc n - . Isc, n
EOIk( . ) - (Ik - 'sc,k)Rn,k =0, VR,k = Eolk( k)
| |

¢,k ck

odename=['ge',num2str(i)];

model.physics.create(odename, 'GlobalEquations');
model.physics(odename).identifier(odename);
model.physics(odename).feature('gel’).set('name’, SSv);
model.physics(odename).feature('gel’).set('equation’, SSe);
model.physics(odename).feature('gel').set('initialValueU', Su0);
model.physics(odename).feature('gel’).set('initialValueUt', Sut0);
model.physics(odename).feature('gel’).set('description’, Sde);
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Self-protection mechanism

NC STATE
UNIVERSITY
Temperature (K) Azimuthal current (A)  Radial current density (A/m?)
t=5ms — g—
Current redistribution ;
occurs along entire turn l:
t = 100 mS At A 1.08x10°
HZ@ N
Complete thermal cutoff las o
(current reverses to outlet) H o
77787 72.354x1o‘
A776 A 380
Complete recovery -
82 260
v7787 7222:2
Y. Wang, W.K. Chan and J. Schwartz, Supercond. Sci. Technol. 29 (2016) 045007 12

— .
SCHWAR" GROUP Department of Materials Science and Engineering



HTS MODELLING 2016

International Workshop on Numerical Modelling
n

Temperature & current v time. location
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Voltage and magnetic field versus time
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* Reducing risk of quenching during charging/discharging
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What is the role of the turn-to-turn contact
resistance on time-to-steady-state? NG STATE
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Current distributions during charging/discharging
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Very non-uniform current distributions in conventional NI
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B There are NI and partially-insulated coils with different constant turn-turn resistances

B Here we proposed grading the turn-turn resistances in a designed manner to control
current and heat flows. There are two variants of this concept:

B Intra-coil grading
B The turn-to-turn resistances are graded with respect to all the turns within the

same coil. The turn-to-turn resistance between two adjacent turns can vary from
those of other turns within the same cail.

H Inter-coil grading
B The turn-to-turn resistances are graded with respect to all the coils within the

same magnet. Every coil within the magnet has a fixed turn-to-turn resistance,
but the resistances may be different from those of other coils within the magnet.

18
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Engineering the transient current distributions via
graded resistances NG STATE

= Currents more evenly distributed radially and axially by intra + inter-
coil grading

Charging in a conventional Charging in a inter-coil Charging in a intra- & inter-
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Effect of grading on charging/discharging times
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Thermal cut-off versus magnetic field drop in a

conventional NI coil NC STATE
T peaks @ t =0.04 s Complete thermal cutoff @ t=0.2 s
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No barrier @ complete
thermal cutoff

With Kapton barrier
at center
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Temperature and central magnetic field profiles
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Problem with single-barrier solution
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= With single Kapton barrier => good B-field preservation but hot spot
created between the start-end gap of the barrier
= Caused by current squeezing through the narrow passage between
the start-end gap
Time=0.0 perature (K) >
A 210
Current squeezes through narrow gap
{ I 80
—x v 77
Hot spot near current leads
25

N
SCHWAR" GROUP Department of Materials Science and Engineering



HTS MODELLING 2016

5™ International Workshop on Numerical Modelling
m nd

Multi-barrier, modified partially-insulated coil L

Add narrow conductive “holes” to center barrier at equal distance to let  "™"¥'™
current flow from one side to the other

Add short “side barriers” to contain heat flow from conductive holes

A special case of intra-coil grading
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= Worst case happens for heater
located inside barriers

= Still recovers even with very high
peak temperatures

Heater 1

Heater 2
(worst case)
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Improved magnetic field stability
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Engineering the current and heat flow via barriers

NC STATE
UNIVERSITY

= Criteria:
=  Minimum turns to maintain self-protection capability
= Size of conductive holes
= Length, thickness and separation of side barriers
= - peak temperature, time to recover
= The more turns, the better and easier to reduce peak T and maintain B-field
= Allow wider separation of side barriers = lesser increase in peak T, as
compared to original NI coil
= Extended barrier as cooling plate?
= Effects on grading?

28
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Conclusions
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= Goals

= Study underlying self-protection mechanisms in NI multi-coil magnets
= Study and manipulate effects of turn-turn resistances
= Enable critical-mission applications

= Results

= Current sharing occurs along the entire turns when a section of the
turn turns normal

= Graded resistances redistribute current evenly, thus reducing the risk
of quenching

= Graded resistance barriers prevent complete thermal cutoff, thus
preserving magnetic field

= More generally — using resistance as a spatially-varying design
variable allows creative approaches to magnet design that
can be driven by the applications
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