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Introduction

The main goal of this presentation is threefold:
Laying out the mixed nodal and edge element method in electromagnetism

Showing its implementation in the open source software Onelab combining the modeller
Gmsh and the FEM solver GetDP

Give a ”light” introduction to homology and cohomology and how it is resolved in Gmsh
(first de Rham’s cohomology group)

A benchmark and a case study are presented as practical examples: a) one single HTS
tape with AC transport current (benchmark 1), b) a solenoidal coil made of commercial
(Re)BCO wires with a ramped transport current. The results of Onelab were compared
to COMSOL Multiphysics R© and Norris’s formula in the simplest case a).

N.B.: To understand the implementation in Onelab, notions of topology and differential
geometry are required and in particular the significance of the homology and cohomol-
ogy groups leading to the homology and cohomology functions in Gmsh and for the
latter its connection to the FEM solver GetDP.
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Mixed nodal and edge finite elements [1, 2]

The nodal finite elements have been widely used in mechanics and thermal analysis and were
mainstreamed in electromagnetism before the venue of the edge elements. The following gives a
brief overview of typical features of those elements.

The nodal elements ensure the continuity of all components from elements to elements (leads to
complication when discontinuities of fields must be taken into account across different media). 3
unknown per nodes and an error of second order.

The edge elements represent the circulation of the vector field solution along edges of the mesh
ensuring the continuity of its tangent component from elements to elements (allowing discontinuity
of the normal component). It is nowadays the preferred choice to model electromagnetic systems.
One unknown per edge of the element (6 in a tetrahedron), error of first order. Whitney 1 elements
are free of divergence (very useful for divergence free solution). Edge elements are more sensitive
to the quality of the mesh (shape of the triangles).

Mixing nodal and edge elements leads to a smaller linear system to work with (more zero entries
in the rigidity matrix) with lesser singularities with a lower number of degrees of freedom (storage
and computational time).
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Benchmark 1 and (Re)BCO pancake

Benchmark 1: one single tape with AC transport current at 50 Hz
1 A single tape having thickness of 1 µm and a width of 12 mm

2 Ic = 300 A, It/Ic = {0.1,0.2, ...,0.9} and n = {25,101}

Case study (work in progress): one pancake coil made of 20
commercial (Re)BCO tapes connected in series with a ramped
transport current

1 Commercial tape having thickness of 1 µm and stabilised by Cu (40 µ m thick)
and a width of 4 mm

2 Ic = 100 A, and n = 38

Power law model: resistivity of the HTS tape

ρ =
Ec

Jn
c

Jn
t , Jc = cst, n = cst, Ec = 1 µV/cm
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Single tape and pancake coil

Figure: Left: single HTS tape (benchmark 1, 12 mm wide). Right: pancake coil made of 20 commercial YBCO tapes connected in
series (4 mm wide).
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h-formulation

Figure: Definition of the domains, Ωc:
conductor, ΩC

c : surrounding
(complementary subspace).

From the Maxwell-Ampère equations ∇×h = j
and the constitutive laws, b = µh, e = ρj, one
can derive the following h-formulation directly
from the Maxwell-Faraday equation, ∇ × e = −
∂t b, leading to,

∇× [ρ∇×h] + ∂t (µh) = 0, (1)

which is valid over the entire domain Ω.

div(b) = 0 is ensured by setting b(t = 0) = 0 [3].
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Weak formulation

From the PDE (1), the following expression is derived over the entire
domain Ω for any test functions v,

ˆ
Ωc

(∇× [ρ∇×h] .v) +

ˆ
Ω

(∂t (µh) .v) = 0, ∀v ∈ F (Ω)

where F is the space of test functions defined on Ω.

Using Green’s formula, one can lower the order of differentiation of the
previous equation,

ˆ
Ωc

(ρ∇×h) .(∇×v) +

ˆ
Ω

∂t (µh) .v =−
ˆ

Ωc

(n×e) .v, (2)

where ∂ Ωc is the boundary of Ωc and e = ρ∇×h. Without considering
the negative sign, the right hand side is the expression of the source
voltage V in the weak sense.
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”Light” presentation of homology and cohomology in
the frame of differential geometry [4, 5]

Generalised Stokes theorem on manifolds (”fundamental” theorem of multivariable calculus)
ˆ

Ω
dω =

ˆ
∂Ω

ω, or 〈Ω,dω〉= 〈∂Ω,ω〉 (3)

where ω is a differential form defined on a differentiable manifold Ω (topological space locally resembling an Euclidean space on
which one can defined global differential forms). d is the exterior derivative dual to the ∂ being the boundary operator.

Some examples:
¨

Ω
∇×e.n =

˛
∂Ω

e.t (e is 1-form), and
˚

Ω
∇.d =

"
∂Ω

d.n, Ω⊂ R3 (d is a 2-form).

Poincaré lemma

The poincaré lemma states that a closed form defined on a contractible open subset of Rn is exact (dω = 0⇔ ω = dη). It is the
basis to find cosets of closed forms representing cohomology classes.

Homology and cohomology groups

Homology tries to answer the following question, ”how can we identify holes in a geometric structure?”. The 1-homology group
H1 (Ω) of primary interest in R3 is generated by the class of curves that enlaces a ”hole” in Ω.
Cohomology represents the class of closed differential forms (dω = 0) which are not exact on cycles (closed chains) meaning that
ω is not the differential form of any potential function (ω 6= dη). The 1-cohomology group, written as H1 (Ω), is equivalent to the
corresponding homology group according to de Rham’s isomorphism (a class of closed differential forms not-exact is paired to a
class of generators of H1 (Ω) and conversely). Poincaré lemma and Stokes theorem (3) are key elements to define the classes of
Hp (Ω).
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Duality homology and cohomology and de Rham’s
isomorphism [5]

Homology Cohomology

∂p∂p+1 = 0 dpdp-1 = 0

Im
(
∂p+1

)
⊂ ker

(
∂p
)

Im
(

dp-1
)
⊂ ker

(
dp)

Hp = ker
(
∂p
)
�Im

(
∂p+1

) Hp = ker
(
dp)
�Im

(
dp-1

)
Classes of closed p chains (p

cycles) that are not boundary of
p + 1 chain

Classes of closed differential forms (p co-chains) that
are not exact meaning they are not the co-boundary of a

p−1 co-chains

〈∂p∂p+1Ω,ω〉= 〈∂p+1Ω,dp-1
ω〉= 〈Ω,dpdp-1

ω〉= 0

All exact forms are closed. On a simply connected finite space, all closed forms are exact.

de Rham’s isomorphism:

Hp (Ω)∼ Hp (Ω) for all p, βp = dim
(
Hp
)

= dim(Hp) (Betti number or rank)
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Simply connected domain and notion of cut

Figure: Upper left: domain not simply connected. Upper right: simply connected domain. Lower left: cycle z1-red over the simply
connected domain and z2-blue which is not a boundary of any domain, making the green circulation z1 + z2 over the multiply
connected domain. Lower right: the composition of the circulations and the basic concept of a cut over which one can associate a
discontinuous potential function φ .
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Homology and cohomology in Gmsh [6, 7]

Figure: Upper figures show the mesh used to solve the benchmark 1. Upper left: generator of the holomogy group H1 (Ω), β1 = 1
leading to a single cut. Upper right: ”equivalent” edge element basis functions of the cohomology group H1 (Ω) (red arrows in the
upper right mesh), the cut is outlined in blue color. Lower: model with 2 conductors for which the generators are shown along with
the corresponding cuts (β1 = 2, 2 cuts).
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Gmsh code

Computation of generators of H1 as well as the the cuts. Their basis
functions from H1 are associated in GetDP.

Cohomology (1){{Omega CC ID} , {}} ; % 1−cohomology group : Hˆ1
Homology (1){{Omega CC ID} , {}} ; % 1−homology group : H 1

The cuts have been created and are identified as an unitary increment of the domain identifier

(integer) ”Omega CC ID”. It remains to associate the global term to the basis functions over the

cut in GetDP. The ”Homology(){}{}” function allows to create a generator of the coset of H1.
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Basis and test functions [8, 9, 2]

Figure: Distribution of the functions.

GetDP uses the Galerkin method for which the test func-
tions v are chosen in the same space than the basis
functions. The basis functions are polynomial functions
that interpolate the solution over the mesh, see (4).

In the mixed nodal and edge element discretization of
the problem where the edge elements are naturally as-
sociated with the conductive region Ωc and the nodal el-
ements to the complementary space ΩC

c , the magnetic
field h can be decomposed as follows,

h = ∑
e∈Ec

hese + ∑
n∈NC

c

Φnvn + ∑
i∈Ci

Iici (4)

where se are edge element basis functions belonging
to the inner edges of Ωc, vn = −∇(sn) a gradient of a
continuous scalar function defined over the simply connected ΩC

c, s (ΩC
c without the cuts Ci) and

ci = − ∑
n∈NC

c, c

∇(qn) the sum of gradients of scalar functions (”global quantity”) discontinuous over

the cut Ci (transition layer over which 0≤ qn ≤ 1, and qn = 0 otherwise). NC
c are the nodes of ΩC

c
including the boundary ∂Ωc. NC

c, c are the nodes belonging to the cut and connecting nodes of the
transition layer.
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Example: benchmark 1

For a single conductor, the weak formulation (2) yields,

ˆ
Ωc

(ρ∇×h) .(∇×v) +

ˆ
Ω

∂t (µh) .v =−V , (5)

where the voltage V is zero almost everywhere on a close path excepting where the boundary of
the conductor meets the cut.

In contrary to the voltage, the current I through the Maxwell-Ampère equation,
˛

z
h = I where z

any cycles of H1, must be enforced. The corresponding basis functions c to which I is associated
is generated by GetDP and associated with edge elements in the transition layer at the cut.

It should be noted that the definition of both voltage and current leads to a unique solution of the
magnetic field over the domain Ω.
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Global quantitiy: voltage V

To unveil the voltage V , the left hand side of equation (2) should be rearranged,

ˆ
∂Ωc

(n×e) .v =

ˆ
∂Ωc

(v×e) .n =−
ˆ

∂Ωc

(∇(q)×e) .n =

ˆ
∂Ωc

(∇× (qe)) .n−
ˆ

∂Ωc

q (∇×e) .n.

Figure: Integration over ∂∂Ωc ∩C.

Since
ˆ

∂Ωc

q (∇×e) .n =−
ˆ

∂Ωc

∂tb.n = 0 (imposing b.n = 0 over

∂Ωc).

Therefore,

ˆ
∂Ωc

(n×e) .v =

ˆ
∂Ωc

(∇× (qe)) .n =

ˆ
∂∂Ωc

qe =

ˆ
∂∂Ωc∩C

e = V ,

across the cut where ∂∂Ωc ∩C where q = 1 [10].
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Global quantity: current I

The Ampère’s law is strongly satisfied owing to the creation of a cut changing a multiply connected
domain Ω into the union of simply connected domains Ωc and ΩC

c .

In the simply connected domain ΩC
c, s (s stands for simply connected), one can define a single

continuous scalar potential function φ so that h = −∇(φ) be represented as nodal functions.

Indeed, on single connected domains, all closed forms are exact and therefore
˛

c
h = 0 for any

closed loops c in ΩC
c, s.

Through the cut, one defines a discontinuous potential functions and fixes the global quantity
as the transport current thereby enforcing the Ampère’s law 1. Using (4) over a cycle z of the
1-homology group H1, one can show that,

ˆ
z
h =

ˆ
z*

h = φ1−φ2 = φ1 = I ,

z∗, the portion of z belonging to the transition layer.

1Be aware that for more than one conductor, it is important to apply the cohomology solver to each separated conductor to
associate the produced cut later on with its corresponding global quantity. Indeed, if the generator of H1 enlaces N conductors,
the circulation of the magnetic field over it according to Ampère’s law is equal to NI .
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Linearization and implementation: part 1
From the Weak formulation, we got the following,

ˆ
Ωc

(ρ∇×h) .(∇×v) +

ˆ
Ω

∂t (µh) .v = 0,

where ρ is a function of ∇×h (nonlinear term). Using an iterative scheme, let’s recall that the k th.

iteration leads to,
ˆ

Ωc

ek.(∇×v) +

ˆ
Ω

∂t (µhk) .v = 0,

where ek = ek-1 + δe = ek-1 +
de
dj

∣∣∣∣
k-1

δ j. To improve the convergence, one may use a relaxation

technique so that δ j = αk (jk− jk-1) where αk is the relaxation factor at the current iteration 2.
Hence, one can re-express (6) as follows,

ˆ
Ωc

(ρk-1∇×hk-1) .(∇×v)+

ˆ
Ωc

αk
de
dj

∣∣∣∣
k-1

(∇×hk) .(∇×v)−
ˆ

Ωc

αk
de
dj

∣∣∣∣
k-1

(∇×hk-1) .(∇×v)+ . . .

. . .

ˆ
Ω

∂t (µhk) .v = 0,

2scheme proposed by C. Geuzaine in the model titled ”superconductors” available with the latest distribution of Onelab
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Linearization and implementation: part 2
The time derivative is handled by a Backward Euler’s scheme (θ = 1 in the θ -scheme) [11],

∂t (µhk)' µ

(
ht+δ t

k −ht
k

δ t

)
= ”θ f

(
ht+δ t

k , t + δ t
)

+ (1−θ) f
(
ht

k, t
)

” = ”f
(

ht+δ t
k , t + δ t

)
”,

where δ t is the chosen time step and the permeability µ is assumed constant.

Figure: Boundary continuity between
nodal and edge finite element
domains.

The Jacobian matrix
de
dj

is expressed as,

de
dj

= ρI3 +
1
j

∂ρ

∂ j
(
jjt
)
,

where ρ is the isotropic resistivity, I3 is the Identity matrix (3x3),
jjt the product of j (3x1) and its transpose (1x3), and j = || j ||2.

The boundary coupling between the nodal and edge finite ele-
ments at the frontier of the two is ensured by the conservation of
the circulation,

h1−2 =

ˆ
e1−2

h =

ˆ 2

1
−∇(φ) =−

ˆ
φ2

φ1

dφ = φ1−φ2.
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GetDP code: test and basis functions
In the shape of GetDP code.

Block: ”FunctionSpace”

{
{Name H FunctionSpace ; Type Form1 ;

BasisFunct ion
{
{Name h Edge ; NameOfCoef s Edge ; Funct ion BF Edge ;

Support Omega c ; E n t i t y EdgesOf [ A l l , Not nodalEdgeBoundaryRegion ] ;}
{Name h Node ; NameOfCoef v Node ; Funct ion BF GradNode ;

Support Omega; E n t i t y NodesOf [ nodalRegion ] ;}
{Name I Edge ; NameOfCoef c Edge ; Funct ion BF GroupOfEdges ;

Support Omega; E n t i t y GroupsOfEdgesOf [ cut ] ;}
}

Globa lQuant i ty
{
{Name I1 ; Type Al iasOf ; NameOfCoef c Edge ;}
{Name V1 ; Type AssociatedWith ; NameOfCoef c Edge ;}
}

Cons t ra in t
{
{NameOfCoef I1 ; Ent i tyType GroupsOfEdgesOf ; NameOfConstraint c u r r e n t C o n s t r a i n t ;}
{NameOfCoef V1 ; Ent i tyType GroupsOfEdgesOf ; NameOfConstraint vo l t ageCons t ra i n t ;}
}
}
}

Type ”Form1” or curl-conform. The ”currentConstraint” and the ”voltageConstraint” have been set
previously. In the present case, the ”voltageConstraint” is empty since it is part of the weak form
of the problem (see equation (5)) being resolved over the cut.
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GetDP code: weak formulation

In the shape of GetDP code.

Block: ”Formulation”

. . .
Equation{

Galerk in{
[ rho [{d H}]∗{d H} , {d H} ] ; In Omega c ;
Jacobian jacob ianTrans format ion ; I n t e g r a t i o n b a s i c I n t e g r a t i o n ;}

Galerk in{
[ $alpha∗dEdJ[{d H}]∗Dof{d H} , {d H} ] ; In Omega c ;
Jacobian jacob ianTrans format ion ; I n t e g r a t i o n b a s i c I n t e g r a t i o n ;}

Galerk in{
[−$alpha∗dEdJ[{d H}]∗{d H} , {d H} ] ; In Omega c ;
Jacobian jacob ianTrans format ion ; I n t e g r a t i o n b a s i c I n t e g r a t i o n ;}

Galerk in{
DtDof [mu0∗Dof{H} , {H} ] ; In Omega;
Jacobian jacob ianTrans format ion ; I n t e g r a t i o n b a s i c I n t e g r a t i o n ;}

GlobalTerm{
[ Dof{V1} , { I1 } ] ; In cut ;}}

. . .

where Dof{d h} is the current iteration (Dof for degree of freedom) to be computed or ∇×hk and
{d h} is the result from the past iteration or ∇×hk-1.
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GetDP code: resolution

Block: ”Resolution”

SaveSolut ion [ H System ] ;
Evaluate [ $alpha = 1 ] ;
TimeLoopTheta [ i n i t i a l T i m e , f ina lT ime , timeStep , the ta ]
{

Generate [ H System ] ;
Solve [ H System ] ;
Generate [ H System ] ;
GetResidual [ H System , $ i n i t i a l R e s i d u a l ] ;
Evaluate [ $ res idua l = $ i n i t i a l R e s i d u a l , $ i i = 0 ] ;
P r i n t [{ $ i i , $ res idua l , $ res idua l / $ i n i t i a l R e s i d u a l } ,

Format ” Residual %3g − absolu te value : %2.9g ; r e l a t i v e value : %2.9g ” ] ;
While [ ( ( $ res idua l > absoluteTolerance ) && ( $ res idua l / $ i n i t i a l R e s i d u a l > r e l a t i v e T o l e r a n c e )

&& ( $ i i < maximumNumberOfIterations ) ) ]
{
Solve [ H System ] ;
Generate [ H System ] ;
GetResidual [ H System , $ res idua l ] ;
Evaluate [ $ i i = $ i i + 1 ] ;
P r i n t [{ $ i i , $ res idua l , $ res idua l / $ i n i t i a l R e s i d u a l } ,

Format ” Residual %3g − absolu te value : %2.9g ; r e l a t i v e value : %2.9g ” ] ;
}

SaveSolut ion [ H System ] ;
}

Galerkin method: minimisation of weighted residual R
(
hjk
)

(R = ∇×
[
ρ∇× h̃

]
+ ∂t

(
µh̃
)

, with h̃
the approximated numerical solution) [12].
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Results: single tape AC losses (12 mm x 1 µm,
benchmark 1)

0 0.2 0.4 0.6 0.8 1

0
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4
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I/Ic

Q
(m

J/
m

-c
yc

le
)

W. Norris: n = ∞

COMSOL: n = 25
COMSOL: n = 101

Onelab: n = 25
Onelab: n = 101

Figure: Left: AC losses of a single tape (1 µm thick and 12 mm wide) for different fractions of transport current at two n-values (25
and 101) and the comparison with Norris’ formula and COMSOL Multiphysics R©. Right: detail of the results at 0.9Ic and n = 101.
Computational time ranging from roughly 2 min. (n = 25 to 2 hrs for n = 101 at 0.9Ic). to span 3 cycles. The results are less than
a fraction of percent comparable to COMSOL Multiphysics R© .
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Results: (Re)BCO pancake, 20 commercial tapes 1/1
1 The coil is made from SCS4050 (20 µm Cu on both sides, 2 µm Ag, 1 µm YBCO and 50 µm Ha for a 4 mm wide tape).

2 Air gap between the turns is 0.07 mm

3 Ec = 1e-4 V/m, Ic = 100 A, n = 38

4 Current ramped at 1000 A/s up to 100 A

TimeEx
ci

ta
to

n 
Cu

rr
en

t

100 A

0.1 sec

Figure: Ramping up of the current in the magnet, distribution of magnetic field. Running time is 20 min on a single core of Intel(R)
Core(TM) i5-2410M CPU @ 2.30GHz.
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Results: (Re)BCO pancake, 20 commercial tapes 1/2

Figure: Magnetic flux density distribution at 0.1 s on a coarse mesh.

HTS Modelling Workshop (2016) Bologna, Italy 25 / 31



Conclusion

1 Onelab is an exploring tool and a test platform with a flexible and highly customisable
implementation allowing new features to be implemented

2 However, it requires skills in numerical analysis and a sound knowledge of Finite Element
Method to benefit from the full potential of the solver GetDP

3 Underlying theory: de Rham’s cohomology. Even though the theory is relatively complex,
only general concepts are enough to handle nodal and edge elements in Onelab.

4 Simple nodal and edge element coupling leads to lower storage and greater numerical
efficiency. It is based on the creation of cuts which is probably the most interesting and
appealing feature of the software (especially useful in 3D and complex geometries, quite
unique feature compared to available open source software and even commercial software)

5 One additional feature is the easy coupling with electric circuitry through global quantities

6 The solver is being benchmarked against the commercial well-established software in the
community COMSOL Multiphysics R©. We are using existing benchmarks and cases of
practical interest (coils and bulks)
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Derivation of Jacobian matrix ”in a sloppy way”

Local Ohm’s law,
e = ρ̃j

de = ρ̃dj + jdρ̃

For an isotropic material, ρ̃ is a diagonal tensor, ρ̃ = ρI3.

de
dj

= ρI3 + j
dρ̃

dj
,

de
dj

=


ρ + jx

∂ρ

∂ jx
jx

∂ρ

∂ jy
jx

∂ρ

∂ jz

jy
∂ρ

∂ jx
ρ + jy

∂ρ

∂ jy
jy

∂ρ

∂ jz

jz
∂ρ

∂ jx
jz

∂ρ

∂ jy
ρ + jz

∂ρ

∂ jz
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jk
∂ρ

∂ jl
= jk

∂ρ

∂ j
∂ j
∂ jl

=
∂ρ

∂ j
jkjl
j
,

de
dj

=


ρ +

1
j

∂ρ

∂ j
j2x

1
j

∂ρ

∂ j
jxjy

1
j

∂ρ

∂ j
jxjz

1
j

∂ρ

∂ j
jyjx ρ +

1
j

∂ρ

∂ j
j2y

1
j

∂ρ

∂ j
jyjz

1
j

∂ρ

∂ j
jzjx

1
j

∂ρ

∂ j
jzjy ρ +

1
j

∂ρ

∂ j
j2z


de
dj

= ρI3 +
1
j

∂ρ

∂ j
(
jjt
)
,
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