

HTS MODELLING 2016 5th International Workshop on Numerical Modelling of High Temperature Superconductors

An efficient 3D FEM model based on T-A formula for superconducting coated conductors

Huiming Zhang, Min Zhang, Weijia Yuan

University of Bath, UK

June, 15-17, 2016

Outline

- Introduction
- Methodology
- Validation
- Application
 - > TSTC coil
 - Racetrack coil
 - > Reobel cable

Introduction

• Why do we need 3D models for 2G HTS?

- Assembled 2G HTS cables for high current applications
- > 3D modelling is crucial to guide design and optimisation
- Existing models for 3D FEM calculation:
 - > A formula
 - ✓ Convenient to implement (FlexPDE)
 - ▹ H formula
 - ✓ Convenient to implement (COMSOL)
 - > *T* formula
 - \checkmark Easy to impose transporting current

Challenges

• Current challenges facing large scale 3D modelling:

- ≻High aspect ratio
- Complicated geometry
- ≻Non-linear *E*-*J* power law
- Extremely time consuming

Can we combine the advantages of exiting formula to address the challenges?
Easy to implement in FEM software
Easy to impose boundary conditions

Computationally efficient

YES, T - A formula

Outline

- Introduction
- Methodology
- Validation
- Application
 - > TSTC coil
 - Racetrack coil
 - > Reobel cable

T-A formula

• Geometry

- ➢ HTS sheet
- \succ Air space

- Two assumptions
 - Sheet approximation
 - Ignore the parallel magnetic field component
- State variables
 - T (current vector potential) normal to Superconducting sheet
 - \succ **T** is also denoted as **g** in some other papers
 - > A in Air space

Governing equation

Imposing current

$$I = \int JdS = \int \nabla \times TdS = \int Tds$$

$$I = (T_1 - T_2)d$$

 Nii M, Amemiya N and Nakamura T 2012 Superconductor Science and Technology 25 095011 ISSN 0953-2048

Outline

- Introduction
- Methodology
- Validation
- Application
 - > TSTC coil
 - Racetrack coil
 - > Reobel cable

- Magnetisation of thin disk
 - > Dimension: R=10mm, thickness $d = 1 \mu m$
 - ▶ n=201, $J_c = 10^{10}$ A/m²

$$\succ H_c = J_c d$$

 \succ *T*=0 on the boundary of the disk

Penetration depth & normalized magnetisation loss

2. Clem J R and Sanchez A 1994 Physical Review B 50 9355

^{1.} Mikheenko P and Kuzovlev Y E 1993 Physica C: Superconductivity 204 229–236

Current and field along radius direction

1. Mikheenko P and Kuzovlev Y E 1993 Physica C: Superconductivity 204 229–236

2. Prigozhin L 1998 Journal of Computational Physics 144 180–193

• Efficiency

CPU: Intel i5 2400 Memory: 8 GB Formula *H T-A* Thickness 10µm 1µm

Outline

- Introduction
- Methodology
- Validation
- Application
 - > TSTC coil
 - Racetrack coil
 - > Reobel cable

Application-TSTC coil

5 strands TSTC cable coil

Application-TSTC coil

Application-Racetrack coil

AC loss

Current can be applied in complex geometry
Current distribution, magnetic field and loss can be calculated

Application-Roebel

Magnetisation of a full pitch Roebel cable
➢ Dimension: length = 40mm, thickness d =1µm
➢ n=21, J_c = 10¹⁰A/m²

Application-Roebel

20 mT, 50 Hz

Conclusions

- A new 3D FEM is presented
- Validated by analytical and FEM results
- Very efficient compared with existing models
- A powerful tool to model assembled 2G HTS cables and magnets

Thank you for your attention! Any questions?

zhanghuiming09@gmail.com

Application-Roebel

twisted - 1

twisted - 2

twisted - 3

twisted - 4

untwisted - 1

untwisted - 2

untwisted - 3 untwisted - 4

0

55

÷

0

Δ

Ó

4

50

twisted > untwisted

35

30

25

40

Magnetic field / mT

45