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� Statement of the problem

� A historical perspective

� State of the art

� Research directions
◦ Focus on fast methods

� An example: fusion devices

� Conclusions & outlook
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� I will present my personal view of the history, 
state of the art and research trends of low-
frequency computational electromagnetics
◦ Others may have different opinions

� I will focus on near-term future 
developments, basically extrapolating what is 
currently done
◦ No “fiction movie” effort
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Something trivial to start 
with...
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� We deal with low-frequency electromagnetics
◦ No wave propagation

� Frequency low enough
◦ For systems with dimensions ≈ 10 m, this means 

frequencies below around 1 MHz

� At least one of the time derivatives in 
Maxwell’s equation may be neglected
◦ Static and quasi-static models

HTS modelling 2016 5

c

L
EMEM =<< ττω ,1



� Among quasi-static models we deal with 
eddy currents model

� Magneto-Quasi-Static
◦ Magnetic energy prevailing on electric energy 

(Magnetic)

◦ Low-frequency (Quasi-Static)
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� (Obviously...) of interest for HTS community
◦ Typical applications fall inside this classification

� Peculiar with respect to full Maxwell model
◦ Distinct mathematical properties (parabolic vs. 

hyperbolic)

◦ Need for dedicated solvers and ad hoc analytical 
and numerical approaches

� Much more difficult than Electro-Quasi-Static 
model

HTS modelling 2016 7



� First problem: formulation
◦ Choice of the primary unknown in which the 

problem must be recast

◦ A “first choice” does not exist (not like EQS...)

� Magnetic vs. Electric formulations
◦ Warning: electric field outside conductors

� Fields vs. Potentials
◦ Warning: gauge conditions  

� Differential vs. Integral
◦ Fields or sources?
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� Second problem: the unknown quantities are 
intrinsically vectors
◦ Three components per point

◦ Continuity conditions

� Numerical difficulties
◦ “Naive” numerical approaches may be inadequate

� Need for specific numerical treatment of eddy 
currents problem
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A 40-year long story...
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� First applications of 
computers to 
calculation of 
magnetic fields

� Computer = 
big calculator
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� Magnetostatic computations, from 2D to 3D  
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� Conferences 
dedicated to 
computational 
electromagnetics
◦ COMPUMAG 

conference from 1976

◦ CEFC conference from 
1984

◦ IGTE conference from 
1984
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� 3D eddy currents codes
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� Mathematical and numerical developments
◦ Edge elements
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� Mathematical and numerical developments
◦ Formulations
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� The state of the art in 1988
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� Coupled problems start to emerge as a 
challenge to eddy currents community 
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� The advent of 
commercial codes
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YearYearYearYear New products introducedNew products introducedNew products introducedNew products introduced

2015

2015

2014

COMSOL Server™,

Design Module

LiveLink™ for Revit®

Ray Optics Module

2013

Mixer Module

Electrochemistry Module

Molecular Flow Module

Multibody Dynamics Module

Semiconductor Module

Wave Optics Module

2012

ECAD Import Module

Fatigue Module

LiveLink™ for Excel®

LiveLink™ for Solid Edge®

Corrosion Module

Nonlinear Structural Materials Module

Pipe Flow Module

2011

Particle Tracing Module

LiveLink™ for PTC® Creo® Parametric™

Electrodeposition Module

Geomechanics Module

LiveLink™ for AutoCAD®

Microfluidics Module

2010

Batteries & Fuel Cells Module

CFD Module

Chemical Reaction Engineering Module

Plasma Module

LiveLink™ for MATLAB®

LiveLink™ for PTC® Pro/ENGINEER®

LiveLink™ for Inventor®

LiveLink™ for SOLIDWORKS®

2008

2007
Material Library

2006

AC/DC Module
Acoustics Module
RF Module
Optimization Module

2005
CAD Import Module
File Importfor CATIA® V5

2004

Subsurface Flow Module
Heat Transfer Module
MEMS Module

2003

2002

2001
Chemical Engineering Module

2000

Electromagnetics Module 

1999

1998
COMSOL Multiphysics®

Structural Mechanics Module



� The advent of commercial codes
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� Being commercial codes quite advanced, the 
interest of the scientific community of low-
frequency computational electromagnetics is 
diverting from “traditional paths”

� Focus on:
◦ Specific applications out of reach of commercial 

codes (e.g. advanced materials modelling)

◦ Numerical techniques not (yet?) routinely available 
on commercial codes (e.g. fast techniques)
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My personal view
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� State of the art: what the community of low-
frequency computational electromagnetics is 
currently doing

� Let us as “proxy” of the state of the art the 
number of papers presented at the latest 
COMPUMAG conferences (2011,2013,2015) 
on each broad topic
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� Some general trends emerge
� Not of interest for HTS community ≈ 60%
◦ Electric machines ≈ 20%
◦ Optimization ≈ 15 %
◦ Wave propagation & EMC ≈ 10%
◦ Rest of the spectrum ≈ 15 % 

� Potential interest for HTS community ≈ 40%
◦ Numerical techniques
◦ Static & quasi-static fields
◦ Coupled problems
◦ Material modelling
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My personal view
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� For each of the items of the state of the art of 
potential interest for HTS community, 
I provide my personal view of the research 
directions 

� Personal selection 
◦ Most interesting topics (personal preference)

◦ Most promising topics for computational 
electromagnetics

◦ (Still) largely out of reach of commercial codes

◦ Potential fall-out to HTS community
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� Fast methods for large-scale problems
◦ Domain decomposition

◦ Compression

◦ Multipoles

◦ Model order reduction

◦ Parallelization on multiple CPUs

◦ GPUs and High Performance Computing

� Numerical advances
◦ Meshless method / radial basis functions

◦ Discontinuous / moving meshes

◦ Gauging/preconditioning/convergence
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� Numerical analysis of low-frequency systems
◦ Inductance and capacitance calculations

◦ Shielding

◦ New methods/formulations (very few...)

� Force computations
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� Multiphysics problems
◦ EM + circuits (interconnections etc.)

◦ EM + mechanics (motors, vibrations etc.)

◦ EM + thermal (induction heating etc.)

◦ EM + fluid (gas, plasmas etc.)

� Commercial codes are catching up...
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� Magnetic materials
◦ Hysteresis
◦ Micromagnetics

� “New” materials
◦ Anisotropic / layered materials
◦ Metamaterials
◦ Graphene et similia

� Homogenization & multiscale
� Superconductors
◦ Quench, losses etc.
◦ Materials & devices
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A few examples
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� Integral formulations of the eddy currents 
problem require the storage of matrices of 
size scaling as N2 (N being the number of 
discrete unknowns), and their inversion needs 
a computational cost of the order of N3, if a 
direct solver is used
◦ May get impractically high for detailed meshes

◦ Drives towards iterative inversion schemes

◦ Need to improve the computational scaling, i.e. the 
dependence on N of the computational cost
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� Key ingredients (assuming iterative inversion 
methods)
◦ Preconditioning of matrix to be inverted 

(less iterations needed)

◦ Fast matrix-vector product 
(less computations per iteration)

◦ Parallelization
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� Rationale: a lower condition number means 
less iterations of iterative methods

� Mathematically:  
such that P-1A has a lower condition number 
than A

� Practically: find an “easy to invert” matrix P 
(e.g. quasi-diagonal) sufficiently “close” to 
original matrix so that P-1A gets “close to 
identity”
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� Matrix – vector product often has a clear physical 
meaning 
◦ Magnetic field produced by a given source

� Fast Fourier Transform (FFT)
◦ Equivalent sources on suitable regular grids
◦ Matrix-vector product can be accelerated by means of a 

fast convolution product

� Fast Multipole Method (FMM)
◦ If the field point is far enough, the electromagnetic field 

source can be characterized by few parameters 
(multipoles) 
◦ The sources are expanded in spherical harmonics and 

the field computation takes into account a limited 
number of such harmonics
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� Singular Value Decomposition (SVD)
◦ Physically: the magnetic field produced by a set of 

sources grouped in a given region VS, when 
evaluated in a different region VE, can be described 
through a linear operator having a rank r 
decreasing as the relative separation between VS 
and VE is increased.

◦ Mathematically: low rank QR factorization of 
original matrix (e.g. through Gram-Schmidt)
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Location of magnetic 
field sources

Close region 
(no approximation)

Far regions (low-rank 
approximation)



� A more complicated example...
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� The overall performance can be quite 
satisfactory
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Computational time scaling 
almost linearly with N

Speed-up with respect to 
standard calculations



� Multiple CPUs
◦ Standard libraries support parallelization on CPUs

� Which are the factors to be taken into account?
◦ Assembly balancing: the computational times for the 

matrix assembly should be balanced among the 
processor
◦ Memory balancing: local memory required to store each 

part of the matrix should be equally distributed among 
processors
◦ Computational balancing: computational time to build 

matrix-vector product should be balanced among 
processors

� Solving this optimal allocation problem has an 
exponential complexity
◦ sub-optimal algorithms required
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� GPUs
◦ Design philosophy tailored on the inherently parallel 

nature of graphics rendering 
◦ Large amount of cores in order to execute a large 

number of execution threads at the same time
◦ Massive multithreading (up to thousands cores), small 

cache memory with very simple control unit
◦ Each computational thread performs roughly same task 

onto different partitions of data
◦ The code needs to be split into the sequential parts 

(on the CPU) and the numerically intensive (on the 
GPUs)
� GPUs complement CPU execution
� Reprogramming of codes needed
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My favourite topic...
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� Nuclear fusion claims to be one possible option 
for future energy needs of mankind: the fusion of 
nuclei of light elements (H or isotopes), to give 
heavier elements (e.g He), produces net energy 
thanks to mass defect

� Thermonuclear fusion: electrostatic repulsion is 
overcome by increasing the temperature of the 
gas (hundreds of millions °C) ⇒ plasma (fully 
ionized gas)

� Magnetic confinement: suitable magnetic fields 
give shape to plasma and prevent it from hitting 
the surrounding walls

� Tokamak: toroidal device to avoid plasma losses 
at ends
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� Multiphysics
◦ Electromagnetic interaction plasma-conductors

� Nonlinear
◦ Plasma behaviour

� Large scale
◦ Large devices with fine geometrical details

� Free boundary
◦ Plasma/vacuum interface not defined a priori

� Force computation
◦ Currents-fields interactions on plasma and on structures

� Superconducting coils
◦ Not treated in the following...
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� Coupling surface to describe the 
electromagnetic interaction between the 
plasma and the conductors

� Different formulations in each domain 
◦ the best choice in each region

◦ Can be generalized to other multiphysics problems
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Inside Ω: Grad-Shafranov equations
(elliptic nonlinear problem) 

Outside Ω: eddy currents in 3D 
structures (parabolic linear problem)

On ∂Ω: coupling conditions
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� Inside Ω: Magneto-Hydro-Dynamics (MHD) eqns.

� If the time scale is slow enough: neglect plasma mass
◦ Plasma mass plays a role only on µs time scale
◦ Plasma evolves instantaneously through equilibrium states 

(evolutionary equilibrium)

� If the plasma evolution is around an equilibrium 
point: linearization 

mass balance

momentum balance

energy balance (adiabatic)



� Grad-Shafranov nonlinear elliptic equation

� Differential formulation in weak form

� 2ndorder triangular finite elements

� Overall system: 
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ψ : poloidal magnetic flux
jϕ(ψ): plasma current density (nonlin. funct. of ψ)
boundary value: coupling conditions 



� Outside Ω: eddy currents (linear parabolic)

� Integral formulation in terms of JJJJ in weak form

� Electric vector potential with two-
component gauge

� Volumetric finite elements (hexa, tetra,…)

� Edge elements:
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Linear 
nonmagnetic 
conductors



� Dynamical eqns solved with implicit time stepping

� Equivalent currents located on the coupling surface, 
producing the same magnetic field as plasma
outside the coupling surface
◦ Proportional to plasma current density

◦ Coupled to 3D structures via mutual inductance 

� Overall discrete equations: 
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Flux induced by plasma 
current on 3D structures



� Coupling condition on poloidal flux :

� Plasma contribution:
◦ Proportional to plasma current density

� External contribution: 
◦ Proportional to 3D currents (Biot-Savart)

� Combining everything, at each time step we 
have:  
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Nonlinear set of Ni

equations (as many as 
nodes in 2D triangular 
mesh inside Ω), solved 
with Newton-Raphson 
method



� “ITER is a large-scale scientific experiment that 
aims to demonstrate that it is possible to produce 
commercial energy from fusion”

� Currently being built in France by seven 
international partners (EU, USA, Japan, China, India, 
Korea, Russia)

� Multi-billionaire budget
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� Study of off-normal plasma events 
(disruptions), consisting of a rapid loss 
(<100 ms) of thermal and magnetic plasma 
energy

� Eddy currents induced in conducting 
structures

� Current – field interaction give rise to 
electromagnetic forces which may put at risk 
the integrity of the machine

� Movie of disruption simulation
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� The Experimental Advanced Superconducting 
Tokamak (EAST) is an experimental device 
with fully superconducting poloidal and 
toroidal coils

� Designed and constructed to explore the 
physical and engineering issues under steady 
state operation for support of future fusion 
reactors

� EAST has recently undertaken an extensive 
upgrade ⇒ modelling need
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� EAST is an intrinsic 3D device
◦ The axisymmetric conducting structures are “too 

far” from plasma

◦ Need for a detailed 3D modelling
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� Complicated 3D eddy current density patterns 
induced in conducting structures
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� 3D effects are fundamental in providing a 
correct prediction of experimental results
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Finally at the end...
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� Low-frequency computational 
electromagnetics: a 40-year long story

� Tumultuous and fast advances for the first 20 
years or so

� Now it can be considered a more “mature”
sector
◦ Advent of commercial codes, which can treat 

routinely “standard” applications
◦ The interests of the scientific community are 

diverting
◦ WARNING: need for awareness of use of commercial 

codes!!
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� New research trends are emerging
◦ Focus on topics/techniques still out of reach of 

commercial codes...

◦ ... shifting to commercial applications in the near 
future?

� Several new research directions may be of 
interest for the HTS community
◦ Fast methods, force computations, multiscale, 

multiphysics etc.
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“Παντα ρει, και ουδεν µενει”

“Everything flows, nothing stands still”

Heraclitus, around 500 BC


