Quench Characteristics of Power-law Superconductors and Implications to Modelling

Yifeng Yang

Institute of Cryogenics University of Southampton UK

Thanks for my colleagues at Southampton Jorge Pelegrin, Iole Falorio, Edward Young for their experimental and modelling work

1

UNIVERSITY OF

Southamp

Motivations

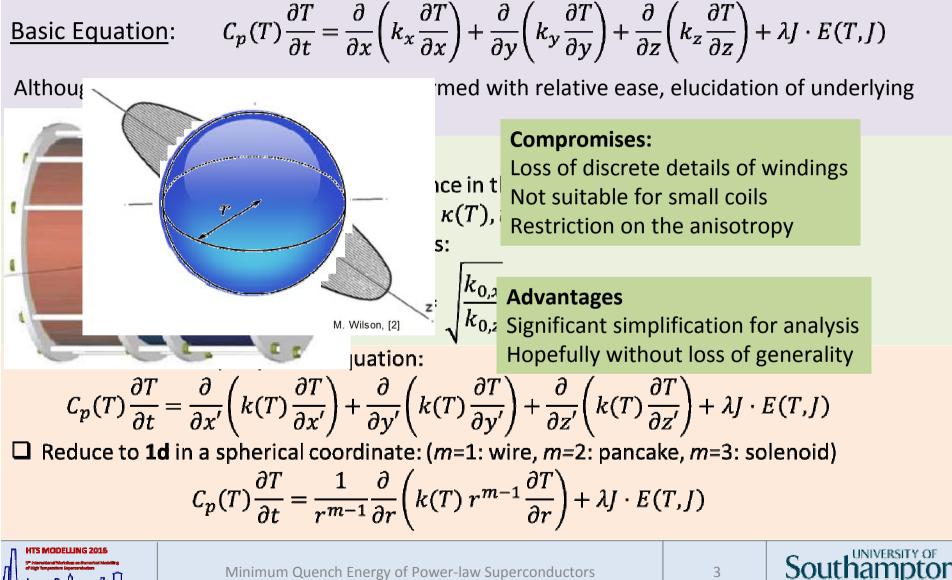
- 1. Growing body of literature on HTS quench, both experimental and modelling
- 2. Modelling becoming easier and more versatile
- 3. However our understanding has become more diffused rather than crystalized

Complex set of thermal / electrical properties Nonlinear over a much wider temperature range

- 4. Trying to rationalise the parameters through analysis and streamlined modelling
- 5. Aim to get some useful scaling for the MQE

Southan

Quench Equation in Effective Continuum



Non-dimensionalization of Quench Equation: Reduction of Parameters

Dimensionless length/radius with *l* is the "classical" minimum propagation zone length

$$\xi = \frac{r}{l}, \qquad l = l_{MPZ} = \omega_m \sqrt{\frac{k(T_0)(T_C - T_0)}{\lambda \rho_n j J_C^2(T_0)}}, \qquad J = j \cdot Jc(T_0)$$

Dimensionless time (for k and c_p independent of T):

 $\tau = \frac{k t}{\rho_d c_p l^2} = \frac{k t}{C_p l^2}, \text{ (reserve } \rho \text{ exclusively for resistivity hereafter)}$

Dimensionless Temperature:

$$\theta = \frac{T - T_0}{T_c - T_0}$$
, and $u = \frac{\theta}{1 - j}$, (Note $u = 1$ for T_{cs})

Solenoid:
$$m = 3$$
 and $\omega_3 = \pi$
Pancake: $m = 2$ and $J_0(\omega_2) = 0$
Wire: $m = 1$ and $\omega_1 = \frac{\pi}{2}$

Non-dimensional quench equation

$$\frac{\partial u}{\partial \tau} = \frac{1}{\xi^{m-1}} \frac{\partial}{\partial \xi} \left(\xi^{m-1} \frac{\partial u}{\partial \xi} \right) + \omega_m^2 g(u,j) \text{ and } g(u,j) = \frac{E(u,j)}{(1-j) \rho_n J_c(T_0)}$$

A rationalised and reduced parameter set:

Dimensionless current load j

Dimensionless current sharing heat generation g(u, j)

MQE for Critical State Superconductors A simpler case revisited

The current sharing voltage of *critical state* superconductors $E(u, j) = \rho_n (J - J_c(T))$ $=\rho_n\left(J-J_c(T_0)\cdot\frac{T-T_0}{T_c-T_0}\right)$ with a linear critical current density $J_c(T)$ $= \rho_n I_c(T_0)(1-j)(u-1)$ is a *linear* function of *relative* temperature rise So we have a dimensionless heat generation $g(u,j) = \frac{E(u,j)}{(1-j)\rho_n I_c(T_0)} = u - 1$ free of any paramet Free of any parameters $(1 - j) p_n J_c(t_0)$ Leading to a quench Without solving the Scales with $(1 - j)j^{-\frac{m}{2}}$ Without solving the Critical State MQE $(\xi^{m-1} \frac{\partial u}{\partial \xi}) + \omega_m^2 (u - 1)$ $(\xi^{m-1} \frac{\partial u}{\partial \xi}) + \omega_m^2 (u - 1)$ Length/volume MQE expressed in real units: Energy/Temperature $MQE(j) = \eta_{MQE} \cdot \left(C_p(T_0)(1-j)(T_c - T_0) \right) \left(\frac{k_y}{k_x}^{\frac{1-\delta_{m,1}}{2}} \frac{k_z}{k_z}^{\frac{\delta_{m,3}}{2}} l_{MPZ}^m \right)$ $= \eta_{MQE} \,\omega_m^m C_p(T_0) \sqrt{\frac{k_x k_y^{1-\delta_{m,1}} k_z^{\delta_{m,3}}}{(\lambda \rho_n I_C(T_0)^2)^m}} \,(T_C - T_0)^{1+\frac{m}{2}} (1-j)j^{-\frac{m}{2}}$

Stationary Normal Zone of the Critical State and the Existence of a Minimal Energy

Stationary Normal Zone:

□ Normal zone length $L(u_0)$ reduces at higher u_0 . □ The current sharing length $L_{cs}^m = 1$ at u = 1.

The <u>thermal energy</u> (enthalpy) of the normal zone η is the area/volume of $u(\xi)$:

<u>The existence of a minimum η_{\min} is</u> <u>straightforward</u>

□ At high temperatures: $\eta(u_0 \to \infty) \to \infty$ (note: u(1) = 1 and $L(u_0 \to \infty) \to 1^+$) □ At low temperature: $\eta(u_0 \to 1^+)$ and $L(u_0 \to 1^+) \to \infty$

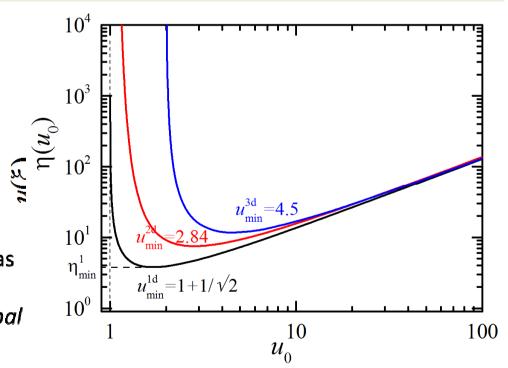
□ 1D
$$\eta_{\min}^1 = 2\left(1 + \frac{2\sqrt{2}}{\pi}\right)$$
 at $u_0 = 1 + 1/\sqrt{2}$

- $\square \eta_{\min}^{m} \text{ and } u_{\min}^{m} \text{ increase with dimension } m \text{ as heat conduction increases.}$
- □ Higher heat conduction in 3D leads to global recovery of all normal zone with $u_0 \le 2$.

$$\frac{1}{\xi^{m-1}} \frac{d}{d\xi} \left(\xi^{m-1} \frac{du}{d\xi} \right) + \omega_m^2 (u-1) = 0$$

$$u(0) = u_0, u'(0) = 0; (u(L) = 0)$$

$$(u_0) = \int_0^{L(u_0)} 2^{1+\delta_{m,3}} \pi^{1-\delta_{m,1}} u(\xi) \xi^{m-1} d\xi$$



Stationary Normal Zone And Hot-spot Evolution

How can one get from η_{\min} of stationary normal zone to the MQE?

Wilson postulated that they are effectively the same thing...

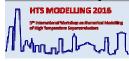
It's easy to show that hot spot of stationary normal zone at minimal energy $u(\xi, 0) = 2$ $u_{\min}(\xi)$ will lead to quench straight away,

But what about quench from lower energy assisted $\underbrace{\underbrace{\psi}}_{\Xi}$ by self-heating?

The simplicity of the critical state makes it the easiest case to start:

No parameters Just the initial condition (size and shape of hot-spot)





MQE: From Stationary Normal Zone to Hot-spot Evolution by Numerical Experiments

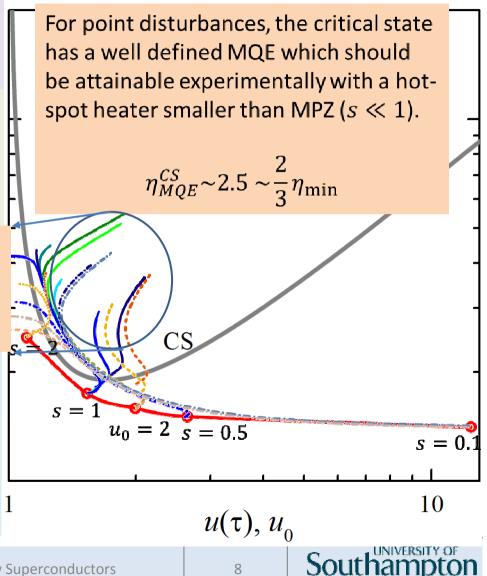
Using u(ξ, 0) = u₀H(s − ξ) of an initial energy η(u₀, 0) = u₀s find minimum of η(u₀, s) by varying u₀ and/or s
 With s = 1, a minimum is found at 1.53873 < u₀ < 1.53874: η^{s=1}_{min}~3.07
 Or with u₀ = 2, a minimum is found at

0.694 < s < 0.695: $\eta_{\min}^{u_0=1} \sim 2.78$

Though less than the stationary minimal energy due to self-heating, MQE is correlated to the stationary energy. Quench only happens when the normal zone evolves to just exceed it.

zone, continue with s = 0.5 and s = 0.1leads to $\eta_{\min} = 2.66$ and 2.5 respectively

□ Increasing the normal zone length beyond s = 1 leads to sharply increased η_{\min} , as found in stationary case. Self heating diminishes as $u_0 \rightarrow 1$



HTS MODELLING 2016

Current Sharing in Power-Law HTS Superconductors

Nonlinear current sharing E(u, j):

$$(1 - (1 - j)u)\left(\frac{E(u, j)}{E_0}\right)^{\frac{1}{n}} + \frac{E(u, j)}{J_C(T_0)\rho_n} = j$$

No close-solution

 $\Box \quad \underline{\text{Additional parameters:}} \quad e_{\rho} = \frac{J_c(T_0)\rho_n}{E_0} \text{ and } n$

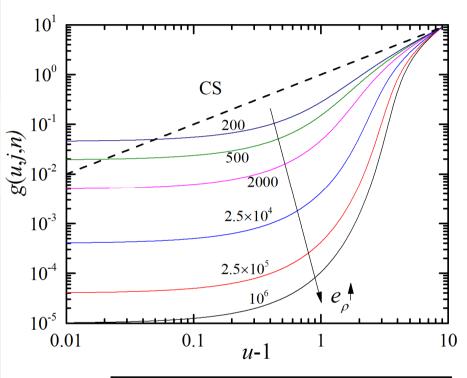
Nonlinear heat generation g(u, j):

$$g(u, j, n) = \frac{E(j, u)}{(1 - j)J_C(T_0)\rho_n} = \frac{1}{(1 - j)e_\rho} \frac{E(u, j)}{E_0}$$

$$\int \int \left(\int (E(u, j))^{\frac{1}{n}} \right)$$

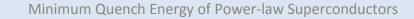
$$= (u-1) - \left(\frac{1}{1-j} - u\right) \left(\left(\frac{E(u,j)}{E_0}\right)^n - 1 \right)$$

Less Heat generation in power-law current sharing: $\Box g(u, j, n) < g(u, j, \infty) = u - 1$ of the critical state; \Box Except in the vicinity of T_{cs} i. e. $u_0 = 1^+$



Typical $e_
ho$ values

- ~ 5000-20000 for 2G HTS
- ~ 20000-50000 for unstabilized HTS (77K)
- $\space{-}>$ 1000 for 2212 wire in high field



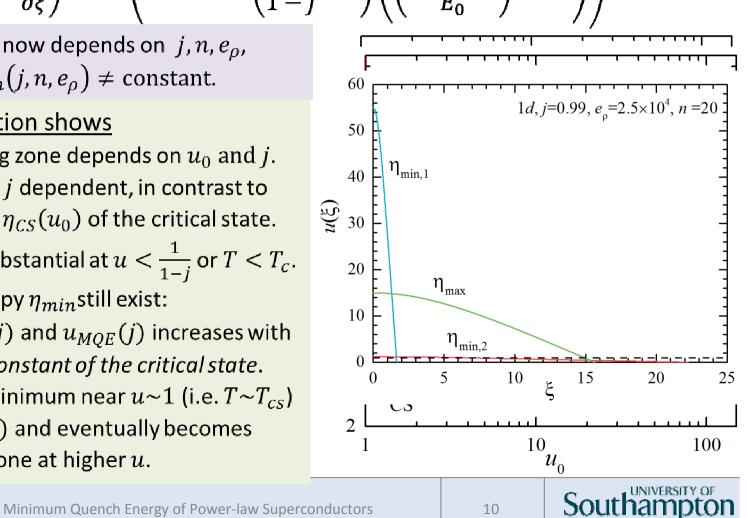
Stationary Normal Zone of Power-Law Superconductors

$$\frac{\partial u}{\partial \tau} = \frac{1}{\xi^{m-1}} \frac{\partial}{\partial \xi} \left(\xi^{m-1} \frac{\partial u}{\partial \xi} \right) + \omega_m^2 \left((u-1) - \left(\frac{1}{1-j} - u \right) \left(\left(\frac{E(u,j,\rho)}{E_0} \right)^{\frac{1}{n}} - \frac{1}{2} \right) \right) \right) = 0$$

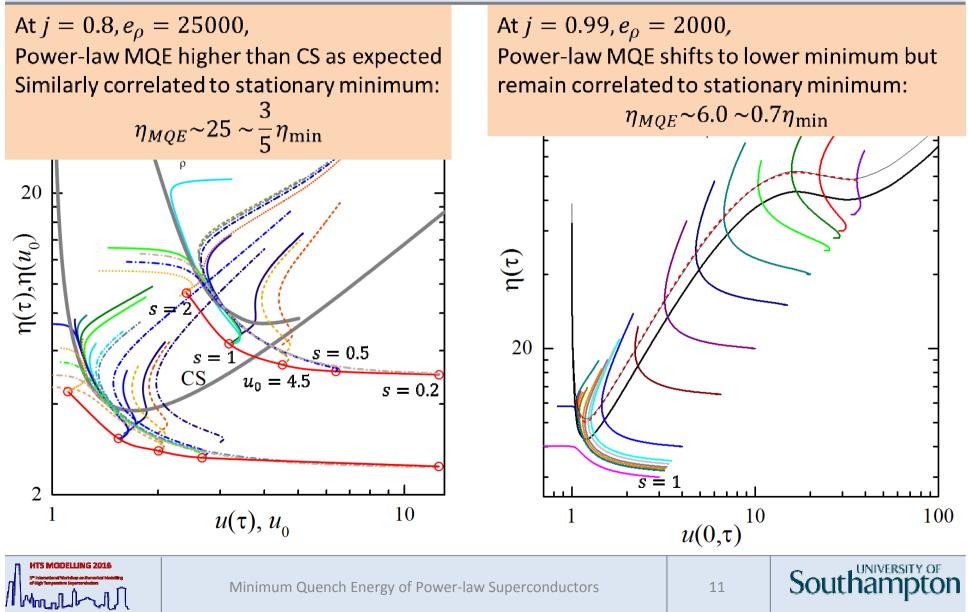
The quench equation now depends on j, n, e_{ρ} , therefore $\eta_{MOE} \sim \eta_{min}(j, n, e_{\rho}) \neq \text{constant}.$

The stationary solution shows

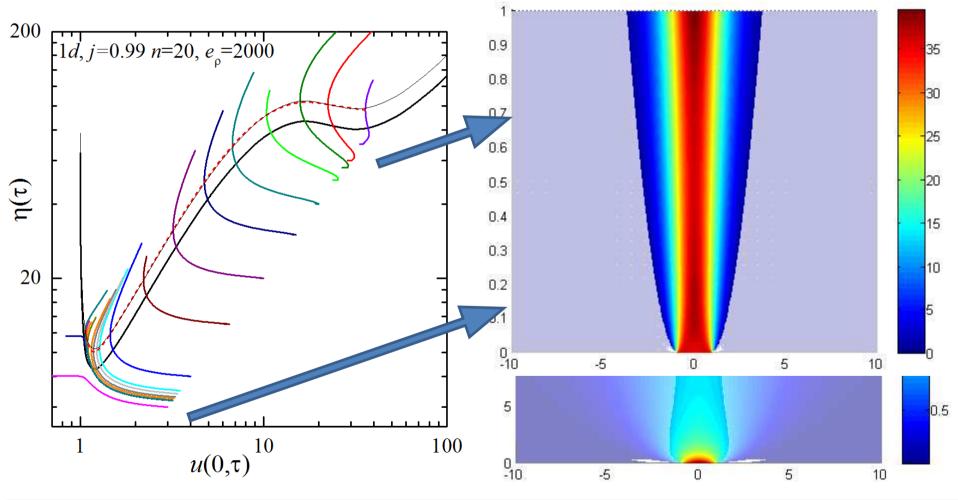
- \Box The current sharing zone depends on u_0 and j.
- \square $\eta(u_0, j)$ is strongly j dependent, in contrast to the *j* independent $\eta_{CS}(u_0)$ of the critical state.
- \Box The deviation is substantial at $u < \frac{1}{1-i}$ or $T < T_c$.
- \Box A minimum enthalpy η_{min} still exist:
 - $\Box \eta_{min}(u_{MQE}(j), j)$ and $u_{MQE}(j)$ increases with *j*, *instead of a constant of the critical state*. \Box An additional minimum near $u \sim 1$ (i.e. $T \sim T_{cs}$) at high j (> 0.9) and eventually becomes lower than the one at higher u.



Power-Law MQE is Correlated to Stationary Minimum Energy

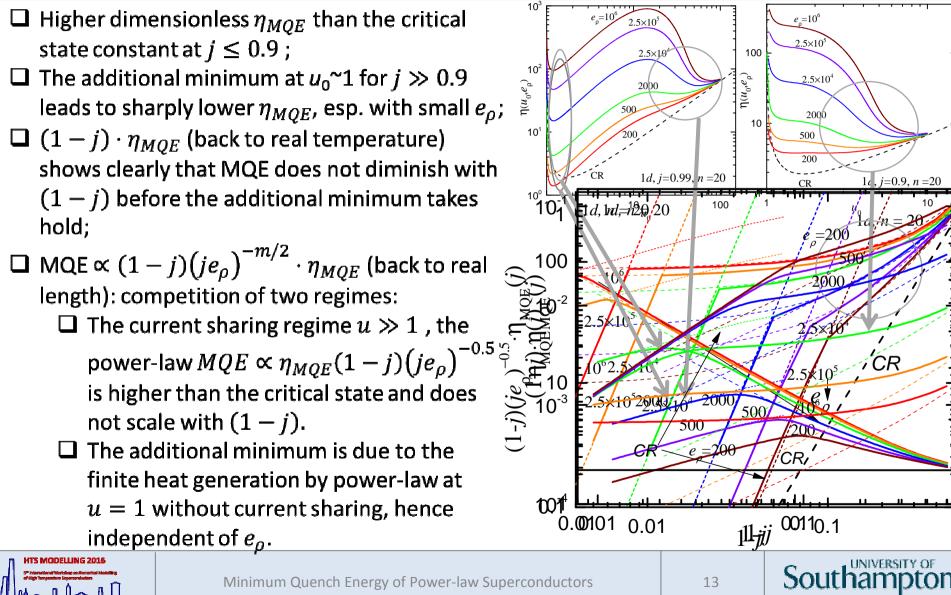


Different Dynamics at High and Low Minima



Minimum Quench Energy of Power-law Superconductors

Power-law MQE Scaling According to Stationary Minimum Energy: Accepting $MQE \propto \eta_{min}$

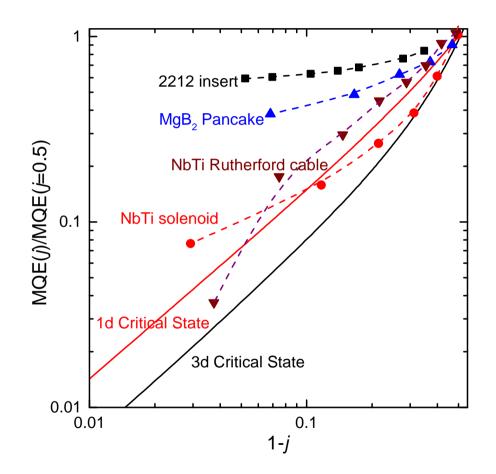


Experimental Evidence of MQE not vanishing with (1-*j*)

Critical state MQE vanishes with 1 - j

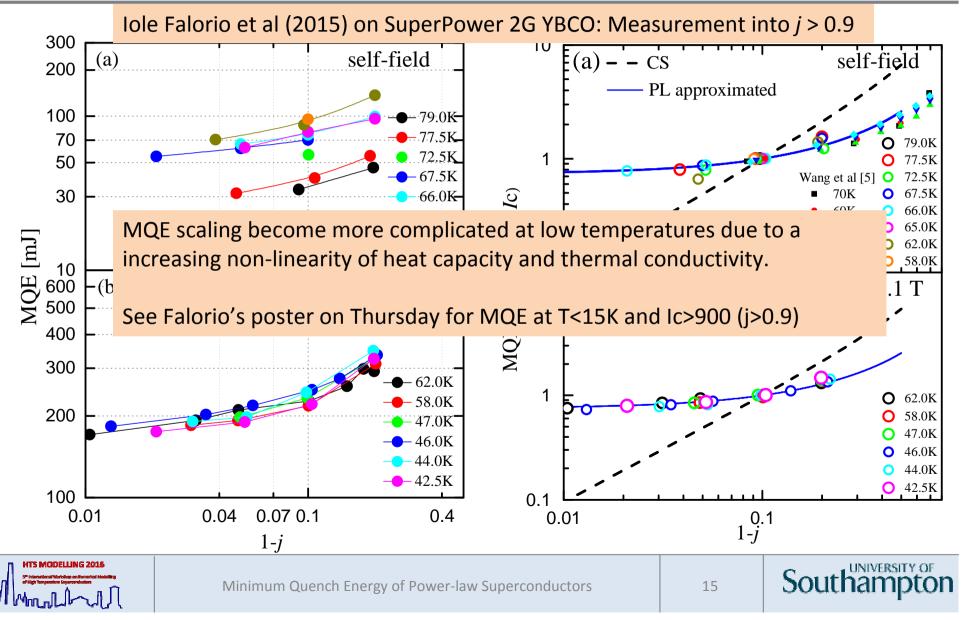
- □ High current j > 0.9 is more sensitive for ascertaining the current scaling of MQE.
- Although MQE measurements at high current are difficult, data do exist and show clearly the experimental MQE deviates from the critical state:
 - Most notably slower reduction at *j*>0.9;
 - o In both LTS and HTS;
 - o 1d: Rutherford cable (L Shirshov)
 - **2d**: MgB₂ pancake (J Pelegrin)
 - o 3d: NbTi (Dresner and Scott)
 - o ?d: 2212 (Y Yang) solenoids

Evidence of Power-Law at play?

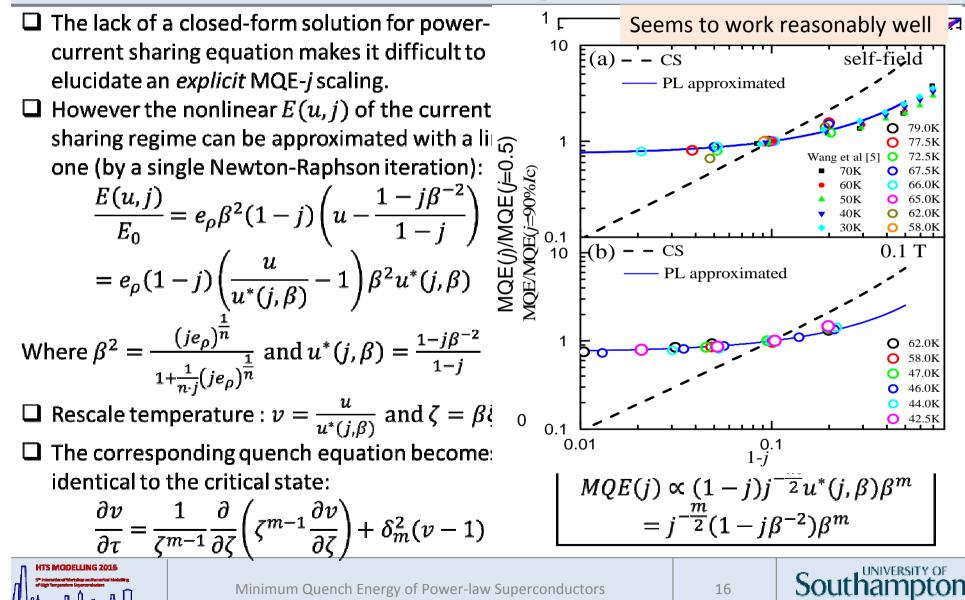


UNIVERSITY OF

Power-Law Effect More Prominent at High Temperature, as Expected



Approximation of Power-law and explicit current scaling of MQE



Quench with Lateral Cooling

- 1. Liquid cryogen cooling has been the norm for superconducting bus-bar/cables
- 2. Localised disturbances do not pose a quench risk due to high heat transfer coefficient
- 3. Gas cooled cables/bus-bars are now seriously considered to take advantage of the wide temperature range found in HTS and MgB₂
- 4. Heat transfer coefficient by gas cooling is much lower, local disturbance induced quench becomes a risk.

Novel *twisted-pair* cable concept optimized for **tape conductors** (MgB₂, Y-123 and Bi-2223). A. Ballarino "Alternative design concepts for multi-circuit HTS link systems". *IEEE Trans. on Applied Supercond.* **21** pp. 980-984, 2011

UNIVERSITY OF



Account for lateral cooling (1)

Add the lateral heat transfer term

$$c_p(T(x,t))\frac{\partial T(x,t)}{\partial t} = \frac{\partial}{\partial x} \left(k(T(x,T))\frac{\partial T(x,t)}{\partial x} \right) + J \cdot E(T(x,t),J) - \frac{hP}{A}(T(x,t) - T_0)$$

with $T(x,0) = T_0$ and $T(x \to \pm \infty, t) = T_0$

Maintain the same non-dimensional transformation:

$$\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial \xi^2} + \left(\frac{\pi}{2}\right)^2 g(u, j) - \frac{hPl_{MPZ}^2}{k(T_0)A}u$$

Hence

$$\frac{\partial u}{\partial \tau} = \frac{\partial^2 u}{\partial \xi^2} + \left(\frac{\pi}{2}\right)^2 \left(g(u,j) - \operatorname{Cg} j^{-1} u\right) \text{ with } \frac{hPl_{MPZ}^2}{k(T_0)A} = \left(\frac{\pi}{2}\right)^2 \frac{\frac{hP}{A}(T_c - T_0)}{J_{C(T_0)}^2 \rho_m} = \left(\frac{\pi}{2}\right)^2 \operatorname{Cg}^2$$

Account for lateral cooling (2)

Introducing a new dimensionless

number:

$$Cg = \frac{\frac{hP}{A}(T_c - T_0)}{J_{C(T_0)}^2 \rho_m}$$

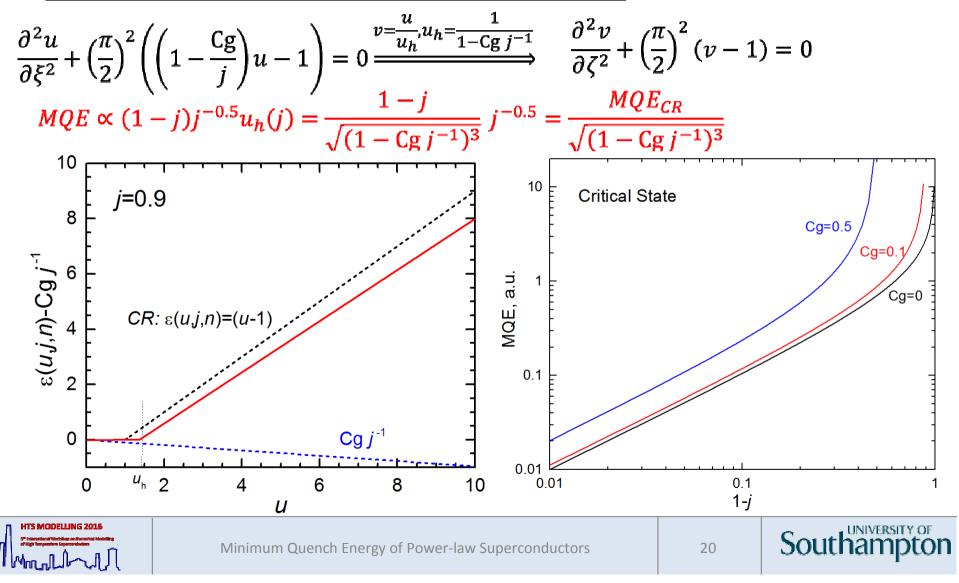
which is the ratio between lateral cooling and current sharing heat generation.

Consider single 2G tape (4mm width):

$$P = 8 \text{mm}, A = 0.4 \text{mm}^2, \frac{P}{A} = 2 \times 10^4 \text{m}^{-1}$$
1. In liquid nitrogen pool $T_0 = 77 \text{K}$:
 $h = 1 - 3 \text{ Wcm}^{-2} \text{K} \sim 2 \times 10^4 \text{ Wm}^{-2} \text{K}$,
 $T_C - T_0 \sim 10 \text{K}, I_C(T_0) = 100 \text{A}$,
 $J_C(T_0) = 2.5 \times 10^8 \text{ Am}^{-2}, \rho_m = 3.2 \times 10^{-9} \Omega \text{m}$
 $Cg = 2$
2. Helium gas cooled $T_0 = 20 \text{K}$:
 $h = \frac{\text{Nu}k_{He}}{D} \sim 40 \text{Nu} \text{ Wm}^{-2} \text{K}$
 $T_C - T_0 \sim 70 \text{K}, I_C(T_0) = 800 \text{A}$,
 $J_C(T_0) = 2 \times 10^9 \text{ Am}^{-2}, \rho_m = 3.2 \times 10^{-10} \Omega \text{m}$
 $Cg = 0.1$

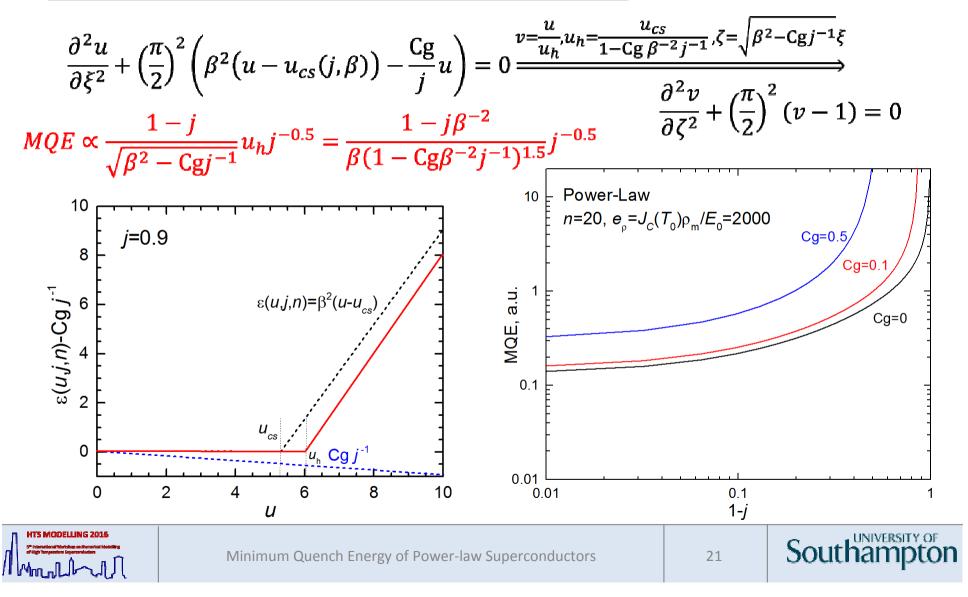
Critical State with lateral cooling

Approximate transformation to effective critical state



Power-law superconductors with lateral cooling

Approximate transformation to effective critical state



Conclusions

- 1. Critical state MQE vanishes with 1 j as the current approaches the critical current I_c ;
- 2. In the vicinity of $I_{C_{i}}$ a higher MQE persists for power-law before disappearing to zero: more room for stable operation near $I_{C_{i}}$!
- 3. An approximate power-law $MQE(j) \sim j^{-\frac{m}{2}}(1-j\beta^{-2})\beta^m$ correlates explicitly to power index *n* and nominal conductor dissipation $e_{\rho} = J_C(T_0)\rho_n/E_0$: explains the current scaling of experimental MQE;
- 4. Higher dimensions has higher MQE, but effective continuum breaks down then $L_{MPZ}^{y,z} < d_{wire}$ and/or very large L_{MPZ}^{x} : possibly quench with 1d/2d MQE.
- 5. Lateral cooling in 1d can be solved using similarity to the critical state. Possibility for global stability, even for the critical state.

Thanks for your attention!

