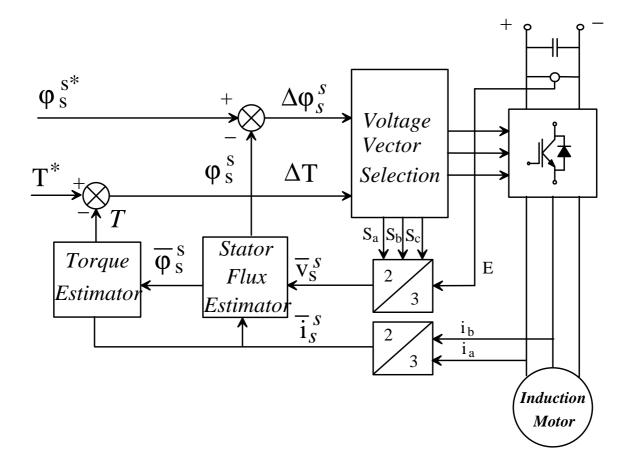
DIRECT TORQUE CONTROL FOR INDUCTION MOTOR DRIVES

MAIN FEATURES OF DTC

- Decoupled control of torque and flux
- Absence of mechanical transducers
- Current regulator, PWM pulse generation, PI control of flux and torque and co-ordinate transformation are not required
- Very simple control scheme and low computational time
- Reduced parameter sensitivity

BLOCK DIAGRAM OF DTC SCHEME

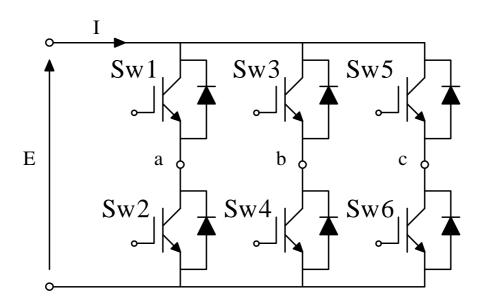


In principle the <u>DTC method</u> selects one of the six nonzero and two zero voltage vectors of the inverter on the basis of the instantaneous errors in torque and stator flux magnitude.

MAIN TOPICS

- \Rightarrow Space vector representation
- \Rightarrow Fundamental concept of DTC
- \Rightarrow Rotor flux reference
- \Rightarrow Voltage vector selection criteria
- \Rightarrow Amplitude of flux and torque hysteresis band
- \Rightarrow Direct self control (DSC)
- \Rightarrow SVM applied to DTC
- \Rightarrow Flux estimation at low speed
- ⇒ Sensitivity to parameter variations and current sensor offsets
- \Rightarrow Conclusions

INVERTER OUTPUT VOLTAGE VECTORS



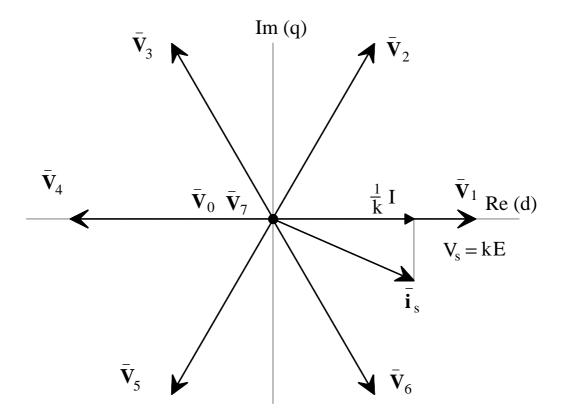
Voltage-source inverter (VSI)

For each possible switching configuration, the output voltages can be represented in terms of space vectors, according to the following equation

$$\frac{-s}{v_s} = \frac{2}{3} \left(v_a + v_b e^{j\frac{2\pi}{3}} + v_c e^{j\frac{4\pi}{3}} \right)$$

where v_a , v_b and v_c are phase voltages.

Sw1	Sw2	Sw3	Sw4	Sw5	Sw6	S _a (t)	S _b (t)	S _c (t)	\overline{v}_k
OFF	ON	OFF	ON	OFF	ON	0	0	0	\overline{v}_0
ON	OFF	OFF	ON	OFF	ON	1	0	0	\overline{v}_1
ON	OFF	ON	OFF	OFF	ON	1	1	0	\overline{v}_2
OFF	ON	ON	OFF	OFF	ON	0	1	0	\overline{v}_3
OFF	ON	ON	OFF	ON	OFF	0	1	1	\overline{v}_4
OFF	ON	OFF	ON	ON	OFF	0	0	1	\overline{v}_5
ON	OFF	OFF	ON	ON	OFF	1	0	1	\overline{v}_{6}
ON	OFF	ON	OFF	ON	OFF	1	1	1	\overline{v}_7



Inverter output voltage vectors

GENERAL REPRESENTATION OF THE INVERTER OUTPUT VOLTAGE VECTORS

The inverter switching configuration defines the lineto-line voltages by

$$v_{ab} = E \left[S_a(t) - S_b(t) \right]$$
$$v_{bc} = E \left[S_b(t) - S_c(t) \right]$$
$$v_{ca} = E \left[S_c(t) - S_a(t) \right]$$

In the absence of omopolar generators and assuming a symmetrical machine yields

$$v_a + v_b + v_c = 0$$

and the line-to-neutral voltages can be expressed as a function of two line-to-line voltages

$$v_a = \frac{2v_{ab} + v_{bc}}{3}$$
$$v_b = \frac{v_{bc} - v_{ab}}{3}$$
$$v_c = \frac{-v_{ab} - 2v_{bc}}{3}$$

Then, by substitution we obtain

$$v_{a} = E \frac{2S_{a}(t) - S_{b}(t) - S_{c}(t)}{3}$$
$$v_{b} = E \frac{2S_{b}(t) - S_{a}(t) - S_{c}(t)}{3}$$
$$v_{c} = E \frac{2S_{c}(t) - S_{a}(t) - S_{b}(t)}{3}$$

Using these equations the space vector of the phase voltages becomes

$$\sum_{v_{s}}^{-s} = \frac{2}{3} \operatorname{E} \left[S_{a}(t) + S_{b}(t)e^{j\frac{2\pi}{3}} + S_{c}(t)e^{j\frac{4\pi}{3}} \right]$$

The power balance equation, neglecting the inverter losses, leads to

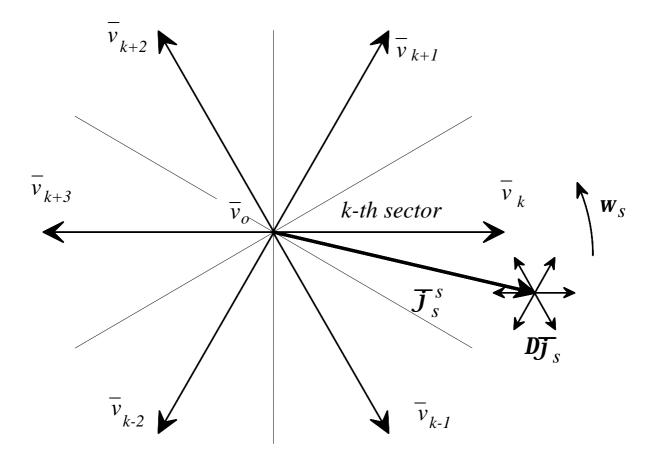
$$I = \frac{2}{3} \left[S_a(t) + S_b(t) e^{j\frac{2\pi}{3}} + S_c(t) e^{j\frac{4\pi}{3}} \right] \bullet \bar{i}_s^{s}$$

FUNDAMENTAL CONCEPT OF DTC

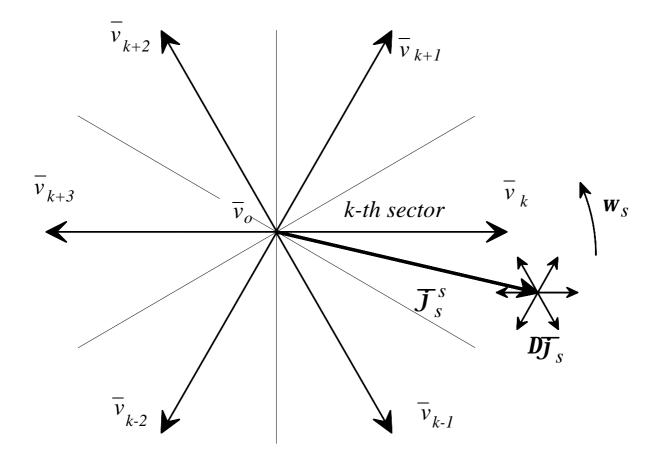
STATOR FLUX VECTOR VARIATION

Assuming the voltage drop $R_s \bar{i}_s^s$ small, the stator flux is driven in the direction of the stator voltage \bar{v}_s^s

 $\Delta \overline{\phi}_s^s \cong \overline{v}_s^s \Delta T$, where ΔT is the sampling period



The flux variation is proportional to E, ΔT and has the same direction of the voltage vector applied.



\mathcal{V}_k	${oldsymbol P}$ radial positive volta	ge vector
v_{k+1}	$oldsymbol{P}$ forward positive	"
v_{k+2}	$oldsymbol{P}$ forward negative	"
\mathcal{V}_{k+3}	$oldsymbol{P}$ radial negative	"
\mathcal{V}_{k-1}	$oldsymbol{P}$ backward positive	"
\mathcal{V}_{k-2}	$oldsymbol{P}$ backward negative	"
$v_0 e v_7$	Þ zero	"

ROTOR FLUX AND TORQUE VARIATION

From the general equations written in the rotor reference frame, we can derive

$$\overline{\varphi}_r^r = \frac{L_m}{L_s} \frac{1}{1 + s \sigma \tau_r} \overline{\varphi}_s^r \quad \text{with} \quad s = 1 - \frac{{L_m}^2}{L_s L_r}$$

This equation shows the nature of rotor flux dynamic response for changes in stator flux

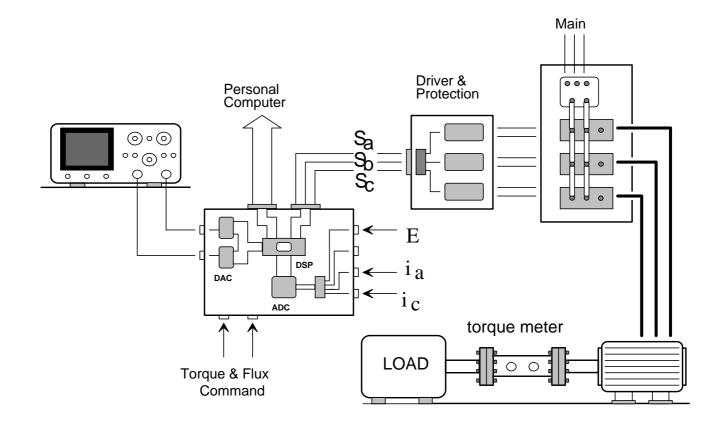
$$T = \frac{3}{2} p \frac{L_m}{\sigma L_s L_r} \overline{\varphi}_s^r \cdot j \overline{\varphi}_r^r = \frac{3}{2} p \frac{L_m}{\sigma L_s L_r} \varphi_s \varphi_r \sin \vartheta_{sr}$$

Any stator flux vector variation determines a torque variation on the basis of two contributions

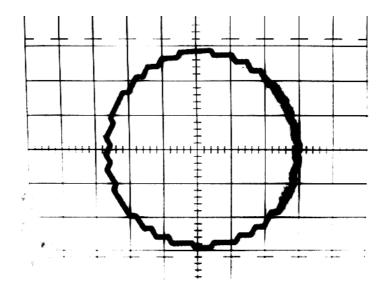
- I) The variation of the stator flux magnitude
- II) The variation of the stator flux phase angle with respect to rotor flux

Any command which causes the flux angle ϑ_{sr} to change will determine a quick torque variation.

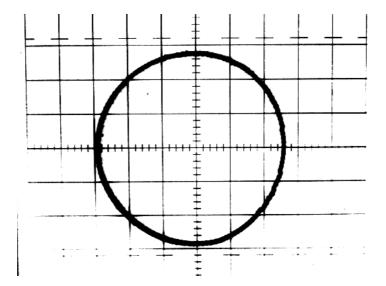
EXPERIMENTAL SET-UP



- IGBT inverter, 1000 V, 50 A
- DSP TMS320E15, 20 MHz.
- 1 MHz, 8-channel, 12-bit A/D converter
- 2-channel, 16-bit D/A converter

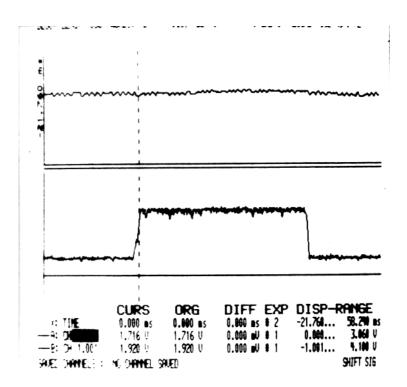


Stator flux locus, steady state, $\mathbf{w}_m = 100 \text{ rad/s}$



Rotor flux locus, steady state, $\mathbf{w}_m = 100 \text{ rad/s}$

EXPERIMENTAL RESULTS



Estimated d and q components of stator flux during the response to a torque command alternating between 50% and 200% of the rated torque

These results show that the decoupling between the stator flux components can be achieved controlling directly the magnitude of the stator flux