Direct AC/AC Matrix Converters

Dipartimento di Ingegneria Elettrica Alma Mater Studiorum - Università di Bologna Viale Risorgimento, 2 - 40136 Bologna

- have received considerable attention in recent years
- may become a good alternative to PWM-VSI topology
- Bi-directional power flow
- Sinusoidal input/output waveforms
- Controllable input power factor
- Compact design, due to the lack of dc-link capacitors for energy storage

Topology complexity of the matrix converter makes study a hard task

Basic scheme of matrix converters.

Space Vector Modulation (SVM) algorithm

SVM completely exploit the possibility of matrix converters to

- control the input power factor regardless the output power factor
- fully utilize the input voltages
- reduce the number of switch commutations in each cycle period.

SVM allows an immediate comprehension of the modulation process

- without the need for a fictitious DC link
- avoiding the addition of the third harmonic components.

Switching Configurations Employed

Switching configuration list	Switches On			vo	α ₀	i _i	β _i				
+1	S_{11}	S_{22}	S_{32}	$2/3 v_{12i}$	0	$2/\sqrt{3} i_{ol}$	-π⁄6				
-1	S_{12}	S_{21}	S_{31}	$-2/3 v_{12i}$	0	$-2/\sqrt{3} i_{ol}$	- <i>π</i> /6				
+2	S_{12}	S_{23}	S_{33}	$2/3 v_{23i}$	0	$2/\sqrt{3} i_{ol}$	$\pi/2$				
-2	S_{13}	S_{22}	S_{32}	$-2/3 v_{23i}$	0	$-2/\sqrt{3} i_{ol}$	$\pi/2$				
+3	S_{13}	S_{21}	S_{31}	$2/3 v_{31i}$	0	$2/\sqrt{3} i_{ol}$	7π/6				
-3	S_{11}	S_{23}	S_{33}	$-2/3 v_{31i}$	0	$-2/\sqrt{3} i_{o1}$	7π/6				
+4	S_{12}	S_{21}	S_{32}	$2/3 v_{12i}$	2π/3	$2/\sqrt{3} i_{o2}$	- <i>π</i> /6				
-4	S_{11}	S_{22}	S_{31}	$-2/3 v_{12i}$	2π/3	$-2/\sqrt{3} i_{o2}$	- <i>π</i> /6				
+5	S_{13}	S_{22}	S_{33}			Garage					
-5	S_{12}	S_{23}	S_{32}	Active configurations							
+6	S_{11}	S_{23}	S_{31}	2, 5-v _{31i}	2105	2/ vJ 1 ₀₂	1100				
-6	S_{13}	S_{21}	S_{33}	<i>-2/3 v_{31i}</i>	2π/3	$-2/\sqrt{3} i_{o2}$	7π/6				
+7	S_{12}	S_{22}	S_{31}	$2/3 v_{12i}$	4π/3	$2/\sqrt{3} i_{o3}$	- <i>π</i> /6				
-7	S_{11}	S_{21}	S_{32}	$-2/3 v_{12i}$	$4\pi/3$	$-2/\sqrt{3} i_{o3}$	- <i>π</i> /6				
+8	S_{13}	S_{23}	S_{32}	$2/3 v_{23i}$	$4\pi/3$	$2/\sqrt{3} i_{o3}$	$\pi/2$				
-8	S_{12}	S_{22}	S_{33}	-2/3 v _{23i}	$4\pi/3$	-2/ √3 i ₀₃	$\pi/2$				
+9	S_{11}	S_{21}	S_{33}	2/3 v _{31i}	$4\pi/3$	$2/\sqrt{3} i_{o3}$	7π/6				
-9	S_{13}	S_{23}	S_{31}	<i>-2/3 v_{31i}</i>	4π/3	$-2/\sqrt{3} i_{o3}$	7π/6				
0_1 0_2	$\frac{S_{11}}{S_{12}}$	$\overline{\begin{array}{c}S_{21}\\S_{22}\\\widetilde{\end{array}}}$	$\frac{S_{31}}{S_{32}}$	Zero configurations							

Output Voltage and Input Current Space Vectors

Sectors and directions of the output line-to-neutral voltage vectors.

Sectors and directions of the input current vectors.

At any sampling instant \bar{v}_o and ϕ_i are known (reference quantities)

 \overline{v}_i is imposed by the source (known by measurements)

SVM Algorithm is based on the selection of <u>4 active</u> <u>configurations</u> that are applied for suitable time intervals within each cycle period T_c .

The <u>zero configurations</u> are applied to complete T_c .

The control of φ_i can be achieved by controlling the phase angle β_i of the input current vector.

	Sector of the output voltage vector (K_v)												
		1 or 4				2 or 5			3 or 6				
he ent	1 or 4	+9	+7	+3	+1	+6	+4	+9	+7	+3	+1	+6	+4
or of t it curre tor (K	2 or 5	+8	+9	+2	+3	+5	+6	+8	+9	+2	+3	+5	+6
Sect inpu	3 or 6	+7	+8	+1	+2	+4	+5	+7	+8	+1	+2	+4	+5
		Ι	Π	III	IV	Ι	II	III	IV	Ι	Π	III	IV

Selection of the active switching configurations for each combination of

- output voltage sector
- input current sector

Basic equations of the SVM algorithm

$$\begin{split} \overline{v}_{o}^{'} &= \overline{v}_{o}^{I} \delta^{I} + \overline{v}_{o}^{II} \delta^{II} = \frac{2}{\sqrt{3}} v_{o} \cos(\widetilde{\alpha}_{o} - \frac{\pi}{3}) e^{j[(K_{v} - 1)\pi/3 + \pi/3]} \\ \overline{v}_{o}^{''} &= \overline{v}_{o}^{III} \delta^{III} + \overline{v}_{o}^{IV} \delta^{IV} = \frac{2}{\sqrt{3}} v_{o} \cos(\widetilde{\alpha}_{o} + \frac{\pi}{3}) e^{j[(K_{v} - 1)\pi/3]} \\ \left(\overline{i}_{i}^{I} \delta^{I} + \overline{i}_{i}^{II} \delta^{II}\right) \cdot j e^{j\widetilde{\beta}_{i}} e^{j(K_{i} - 1)\pi/3} = 0 \\ \left(\overline{i}_{i}^{III} \delta^{III} + \overline{i}_{i}^{IV} \delta^{IV}\right) \cdot j e^{j\widetilde{\beta}_{i}} e^{j(K_{i} - 1)\pi/3} = 0 \end{split}$$

To satisfy to the requirements of the

- reference output voltage vector
- input current displacement angle.

Solutions of the Basic Equations

$$\begin{split} \delta^{I} &= (-1)^{K_{v}+K_{i}} \frac{2}{\sqrt{3}} q \frac{\cos(\tilde{\alpha}_{o}-\pi/3)\cos(\tilde{\beta}_{i}-\pi/3)}{\cos\varphi_{i}} \\ \delta^{II} &= (-1)^{K_{v}+K_{i}+1} \frac{2}{\sqrt{3}} q \frac{\cos(\tilde{\alpha}_{o}-\pi/3)\cos(\tilde{\beta}_{i}+\pi/3)}{\cos\varphi_{i}} \\ \delta^{III} &= (-1)^{K_{v}+K_{i}+1} \frac{2}{\sqrt{3}} q \frac{\cos(\tilde{\alpha}_{o}+\pi/3)\cos(\tilde{\beta}_{i}-\pi/3)}{\cos\varphi_{i}} \\ \delta^{IV} &= (-1)^{K_{v}+K_{i}} \frac{2}{\sqrt{3}} q \frac{\cos(\tilde{\alpha}_{o}+\pi/3)\cos(\tilde{\beta}_{i}+\pi/3)}{\cos\varphi_{i}} \end{split}$$

Applied for any combination of > output voltage sector K_v > input current sector K_i

For the feasibility of the control strategy.

$$\left|\delta^{I}\right| + \left|\delta^{II}\right| + \left|\delta^{III}\right| + \left|\delta^{IV}\right| \le 1$$

Otherwise: the instantaneous values of the input voltages do not allow to satisfy the requirements of output voltage and input power factor.